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Abstract

The introduction of new schemes that are based on the communication among dis-

tributed ports or nodes, has motivated the use of composite fading models due to

the fact that the distributed ports/nodes experience different multipath fading and

shadowing statistics, which will subsequently determine the required statistics for the

performance analysis of different trans-receivers. However, most of the existing work

on the performance of distributed antenna systems (DASs) in cellular networks rely

on lognormal shadowing models, which do not lead to closed-form expressions for the

composite fading statistics and for subsequent performance metrics. In this thesis, the

more tractable generalized-K composite fading model is adopted. It is shown, using

the moment matching method, that the generalized-K distribution can be region-wise

approximated by the familiar Gamma distribution and then the statistics for both the

sum and the weighted sum of generalized-K random variables are studied for both

the independent and correlated scenarios.

Another line of research that was motivated by the introduction of DASs is the

effect of the individual power constraints at each distributed antenna port (DAP)

on the design and analysis of optimal/suboptimal transmission strategies. In this

thesis, the optimality range of beamforming under the individual power constraints is

derived for correlated two-input multi-output channels. Finally, the developed results

on the statistics for the weighted sum of generalized-K random variables are utilized

to study the performance of DASs in both single-cell and multi-cell environments to

reveal the gains of cellular DASs and to develop insights into their design.
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Chapter 1

Introduction

1.1 Cellular Systems

After the unprecedented success of the cellular industry in the early 1990s, there has

been an enormous investment of resources, first, in improving cellular voice commu-

nication, and second, in exploring the possibility of wireless multimedia transmission.

The promise of high data rate applications has fueled a large growth in both the

wireless industry as well as in wireless research. Transmitting such information over

any channel requires the satisfaction of a set of quality of service (QoS) requirements.

Typical QoS requirements are that the channel consistently supports high data rates

with a very small probability of error, and that the delay incurred by delay-sensitive

traffic is minimal. In cellular systems the wireless medium is linked to a wireline

network since an access to the backbone is required. The wireless medium, as com-

pared to the wired medium, is less reliable and has a smaller capacity due to path

loss, multipath fading, shadowing and interference. So, the design of the wireless

part of the system that supports high data rates for limited bandwidth requires spec-

trally efficient schemes especially for cellular systems [1]. For the wireless part of the

network, an intuitive proposal is to reduce the access distance of the user terminal

(UT) to the wired part which will reduce the path loss and the severity of multipath

fading and will consequently improve the information capacity and reliability of the

1
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wireless part. Another proposal is to introduce cooperation schemes among a set of

adjacent base stations (BSs) to reduce the interference and improve capacity; such

schemes are known as coordinated multi-point (CoMP) transmission and reception

or network multiple-input multiple-output (MIMO) [2]-[5].

1.2 Distributed Antenna Systems

A Distributed Antenna System (DAS) is a network of spatially distributed antenna

ports (DAPs) that are connected to a common source via a wired transport medium,

usually optical fiber, to provide wireless service within a geographic area. DASs were

originally introduced to simply cover the dead spots in indoor communications [6, 7];

further studies have identified other potential advantages such as power saving and

system capacity, and expanded their applications [8]-[15]. Later, research on the ca-

pacity of DASs has taken two main lines; the first line is to model DASs as variation

of conventional MIMO systems where the antenna elements are geographically dis-

tributed. However, a DAS is different from a collocated MIMO system in the following

aspects:

• In a DAS, each DAP has different channel gains since uplink/downlink signals

between the user terminals and the different antenna ports experience different

multipath fading, shadowing and path loss characteristics.

• In a DAS system, each DAP has its own power constraint whereas in collocated

MIMO systems, a common power constraint is imposed.

• The dedicated links used to connect the DAPs to the central processing unit

might be subject to delay or other constraints.

Due to these differences, channel modeling and performance analysis of DASs may

not be carried out using existing tools for conventional collocated MIMO systems and
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different mathematical tools are needed [16].

The other line of research is based on modeling DASs in the context of multi-

cell processing where the cooperating base stations are seen as a DAS [17]. The

first approach, distributed MIMO systems, is applicable for scenarios where simple

processing at the DAPs is assumed and the second approach is more applicable when

advanced processing (comparable to a base station) at the DAPs is assumed.

1.3 Objectives and Contributions

The main objective of this thesis is to contribute toward appropriate channel mod-

eling, optimal transmission schemes, and subsequently the design and performance

analysis of DASs in cellular networks.

In Chapter 2, an introductory background about the early evolution of DASs and

related topics of radio over fiber (RoF) is presented where the literature that is partic-

ularly relevant to each chapter is reviewed. Since a very essential tool for performance

analysis of DASs is the underlying composite fading model where the effects of both

multipath fading and shadowing are incorporated, the main aim of Chapter 3 is to

develop a simple yet sufficiently accurate composite fading model that bypasses the

analytical and numerical difficulties associated with the existing models in literature.

The moment-matching method is used to approximate the generalized-K (Gamma-

Gamma) composite fading distribution by the mathematically more tractable Gamma

distribution. The use of the Gamma distribution to model composite fading, with

sufficient accuracy, significantly reduces further analytical manipulations and allows

for an interesting interpretation of the shape factor of the approximating Gamma

distribution as a composite fading parameter and a diversity gain measure.

In Chapter 4, the statistics of the sum of generalized-K random variables (RVs),

which play an important role in the performance analysis of different diversity com-
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bining schemes over such channels, are studied. First, two moment- matching-based

approximations for the distribution of the sum and the weighted sum of indepen-

dent generalized-K RVs are introduced. Second, the second-moment characteriza-

tion, namely the amount of fading, for the sum and the weighted sum of correlated

generalized-K RVs is presented.

Since simple architectures of cellular DASs can be seen as a distributed MIMO

system, the capacity of a point-to-point MIMO channel is revisited in Chapter 5

in order to investigate characterization of the optimal input covariance matrix for

MIMO channels with individual power constraints using the standard Lagrangian

formulation. Obtained results have shown relevant details on the structure of the

optimal covariance matrix for two-input-multiple-output (TIMO) channels with a

common power constraint and led to a characterization of the optimal transmission

strategy for TIMO channels with individual power constraints.

In Chapter 6, the performance of centralized DAS architectures is considered for

both single-cell and multi-cell scenarios. The developed results on the distribution of

the weighted sum of generalized-K RVs, in Chapter 4, are utilized to compute the

ergodic capacity and the outage probability, and hence to quantify the gains due to

the integration of DASs in cellular systems.

In a nutshell, the main contributions of this thesis can be summarized as follows:

• The development of an approximate Gamma model for the generalized-K model

using the moment-matching method and the introduction of the adjusted moment-

matching method.

• The introduction of simple yet sufficiently accurate approximate distributions

for the sum and the weighted sum of independent generalized-K RVs and the

development of expressions for the amount of fading for the sum of correlated

generalized-K RVs.
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• The derivation of the beamforming optimality range for TIMO channels with

individual power constraints.

• The derivation of closed-form expressions for the ergodic capacity and the infor-

mation outage probability of single-user centralized DAS arrangements in both

single-cell and multi-cell environments.



Chapter 2

Background

In this chapter, the early evolution of DASs is tracked and the closely related topic

of communication over fiber optic links is introduced.

2.1 Early Evolution of DASs

Early proposals on the use of distributed antennas were for indoor communications

[7] where measurements have shown that the propagation loss and the delay spread

encountered in large buildings may render the use of a single central antenna ineffec-

tive. In [7], replacing the single antenna of each central station by a DAS, or simply a

“leaky feeder” that winds its way through the hallways of the building was proposed

as a solution and it was shown by measurements that the signal attenuations, in a

large building, can be reduced by tens of decibels and that the delay spread can be

limited to only tens of nanoseconds. There is no additional signal processing needed

at the antenna elements except for amplifiers and down-converters. Although delay

may incur naturally from the cable, delay elements are inserted between the antenna

elements such that signal received from different antennas can be distinguished and

the user terminal is expected to experience path diversity gain against multipath and

shadow fading (using rake receivers).

Later, proposals on the use of DASs in code division multiple access (CDMA)

6
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systems appeared in [8] -[15] where again the distributed antennas are integrated in a

way that creates deliberate multipath so that the signals received from two antennas

are distinguishable by the temporal processing at the receiver as shown in Fig. 2.1.

Figure 2.1: A basic CDMA DAS.

In [10], a string of three distributed nodes was used for coverage in a 300 ft long

by 100 ft wide two-story office building. The node antennas were placed above the

dropped ceiling tiles of the first floor with the dipole pointing up in order to cover

both floors of the building. Each node consists only of two separate simple transmit-

receive paired antenna elements where each antenna element has an amplifier and

a surface acoustic wave (SAW) delay element. The SAW delay element inserts two

microseconds time delay between the nodes and 8 microseconds time delay between

the two radiating elements within the node. A pair of coaxial cables was used to

distribute the transmitted signals to the radiating elements in the nodes. Another

pair of coaxial cables was used to receive signals from all antenna elements in the

nodes. All signal processing is done at the base station located within the building.

It was observed that the mobile transmit power is reduced by more than 10 dB on

average in the three-node distributed antenna system. The authors argue that this

result implies that ten times more simultaneous mobile users can be contained in the

DAS for a direct sequence (DS)-CDMA system whose capacity is interference limited

(single-user decoders). A similar structure was considered in [12] for outdoor systems

and it was found that with only four distributed antenna elements, the median and

peak power levels can be reduced by 13 dB and 20 dB, respectively.
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Figure 2.2: A typical DAS with six DAPs per cell.

Further evolution of DASs for outdoor cellular networks where a certain arrange-

ment of DAPs is integrated in each cell [18, 19] (see Fig. 2.2) has intersected with

two other emerging topics in wireless communications: radio over fiber and MIMO

schemes. In this chapter, the first topic will be introduced; MIMO schemes will be

discussed later in Chapter 5.

In WINNER I/II, DASs were proposed under the concept of multi-user spatial

scheduling for space-division multiple access (SDMA) [20] and were introduced in

Future Technologies for a Universal Radio Environment (FuTURE) in China [21]. In

Long-Term-Evolution LTE-Advanced standards, DASs belong to the family of Coop-

erative multi-point transmission and reception (CoMP) schemes that are proposed as

one of the enabling technologies to support the high data requirements.
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2.2 Radio over Fiber (RoF)

The use of fiber optic links in cellular systems was proposed in [22, 23] to connect

the microcells to the main base station. This has led to the emergence of radio over

fiber networks where radio frequencies are carried over optical fiber links to support

various wireless applications.

Optical fiber is a dielectric medium for carrying information from one point to

another in the form of light. Fiber is essentially a very thin cylindrical glass waveguide

consisting of two parts: an inner core material and an outer cladding material. The

core and cladding material are designed so as to keep the light signals guided inside

the fiber, allowing the light signal to be transmitted for reasonably long distances with

a small loss. The invention of the low-loss silica-based optical fiber in the early 1970s

has led to a take-off in the use of fiber for communication. The silica-based optical

fiber has three low-loss windows in the 0.8, 1.3, and 1.55 µm infrared wavelength

bands. The loss is around 0.25 dB/km in the 1.55 µm band, about 0.5 dB/km in

the 1.3 µm band, and 2.5 dB/km in 0.8 µm [24]. The minimum loss reported for

fiber optic is 0.148 dB/km at a wavelength of 1.57 µm [25] using pure-silica-core fiber

to reduce the Rayleigh scattering loss which is caused by the density fluctuations

of the glass and is the dominant factor in determining the transmission loss of an

optical fiber. Other minor sources of loss consists of imperfection loss between core

and cladding, infrared absorption loss, bending loss and hydroxyl (OH) absorption

loss [25].

Experimentally, optical signals have been sent over hundreds of kilometers without

amplification. Besides its enormous bandwidth and low attenuation, fiber also offers

low error rates. Communication systems using an optical fiber typically operate at a

bit error rate (BER) of less than 10−11 [26]. The small size and thickness of fiber allows

more fiber to occupy the same physical space as copper, a property that is desirable

when installing local networks in buildings. Fiber is reliable in corrosive environments,
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immune to electromagnetic interference, and does not cause interference [23].

Unlike conventional optical networks where digital signal is mainly transmitted,

RoF is fundamentally an analog transmission system because it distributes the radio

waveform, directly at the radio carrier frequency. Actually, the analog signal that

is transmitted over the optical fiber can either be RF (radio frequency) signal, IF

(intermediate frequency) signal, or baseband (BB) signal. At the optical transmitter,

the RF/IF/BB signal can be imposed on the optical carrier by using direct or external

modulation of the laser light. In an ideal case, the output signal from the optical link

will be a copy of the input signal. The transmission of analog signals puts certain

requirements on the linearity and dynamic range of the optical link [26].



Chapter 3

The Generalized-K Composite
Fading Model and the
Approximate Gamma Model

As indicated in the previous chapter, modeling of composite fading channels, where

the multipath fading and shadowing effects are incorporated, is essential for analyzing

the performance of different communication schemes of DASs. In this chapter, first,

an overview of the current models of multipath fading and shadowing is given and then

the generalized-K composite fading model is presented. Second, the approximation

of this model by the simpler Gamma model, using the moment matching method, is

explored. The limitations associated with matching higher order positive and negative

moments are alleviated through the proposal of an adjustable form of the first two

positive moment matching method.

3.1 Wireless Channel Modeling

In wireless channels, the radiated electromagnetic wave interacts in a complicated

way with the medium between the transmitter and the receiver. So global deter-

ministic characterization is not possible and can only be specific; therefore, the only

way to characterize such channel is probabilistic. The incident wave interacts with

surface irregularities via diffraction, scattering, reflection, and absorption, creating

11
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a continuum of scattered partial waves. The amplitudes and phases of these partial

waves depend on the physical properties of the surface structure such as geometri-

cal proportions and electromagnetic reflection properties. At every point in space,

scattered partial waves interfere with each other and, possibly, with the direct wave,

building up an irregular electromagnetic field. On the other hand, the signal power

tends to decrease with distance and the existence of large scatterers such as trees,

buildings, and mountains, introduces random variations of the local mean of the en-

velope or equivalently the local mean power. To statistically model wireless channels,

it is a common practice to consider these small-scale and large-scale propagation

mechanisms independently.

3.1.1 Small-scale Fading

Small-scale fading is due to the superposition of the received multipath signals which

are due to the processes of reflection, diffraction and scattering. So, within a scale

that is comparable to the carrier wavelength, the superposition of the multipath

signals may add constructively (in-phase) or destructively (out-of-phase) causing the

phenomenon of small-scale fading. To derive the statistical characteristics of the

received wave-field that is due to the superposition of partial waves, the complex

phasor of the received signal can be expressed as [27, 28]

Ẽ =
∑
n

Enexp(jφ), (3.1)

where En is the magnitude of the nth path and φ is the relative phase, which are joint

random variables whose distributions are dependent on the physical properties of the

propagation medium. For a mobile receiver, En and φ become stochastic processes.
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The magnitude of the complex phasor in (3.1) is defined as [27]

r =

∣∣∣∣∣∑
n

Enexp(jφ)

∣∣∣∣∣ . (3.2)

In order to derive its stationary distribution, the following assumptions are usually

made [27]:

• A large number of partial waves are received with identical amplitudes.

• No correlations exist among the different partial waves.

• The magnitude and phase of each partial wave are uncorrelated.

• The relative phase of each partial wave is uniformly distributed over [0, 2π].

Under these assumptions, it can be invoked by the central limit theorem, that the field

in (3.1) is a complex Gaussian RV whose real and imaginary components are zero-

mean Gaussian RVs with equal variance of 1/2. It is well known that the magnitude

is a Rayleigh RV whose probability density function (PDF) can be expressed as [29]

p(r) =
r

σ2
exp

(
− r2

2σ2

)
. (3.3)

If a Line-of-Sight (LOS) is present (with a non-zero mean, A0), the magnitude of

the received signal has a Rician distribution [30]

p(r) =
r

σ2
exp

[
−(r2 + A2

0)

2σ2

]
I0

(
A0r

σ2

)
, (3.4)

where I0(·) denotes the modified Bessel function of the first kind with zero order.

Another PDF that is versatile enough to include the Rayleigh PDF as a special case
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and approximate the Rician distribution 1 is the Nakagami distribution[32]

p(r) =
2

Γ(mm)

(mm

Ω

)mm

r2mm−1exp

(
−mmr

2

Ω

)
, (3.5)

where Γ[·] is the Gamma function defined in [33, Eqn. 8.310] as Γ (z) =
∞∫
0

tz−1e−tdt, z ≥

0, Ω = E(r2), and mm is the multipath fading parameter that varies from mm = 1/2

for one-sided Gaussian PDF, to mm = 1 for Rayleigh PDF, and mm = ∞ for the

non-fading scenario. In [27], it was shown that the Nakagami PDF is the best ap-

proximate solution of the signal magnitude distribution of the sum of partial waves

under the most general mathematical conditions. Other distributions such as Weibull

distribution [34, 35], Laguerre series-based distributions [36], and the κ-µ distribu-

tion and the η-µ distribution [37] were proposed to model the signal envelope fading

statistics.

3.1.2 Large-scale Fading

Due to the scattering caused by the general terrain, large buildings and vegetation,

the local mean received power in a wireless channel varies; this phenomenon is referred

to as shadowing. These variations are usually modeled by a lognormal RV ([38] and

references therein)

p(x) =
1

ln10/10
√
2πσx

exp

[
−(10log(x)− µs)

2

2σ2
s

]
, (3.6)

where µs is called the area mean (since averaging over shadowing effect takes place

over a large area) and is determined by the propagation path loss; however, we may

treat the path loss independently so that we may set µs = 0dB. The standard de-

viation, σ2
s varies with the propagation environment. Typical reported values of the

1More details about the accuracy of such an approximation are given in [31].
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shadowing standard deviation in macrocells range from 5 to 12 dB and from 4 to 13

dB in microcells. Moreover, empirical measurements indicated that the value of σs

decreases as the scatterer’s density increases ([39] and references therein). Mathe-

matically, the lognormal model is based on invoking the central limit theorem which

implies that the product of a sufficient number of independent RVs may be approxi-

mated as being lognormally distributed [38].

Another model which was adopted recently in literature to model shadowing in

wireless channels is the Gamma distribution [40, 41]:

p(x) =
xk−1

Γ(k)θk
exp

(
−x

θ

)
, (3.7)

where θ and k denote the scale and shape parameters of the Gamma distribution,

respectively. The PDF plots for the Gamma distribution (with a mean of unity) for

different values of the shape parameter are shown in Fig. 3.1. For small values of

k, the PDF has skewed exponential shape and a symmetric shape for large values

of k. In fact, the Gamma distribution converges to a Gaussian distribution with

a mean of kθ and a variance of kθ2. The Gamma distribution has shown a good

fit to measurements [40, 42] and is analytically more tractable than the lognormal

distribution as will be seen in the next section.

3.1.3 Path Loss

Empirical measurements in wireless channels have shown that the average received

power is dependent on the distance between the transmitter and the receiver, d,

leading to the well-known law

P (d) = α

(
d

d0

)β

, (3.8)
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Figure 3.1: The Gamma distribution plots for different values of the shape parameter
k.

where d0 is a reference distance, α is a scale parameter that depends on the transmit

wavelength, transmit and receive antenna radiation patterns, and β is the path-loss

exponent, which varies from less than 2 in guided propagation scenarios to 6 in indoor

and dense urban environments.

3.2 Composite Fading Channel Modeling

Modeling composite fading channels, where the multipath fading and shadowing are

modeled jointly, is essential for the performance analysis of DASs since the geograph-

ically distributed ports experience different multipath fading and shadowing statis-

tics. Small-scale fading, as discussed in the previous section, is usually modeled using

Rayleigh, Rician, and Nakagami distributions. The latter one is general enough to

include the Rayleigh distribution as a special case and to approximate the Rician

distribution.
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3.2.1 Lognormal-based Models

Large-scale (shadow) fading is usually modeled to have a lognormal distribution [38].

However, the lognormal-based composite fading models do not lead to closed form

expressions of the received signal power distribution which hampers further analytical

derivations. These models include the Rayleigh-lognormal (Suzuki) model [39] and

the Nakagami-lognormal (Gamma-lognormal) model [39, 43]. Assuming that the

envelope of the received signal, due to small-scale multipath fading, is modeled by

the Nakagami distribution, the PDF of the received power γ, conditioned on the local

mean power Ω, takes the form of a Gamma distribution as

pγ/Ω(x) =
(mm

Ω
)mm

Γ(mm)
xmm−1exp(−mmx

Ω
) , γ ≥ 0,mm ≥ 0.5, (3.9)

and the Nakagami-lognormal (or Gamma-lognormal) composite fading model can be

expressed as [39] as

pγ(x) =

∞∫
0

(mm

w
)mm

Γ(mm)
xmm−1exp(−mmx

w
)

1

ln10/10
√
2πσw

exp

[
−(10log(w)− µs)

2

2σ2
s

]
dw.

(3.10)

The expression in (3.10) reduces for mm = 1 to the Rayleigh-lognormal (exponential-

lognormal) model.

3.2.2 Gamma-based Models

As an alternative, it has been proposed to use the more tractable Gamma density

function to model the local mean power random variations due to shadowing [40, 41,

44, 45] as

pΩ(y) =
(ms

Ω0
)ms

Γ(ms)
yms−1exp(−msy

Ω0

) , y ≥ 0,ms > 0, (3.11)

where ms is shadowing parameter and Ω0 is the average of the local mean power.
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Hence, we may write

pγ(x) =

∞∫
0

pγ/Ω(x)pΩ(y)dy. (3.12)

Using (3.9) and (3.11), the PDF of the unconditional instantaneous power γ in a

Gamma-Gamma composite fading channel can be derived as [44]

pγ(x) =
2bmm+ms

Γ(mm)Γ(ms)
x(mm+ms)/2−1Kms−mm(2b

√
x). (3.13)

In (3.13), Kms−mm(·) is the modified Bessel function of the second kind and order

ms −mm and b =
√

mmms

Ω0
. The parameters mm and ms quantify the severity of

multipath fading and shadowing, respectively, in the sense that small values of mm

and ms indicate severe multipath fading and shadowing conditions, and vice versa.

It can be shown using the moment matching method that ms =
1

e(σs/8.686)
2−1

where σs

denotes the standard deviation in the lognormal shadowing model

Remark 3.1: The K-distribution, where mm = 1, and a generalized version of it

appeared in [46] and [47] to model scattering in radar and laser systems, respectively.

Moreover, the generalized-K distribution as introduced in [47] is different from the

Gamma-Gamma distribution considered here.

In addition to radar and sonar systems, the generalized-K distribution is used for

the modeling atmospheric turbulence in free-space optical communications [48].

The plot of the generalized-K distribution for different values of mm and ms is

shown in Fig. 3.2 where the PDF has an exponential shape for severe multipath

fading and shadowing conditions, a bell shape for moderate fading conditions, and

approaches the Dirac Delta function as the two fading components diminish.
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Figure 3.2: The generalized-K distribution plots for different values of mm and ms.

The cumulative distribution function (CDF) of γ was derived in [49] as

P (γ) =

πcsc(πα)

[
(b2γ)mm

1F2(mm; 1− α, 1 +mm; b
2γ)

Γ(ms)Γ(1− α)Γ(mm + 1)
− (b2γ)ms

1F2(ms; 1 + α, 1 +ms; b
2γ)

Γ(mm)Γ(1 + α)Γ(ms + 1)

]
,

(3.14)

where α = ms − mm and pFq is the generalized hypergeometric function, [33, Eqn.

9.14.1] for integer p and q. Moreover, the characteristic function (CHF) of generalized-

K RV can be derived as [49]

Φγ(t) =

(
b2

it

)β/2

exp

(
b2

2it

)
W−β/2,α/2

(
b2

it

)
, (3.15)

where β = mm +ms − 1 and W−β/2,α/2(·) is the Whittaker function as defined in [33,

Eq. 9.220.4].

An alternative representation of the generalized-K distribution can be obtained
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through the use of the general Fox H-function, using the fact that the PDF of the

product of N Gamma RVs can be expressed as an H-function PDF (see Appendix

A) [50] that is given as

pγ(y) =

(
N∏
i=1

1

θiΓ (ki)

)
HN,0

0,N

[(
N∏
1

1

θi

)
y|(ki − 1, 1), . . . , (kN − 1, 1)

]
, y > 0. (3.16)

Then, the generalized-K PDF can be expressed as

pγ(y) =

(
mmms

Γ (mm) Γ (ms) Ω0

)
H2,0

0,2

[(
mmms

Ω0

)
y|(mm − 1, 1), (ms − 1, 1)

]
, y > 0.

(3.17)

The expression in (3.17) can be further reduced, using the relation in (A.2) to

pγ(y) =

(
mmms

Γ (mm) Γ (ms) Ω0

)
G2,0

0,2

[(
mmms

Ω0

)
y|mm − 1,ms − 1

]
, y > 0, (3.18)

where Gm,n
p,q denotes the Meijer function [33, Eqn. 9.310]. Furthermore, using [51],

the CDF can be expressed as

P (γ) =
1

Γ (mm) Γ (ms)
G2,1

1,3

[
mmms

Ω0

γ|1mm,ms,0

]
. (3.19)

Finally, the CHF can be expressed as

Φγ(t) =
1

Γ (mm) Γ (ms)
G1,2

2,1

[
−i

Ω0

mmms

t|1−mm,1−ms

0

]
. (3.20)

3.3 The Approximate Gamma Model

Although the generalized-K model has led to a closed-form expression for the PDF

of the instantaneous power γ, the use of the corresponding CDF expression which

contains the hyper-geometric function term (as in (3.14)) or the Meijer function term

(as in (3.19)) is not straightforward due to the associated analytical difficulties and/or
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numerical instabilities that will require the use of approximations and asymptotic

expansions. Moreover, further derivations using the characteristic function approach,

such as the PDF of the sum of N generalized-K RVs, are quite involved even for the

independent and identically distributed (i.i.d.) case due to the difficulties associated

with the Whittaker function [52] or the Meijer function as in the CDF expression.

An alternative approach, to avoid these difficulties, is to consider approximating

the PDF in (3.13) by a more tractable PDF using the moment-matching method. We

propose using the Gamma distribution due to the following reasons: (i) the Gamma

distribution is a Type-III Pearson distribution, which is widely used in fitting dis-

tributions for positive RVs by matching the first and second moments [50], and (ii)

the PDF in (3.13) corresponds to the product of two Gamma RVs and one of the

corresponding Gamma PDFs will dominate for large values of mm or ms [53].

3.3.1 Higher-order Moment Matching

The nth moment of the generalized-K distribution can be derived as [52]

E[γn] = µn =
Γ(mm + n)Γ(ms + n)

Γ(mm)Γ(ms)

(
Ω0

mmms

)n

, (3.21)

where E[·] denotes the statistical expectation.

Furthermore, the nth moment of the Gamma distribution can be expressed as [29]

E[xn] =
Γ(k + n)θn

Γ(k)
, (3.22)

where k and θ are as defined in (3.7). Now, using the expressions in (3.21) and

(3.22), the first, second, and third moments of the generalized-K distribution and the
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approximating Gamma distribution can be matched as

kθ = Ω0, (3.23)

θ2k(k + 1) = K1Ω
2
0, (3.24)

θ3k(k + 1)(k + 2) = K2K1Ω
3
0. (3.25)

On the other hand, the negative moments, as defined in [54], of the generalized-K

PDF and the Gamma PDF can be expressed using again the expressions in (3.21)

and (3.22) as

θ(k − 1) = K−1Ω0, k > 1,mm > 1,ms > 1, (3.26)

θ2(k − 2)(k − 1) = K−1K−2Ω
2
0, k > 2,mm > 2,ms > 2, (3.27)

where

K1 = (mm+1)(ms+1)
mmms

= 1 + 1
mm

+ 1
ms

+ 1
mmms

, (3.28a)

K2 = (mm+2)(ms+2)
mmms

= 1 + 2
mm

+ 2
ms

+ 4
mmms

, (3.28b)

K−1 = (mm−1)(ms−1)
mmms

= 1− 1
mm

− 1
ms

+ 1
mmms

, (3.28c)

K−2 = (mm−2)(ms−2)
mmms

= 1− 2
mm

− 2
ms

+ 4
mmms

. (3.28d)

Matching different pairs of moments will result in the scale and shape parameters

for the approximating Gamma PDF as shown in Table 3.1.

In Table 3.1, θi,j and ki,j denote the scale and shape parameters of the approxi-

mating Gamma PDF obtained by matching the ith and the jth moments, respectively.

Now, examining the expressions of the approximating Gamma PDF parameters

given in Table 3.1, the following may be stated:

• The scale parameter of the approximating Gamma PDF obtained by matching

the positive moments is larger than the one obtained by matching the negative
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Table 3.1: Expressions of the scale and the shape parameters of the approximating
Gamma PDF obtained by moment matching (for K1, K2, K−1, K−2, refer to (3.28))

Moments
matched

Scale parameter Shape parameter

µ1, µ2 θ1,2 = (K1 − 1)Ω0, θ1,2 > 0 k1,2 = 1
K1−1

, k1,2 > 0

µ1, µ3 θ1,3 =

(
−3+

√
9+8(K1K2−1)

)
Ω0

4
, θ1,3 > 0 k1,3 = 4

−3+
√

9+8(K1K2−1)
, k1,3 > 0

µ2, µ3 θ2,3 =
√

K1(
k2
2,3+k2,3

)Ω0, θ2,3 > 0 k2,3 =

(
−

K2
2

K1
+4

)
+

√(
K2

2
K1

)2

+8
K2

2
K1

2

(
K2

2
K1

−1

) , k2,3 > 0

µ1, µ−1 θ1,−1 = (1−K−1)Ω0, θ1,−1 > 0 k1,−1 = 1
1−K−1

, k1,−1 > 1

µ1, µ−2 θ1,−2 =
(3−

√
9+8(K−1K−2−1))Ω0

4
, θ1,−2 > 0 k1,−2 = 4

3−
√

9+8(K−1K−2−1)
, k1,−2 > 2

µ−1, µ−2 θ−1,−2 =
(

1
mm

+ 1
ms

− 3
mmms

)
Ω0, θ−1,−2 > 0 k−1,−2 =

K−1Ω0

θ−1,−2
+ 1, k−1,−2 > 2

moments. For example, it can be easily seen that θ1,2 = θ1,−1 +
2

mmms
Ω0. Since

the negative moments characterize a distribution at the origin [54] (the lower

tail for a positive RV) and the positive moments characterize a distribution

at the upper tail, we may conclude that the generalized-K PDF (CDF) can

be approximated by a Gamma distribution whose scale and shape parameters

depend on the region of the PDF (CDF) of interest. Such a region-wise (piece-

wise) approximation was used in [55] to well-approximate the sum of lognormal

RVs by a single lognormal RV.

• Matching moments for n ≥ 2 will lead to involved expressions as seen in Table

3.1. Moreover, not including the first positive moment in the moments matched

results in an approximating Gamma PDF that does not have the same mean

as the approximated generalized-K PDF (i.e., the generalized-K PDF and the

approximating Gamma PDF have different average power values).

• Matching negative moments may not be possible for small values of mm and/or

ms as indicated in (3.26) and (3.27) and subsequent expressions in Table 3.1.
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Figure 3.3: The log-log CDF plots of the generalized-K and the approximating
Gamma RVs for mm = 2.5 and ms = 2.5 using the moment matching method.

• The scale and shape parameters of the approximating Gamma distribution are

dependent on the fading parameters in the sense that asmm and/orms increase,

the difference between the predicted scale parameters decreases and hence the

difference between the approximating PDFs (CDFs) becomes small. So, for

small values of mm and/or ms (while mm,ms > 2), the difference between

the two approximating Gamma CDFs might be large enough to bound the

approximated CDF in the lower tail region as seen in Fig. 3.3. On the other

hand, matching the lower order moments for large values of mm and/or ms

does not result in a good approximation as seen in Figs. 3.4 and 3.5 since the

approximating CDFs are too close to each other.

Note: In Figs. 3.3-5 the complementary cumulative distribution function (CCDF),

and particularly the region corresponding to P (X ≥ x) ≤ 0.1, is shown for the upper

tail region to obtain more illustrative results.
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Figure 3.4: The log-log CDF plots of the generalized-K and the approximating
Gamma RVs for mm = 7 and ms = 4 using the moment matching method.
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Figure 3.5: The log-log CDF plots of the generalized-K and the approximating
Gamma RVs for mm = 10 and ms = 10 using the moment matching method.
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3.3.2 Moment Matching Method with Adjustment

In order to bypass the limitations explained before on the use of the moment matching

for higher order moments, we may consider an adjustable form for the scale and shape

parameters of the approximating Gamma PDF obtained by matching only the first

two positive moments since (i) these expressions, as given in Table 3.1, are simple

and valid for all values of mm and ms; and (ii) the first positive moment is included

in the matching. In this regard, we first need to define the following:

Definition 3.1 [56]: The amount of fading (AF) of the instantaneous power γ is

defined as the ratio of the variance to the square of the mean

AFγ =
var(γ)

[E(γ)]2
. (3.29)

Using the expression in (3.21), the variance of the generalized-K distribution can

be expressed as

var(γ) =
(mm +ms + 1)Ω2

0

mmms

. (3.30)

Subsequently, the AF can be expressed as

AFγ =
1

mm

+
1

ms

+
1

mmms

. (3.31)

Now, we may re-write the scale and shape parameters using Table 3.1 as

θ1,2 =

[
1

mm

+
1

ms

+
1

mmms

]
Ω0 = [AF] Ω0, 0 ≤ AF ≤ AFmax (3.32a)

k1,2 =
1

AF
, 0 ≤ AF ≤ AFmax. (3.32b)

The value of AFmax is determined by the smallest physical values of mm and ms

which are non-zero in real propagation channels; hence AFmax is finite.

The expressions of the scale and shape parameters given by (3.32a) and (3.32b)
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Figure 3.6: The CDF plots of the generalized-K and the approximating Gamma RVs
for mm = 2 and ms = 2 using the first-two moment matching.

result in a good fit over the main body of the PDF even for small values of mm and

ms as shown in Fig. 3.6 for mm = 2 and ms = 2. The observation that the CDFs

intersects at two points is expected since it was shown in [57] that if two distributions

have the same first n moments, then the corresponding CDFs must cross each other

at least at n points. However, the approximation is poor in the lower and upper tail

regions since matching only the first and second moments will result in a good fit

only around the mean2.

To overcome this limitation, we may consider the following adjustable form for

the expressions in (3.32a) and (3.32b):

θ′1,2 = [AF− ϵ]Ω0, 0 ≤ AF ≤ AFmax, ϵ0 ≤ ϵ ≤ AF, (3.33a)

k′
1,2 =

1

AF− ϵ
, 0 ≤ AF ≤ AFmax, ϵ0 ≤ ϵ ≤ AF (3.33b)

2Theoretical measures such as the Kullback-Leibler distance [60] are analytically difficult to use
due to the modified Bessel function term in the generalized-K PDF.
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where ϵ denotes the adjustment factor and ϵ0 denotes its lower limit. Since the AF

“added” to the scale parameter of the approximating Gamma PDF should not exceed

the original amount of fading of the approximated PDF (i.e., ϵ0 ≥ −AF), ϵ is bounded

as −AF ≤ ϵ ≤ AF. Due to the fact that the relevant practical range of AF is from zero

(for non-fading channels) to 8 (for severe multipath fading and shadowing conditions

where mm = 0.5 and ms = 0.5)3, the relevant range of the adjustment factor ϵ

becomes −8 ≤ ϵ ≤ 8.

The adjustment factor can be computed using a numerical measure of the differ-

ence between the approximated and the approximating PDFs (CDFs). A common

measure is the absolute value of the difference between the approximated and the

approximating PDFs (CDFs)[29, 59]. For this purpose, the CDFs rather than the

PDFs are considered since the Gamma PDF goes to infinity as x → 0 for k < 1 [29]

which causes numerical instabilities for comparison in the lower tail region.

The plots of the optimal adjustment factor, ϵop, versus the multipath fading and

shadowing parameters are shown in Figs. 3.7 and 3.8 for values ofmm and ms ranging

from 0.5 to 10.

The plots show that the adjustment factor decreases as either or both mm and ms

increase. The decrease of the adjustment factor as both mm and ms increase is worth

noting since it indicates that the PDF of the product of two Gamma RVs can be well-

approximated, for the main body of the PDF, by a Gamma PDF by matching the

first two positive moments. This is due to the fact that both PDFs approach the same

limiting PDF (the Dirac delta PDF) as fading diminishes. To see that, the AF for

equal values of the multipath fading and shadowing parameters can be expressed as

AF = 2m+1
m2 , where m = mm = ms; clearly the amount of fading is approximately 2/m

for moderate values of m and converges to zero for very large values of m. However,

if a high degree of accuracy is sought in the lower tail region, then the magnitude of

3Such small values of mm and ms may take place in land mobile satellite channels [58].
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Figure 3.7: The plot of the adjustment factor that minimizes the absolute value of the
difference between the approximated generalized-K and the approximating Gamma
distributions over the whole CDF.
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difference between the generalized-K and the approximating Gamma distributions in
the lower tail of the CDF (< 0.1).
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the adjustment factor increases as seen in Fig. 3.8. Similar plots can be obtained

for any region of interest and the corresponding adjustment factor can be tabulated.

The optimal values of the adjustment factor can not be analytically related to the

fading and shadowing parameters since the match is performed only over segments

of the CDFs which are already analytically complex.

As an example of the applications of the introduced approximation, the ergodic

capacity, defined as

Cerg =

∫ ∞

0

log2(1 + SNR x)pγ(x)dx, (3.34)

of a heavily shadowed Rayleigh channel (ms=1) is shown in Fig. 3.9 where the loss

in capacity, at high SNR, due to heavy shadowing is 1.66 bits/s/Hz as compared

to 0.83 bits/s/Hz for Rayleigh channels without shadowing [1]. In Fig. 3.9, the

value of the adjustment factor (for ms=1) is chosen, for all SNRs, to be the average

of ϵop,1 and ϵop,0.1 (corresponding to the lower one-tenth portion of the CDF); i.e.,

ϵ = (ϵop,1 + ϵop,0.1)/2 [61].

3.4 Conclusions

In this chapter, an introduction about the existing multipath fading, shadowing,

and composite fading models is given, then, particularly, the generalized-K model is

presented and its relation to the H-function distribution family is highlighted. The

approximation of the generalized-K distribution by the Gamma distribution using

higher-order moments is investigated and subsequently an adjustable form of the

first two moment-matching method is proposed for region-wise approximation. The

introduced approximation leads to simple approximate closed-form expressions for the

ergodic capacity and the information outage probability and allows approximating the

diversity gain of diversity combining over generalized-K channels.
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Chapter 4

On the Statistics of the Sum of
Generalized-K RVs

The determination of the distribution of the sum of generalized-K RVs is of relevance

since the performance analysis of several communication schemes is determined or

lower/upper-bounded using the sum statistics. In this chapter, the statistics of the

sum of generalized-K RVs is considered for both the independent and correlated cases.

For the independent case, the sum distribution is approximated by (i) a Gamma

distribution based on the region-wise approximation introduced in Chapter 3 and (ii)

another generalized-K PDF whose parameters are determined again by the moment

matching method. For the correlated case, the second-order statistics are considered

and expressions for the AF are developed.

4.1 Related Work

Early work on the sum of independent K-distributed RVs has appeared in [62] where

the CHF approach was used to derive the sum distribution. This result was extended

in [52] for the sum distribution of generalized-K RVs for integer values of mm and

ms. However, the expressions of the PDF of the sum distribution turned out to be

complex even for the independent and identically distributed (i.i.d.) case with integer

parameters. In [48], an infinite series expansion of the Bessel function term in the

32
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generalized-K PDF was used to express the PDF for the sum of i.i.d. generalized-K

RVs in the context of the performance analysis of optical communication systems.

The power series are truncated to a finite number of terms and the BER of certain

modulation schemes for both single-input single-output (SISO) and MIMO channels.

In [63], The moment generating function (MGF) approach, introduced in [64], was

used to derive closed-form expressions for the BER of binary differential phase-shift

keying and orthogonal binary frequency-shift keying (FSK) modulation over multi-

branch over generalized-K fading channels. The formulation is based on expressing

the Whittaker function in the MGF expression using the more familiar confluent

hypergeometric function of the second kind and then deriving the BER expressions.

For the correlated case, results were reported for the bivariate case only, in [65], where

the PDF, the CDF, and the CHF of the joint distribution are derived in infinite

series form and the performance of maximal ratio combining (MRC) and equal gain

combining for a dual diversity combiner are studied.

4.2 The Approximate Gamma Distribution for the

Sum of Independent Generalized-K RVs

The moment matching method can be used to approximate the PDF (CDF) of the

sum of N generalized-K RVs by a Gamma PDF (CDF). However, matching the higher

order moments is difficult since deriving or computing these moments is involved or

unfeasible [54, 55]. This motivates again the use of an adjustable form for the scale

and shape parameters obtained by matching the first two positive moments.

We may start with N=2 where the first and second moments of the sum of two

independent RVs, z = x+ y, can be expressed as [29]

E[z] = E[x] + E[y], (4.1a)
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and

E
[
z2
]
= E

[
x2
]
+ E

[
y2
]
+ 2E[x]E[y]. (4.1b)

Matching the first and second moments of the sum of two independent generalized-K

RVs and the approximating Gamma distribution results in

θsum =
K1,xΩ

2
0,x +K1,yΩ

2
0,y + 2(Ω0,xΩ0,y)− (Ω0,x + Ω0,y)

2

(Ω0,x + Ω0,y)

=
AFxΩ

2
0,x + AFyΩ

2
0,y

(Ω0,x + Ω0,y)
, θsum > 0,

(4.2a)

and

ksum =
(Ω0,x + Ω0,y)

2

AFxΩ2
0,x + AFyΩ2

0,y

, ksum > 0, (4.2b)

where K1,x and K1,y denote the K1 parameters (as defined in (3.27a)), Ω0,x and Ω0,y

denote the values of the mean of the local power, and AFx and AFy denote the AF of

the generalized-K RVs x and y, respectively.

The adjusted forms of (4.2a) and (4.2b) can be written as

θ′sum =
[AFx − ϵx]Ω

2
0,x + [AFy − ϵy]Ω

2
0,y

(Ω0,x + Ω0,y)
, θ′sum > 0, (4.3a)

and

k′
sum =

(Ω0,x + Ω0,y)
2

[AFx − ϵx]Ω2
0,x + [AFy − ϵy]Ω2

0,y

, k′
sum > 0. (4.3b)

In general, the expressions in (4.3a) and (4.3b) can be generalized for the sum of

N independent generalized-K RVs as

θ′sum =

∑N
i=1[AFi − ϵi]Ω

2
0,i∑N

i=1 Ω0,i

, θ′sum > 0, (4.4a)

and

k′
sum =

(∑N
i=1 Ω0,i

)2
∑N

i=1[AFi − ϵi]Ω2
0,i

, k′
sum > 0. (4.4b)
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For the i.i.d. case, the expressions in (4.4a) and (4.4b) simplify to

θ′sum = (AF− ϵ)Ω0, θ′sum > 0, (4.5a)

and

k′
sum =

N

AF− ϵ
, k′

sum > 0. (4.5b)

Similar formulation can be carried out for the sum of correlated generalized-K RVs.

Three-dimensional plots of the adjustment factor versus the composite fading

parameters mm and ms can be produced for different values of N . As an example,

the plots of the lower tail of the CDFs for mm= 2, ms= 4, and N=1, 2, 3, and 6

are given in Fig. 4.1 showing that an adjustment factor of ϵ = 0.2 results in almost

identical CDFs, in the lower tail region, for N = 6. Clearly, larger values of ϵ are

needed for a more accurate approximation for N=1, 2, and 3. The fit improves for

large N due to the observation that the Gamma distribution (being approximately

Gaussian for large values of the shape parameter) approximates the distribution of the

sum of independent positive RV especially if they have a moderately slow decaying

upper tail characteristics. This would explain why the accuracy does not degrade as

the number of summands increases.

Remark 4.1: Another approach to approximate the PDF of the sum of independent

generalized-K RVs can be based on the fact that the lower and upper tails of the

PDF of the sum of independent positive RVs are due to the convolution of the lower

and upper tails of the corresponding individual PDFs, respectively. So, the results

obtained in Section 3.3.2 can be used to approximate the PDF of the sum of N i.i.d.

generalized-K RVs by the PDF of the sum of the approximating N i.i.d. Gamma RVs.

It is well-known that the sum of N i.i.d. Gamma RVs, with the same shape and scale

parameters k′
1,2 and θ′1,2, respectively, is another Gamma RV whose shape and scale

parameters are Nk′
1,2 and θ′1,2, respectively; these are the same as the ones obtained
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Figure 4.1: The log-log CDF plots for the sum of generalized-K RVs and the approx-
imating Gamma RV for mm = 2, ms = 4 (σs = 4.2 dB), ϵ = 0.2, and different values
of N .

in (4.5a) and (4.5b). For the non-identically distributed case, the existing results in

literature on the distribution of the sum of independent non-identically distributed

Gamma RVs can be utilized [66, 67].

This approximation was used in [61] to well-approximate the ergodic capacity

(as defined in (3.34)) of MRC receivers over independent generalized-K channels.

Furthermore, the approximate Gamma model allows approximating the diversity gain

as the AF of the approximate model [68].
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4.3 The Approximate Generalized-K PDF for the

PDF of the Sum of Independent Generalized-

K RVs

Let ζ denote the sum of N independent generalized-K RVs, as

ζ = z1w1 + z2w2 + ...+ zNwN , (4.6)

where zi and wi represent the mutually independent multipath fading and shadow-

ing RVs, respectively. In general, the PDF of ζ can be obtained by convolving the

individual PDFs of ziw
,
is or by using the CHF approach. In [62], the CHF approach

was used to derive the PDF of the sum of i.i.d. K -distributed RVs. This result

was extended in [52] to derive the PDF of the sum of i.i.d. generalized-K RVs for

integer values of mm and ms. However, due to the encountered analytical difficulties

and numerical instabilities associated with the Whittaker function term or the Meijer

function term in the CHF of the generalized-K distribution, the PDF of the sum of N

independent generalized-K RVs becomes cumbersome to derive for cases other than

that limiting one. As an alternative, we may consider approximating the PDF of ζ by

another generalized-K RV inspired by the observation that a generalized-K RV for

large values of mm and/or ms can be well-approximated by a Gamma RV [53] and it

is well-known that the sum of such independent Gamma RVs is another Gamma RV

[29] (i.e., a generalized-K RV with large mm and/or ms values).

4.3.1 Case of i.i.d. Generalized-K RVs

The PDF of the sum of N i.i.d. generalized-K RVs can be closely approximated by

another generalized-K PDF as will be explained next.

Proposition 4.1: The PDF of the sum of N i.i.d. generalized-K RVs (mm,1 =
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mm,2 = ... = mm,N = mm, ms,1 = ms,2 = .. = ms,N = ms, and Ω0,1 = Ω0,2 = .... =

Ω0,N = Ω0) can be approximated by the PDF of an equivalent generalized-K RV, ζ̃,

pζ̃(x) =
2b

mm,ζ̃+ms,ζ̃

ζ̃

Γ(mm,ζ̃)Γ(ms,ζ̃)
x(mm,ζ̃+ms,ζ̃)/2−1Kms,ζ̃−mm,ζ̃

(2bζ̃
√
x), (4.7)

where bζ̃ =
√

mm,ζ̃ms,ζ̃

Ω0,ζ̃
and

mm,ζ̃ =
(1 + a) +

√
(1 + a)2 + 4

Nm2
s
k1

2(mm

ms
+ 1

ms
+ 1)

mmN, (4.8a)

ms,ζ̃ =
mm,ζ̃

a
, (4.8b)

Ω0,ζ̃ = NΩ0, (4.8c)

where k1 = (mm +ms + 1) and a = mm

ms
. The expression in (4.8a) simplifies, for the

case of a=1, to

mm,ζ̃ =
1 +

√
1 + 1

Nm2 (2m+ 1)

2 + 1
m

mN, (4.9)

where mm = ms = m.

Proof : The proof can be divided into two steps. The first step is to observe that

the AF of the sum of N i.i.d. generalized-K RVs, as in (4.6), is given as AFζ =

1
Nmm

+ 1
Nms

+ 1
Nmmms

. This can be seen simply by considering the fact that the

variance of the sum of N i.i.d. RVs scales with N and the square of the mean scales

with N2; hence the AF of the sum of N i.i.d. generalized-K RVs will be equal to the

AF of each individual RV in the sum, as given in (3.31), scaled by 1/N. The second

step is to obtain the parameters of an equivalent generalized-K PDF whose AF is

given as AFζ̃ = AFζ . This can be done by equating the AF of the approximating
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generalized-K RV to AFζ as

AFζ̃ =
1

mm,ζ̃

+
1

ms,ζ̃

+
1

mm,ζ̃ms,ζ̃

=
1

mm,ζ̃

+
aζ̃

mm,ζ̃

+
aζ̃

m2
m,ζ̃

=
1

Nmm

+
1

Nms

+
1

Nmmms

,

(4.10)

which can be solved for mm,ζ̃ to get

mm,ζ̃ =
mmms

(
(1 + aζ̃) +

√
(1 + aζ̃)

2 + 4
Nmmms

k1aζ̃

)
2(mm +ms + 1)

N, (4.11)

where aζ̃ =
mm,ζ̃

ms,ζ̃
. We may assume aζ̃ = a to get the first two expressions in (4.8a)

and (4.8b). The use of this assumption is based on the intuition that the sum of N

i.i.d. generalized-K RVs (each having mm = ams) is more likely to be approximated

by another generalized-K RVs with mm,ζ̃ = ams,ζ̃ . For example, if the ratio, a, is

much larger or much smaller than unity, then each individual generalized-K RV in

the sum is approximately a Gamma RV [53], and the sum of these i.i.d. Gamma RVs

is another Gamma RV [29]. The expression in (4.8c) is obtained in a straightforward

way by matching the first moments of ζ and ζ̃.

Remark 4.2: The case where the shadowing effect diminishes (ms → ∞) will

result in mm,ζ = Nmm as expected, since the Gamma PDF corresponding to the

shadowing component approaches a Dirac Delta PDF and the composite fading PDF

will reduce to the Gamma PDF corresponding to the multipath fading. Furthermore,

it is well-known that the PDF of the sum of i.i.d. Gamma RVs is another Gamma

PDF whose shape parameter is the sum of their individual shape parameters [29].

Remark 4.3: An alternative approach to solve for mm,ζ̃ and ms,ζ̃ is to consider

matching the third-order moment of ζ and ζ̃ (as a third equation); however, the

resulting expressions will be too involved to draw insights from, and will result in

fitting characteristics that are biased towards the upper tail region which can be

seen, for example, in [69].
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Figure 4.2: The log-log (to base 10) CDF plots for the lower tail of the sum of
generalized-K RVs and the approximating generalized-K RV for different values of N
with mm = ms = 2.

Remark 4.4: In an independent work [70], the sum distribution in (4.6) is ap-

proximated by another generalized-K distribution whose parameters are given as

mm,ζ̃ = Nmm and ms,ζ̃ = Nms−ε where the adjustment parameter, ε, is determined

numerically. The expressions in (4.8a) and (4.8b), are obtained using a more system-

atic approach and lead to sufficiently accurate approximation, as shown in the next

figures, that require introducing an adjustment parameter only for small values of

mm, ms, and N.

To demonstrate the attained accuracy by the proposed approximation, we may

first consider the i.i.d. case where the CDF plots of the approximated sum distribu-

tion, obtained by convolving the individual PDFs and the approximating generalized-

K distribution whose parameters are given by (4.8a)-(4.8c), for mm = ms = 2 and

mm = ms = 4 are shown in Figs. 4.2-4, respectively.

The plots show that the approximation accuracy improves asmm andms increases
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Figure 4.3: The log-log (to base 10) CDF plots for the lower tail of the sum of
generalized-K RVs and the approximating generalized-K RV for different values of N
with mm = ms = 4.

and that the fit is tight for both the lower and upper tail regions. As the multipath

fading and the shadowing parameters increase, the PDF of each of the summands gets

less asymmetric and more “Gamma-like” so that the accuracy of the approximation

based on the first two moments and the additional rule (mm,ζ̃ = ams,ζ̃) improves.

Figure 4.5 shows the CDF plots for the sum of i.i.d. generalized-K RVs with mm = 3

and ms = 6 and the approximating generalized-K RV whose parameters can be

computed using (4.8a) and (4.8b) as mm,ζ̃ = 5.72 and ms,ζ̃ = 11.44 for N=2, mm,ζ̃ =

8.42 and ms,ζ̃ = 16.84 for N=3, and mm,ζ̃ = 16.53 and ms,ζ̃ = 33.06 for N=6.

The plots in Figs. 4.2-5 indicate that the PDF of ζ is actually well-approximated

by another generalized-K PDF for different values of mm and ms in both the lower

and upper tail regions. To verify the accuracy of the obtained results, the values of

mm,ζ̃ and ms,ζ̃ of the approximating generalized-K PDF (for mm = ms = 4) that

result in the optimal least-square fit to the sum PDF, can be computed using the
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Figure 4.4: The log-log (to base 10) CDF plots for the upper tail of the sum of
generalized-K RVs and the approximating generalized-K RV for different values of N
with mm = ms = 4.

MATLAB function “lsqcurvefit” as 7.63 and 7.64, 11.18 and 11.28, and 21.97 and

21.96, for N=2, 3, and 6, respectively, as compared to 7.58, 11.14, and 21.82, for

N=2, 3, and 6, respectively.

Remark 4.5: To tighten the fit between the approximated and approximating

PDFs (CDFs), we may introduce a parameter ϵ, such that m̃m,ζ̃ = mm,ζ̃ + ϵ̃m and

m̃s,ζ̃ = ms,ζ̃+ ϵ̃s, as an adjustment parameter to account for the remaining inaccuracy

in mm,ζ , especially for the small values of m, as obtained by the proposed closed-form

approximation in (4.8a) and (4.8b). Moreover, the small numerical difference between

the values of mm,ζ̃ and ms,ζ̃ as predicted by the proposed approximation and the ones

obtained by the least square fit, and hence ϵ̃, decreases as N gets large. This can be

seen for mm = ms = 2, in Fig. 4.2, where the approximation improves as N increases.



43

−1 −0.5 0 0.5 1 1.5
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

log(x)

lo
g(

P
(X

<
x)

)

 

 

Exact CDF
 Approx CDF

N=2

N=3

N=6

Figure 4.5: The log-log (to base 10) CDF plots for the sum of generalized-K RVs
and the approximating generalized-K RV for different values of N with mm = 3 and
ms = 6.

4.3.2 Case of i.n.d. Generalized-K RVs

In the case of the sum of independent and non-identically distributed (i.n.d.) generalized-

K RVs with arbitrary mm, ms, and Ω0 values, we may express the AF of the sum

as

AFsum,i.n.d. =

N∑
j=1

AFjΩ
2
0,j

(
N∑
j=1

Ω0,j)2
. (4.12)

Setting AFsum,i.n.d. = AFζ results in the analogous expression of the one in (4.10)

as
N∑
j=1

AFjΩ
2
0,j

(
N∑
j=1

Ω0,j)2
=

1

mm,ζ̃i.n.d.

+
aζ̃i.n.d.

mm,ζ̃i.n.d.

+
aζ̃i.n.d.

m2
m,ζ̃i.n.d.

, (4.13)
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which can be solved, for mm,ζ , to give

mm,ζ̃i.n.d.
=

(1 + aζ̃i.n.d.
)Ω2

0,s + Ω0,s

√
(1 + aζ̃i.n.d.

)2Ω2
0,s + 4aζ̃i.n.d.

N∑
j=1

AFjΩ2
0,j

N∑
j=1

AFjΩ2
0,j

, (4.14a)

ms,ζ̃i.n.d.
=

mm,ζ̃i.n.d.

aζ̃i.n.d.

, (4.14b)

Ω0,ζ̃i.n.d.
=

N∑
j=1

Ω0,j , (4.14c)

where Ω0,s =
N∑
j=1

Ω0,j.

The expression in (4.14a) reduces to the one in (4.8a) for the i.i.d. case. The

appropriate value of aζ̃i.n.d.
is dependent on the individual ratios (a,s) and can be

obtained analytically by matching higher-order moments, which will lead to involved

expressions, or can be calculated numerically through the minimization of the differ-

ence (for example, the least-squares difference) between the approximated and the

approximating PDFs. However, as demonstrated in Fig. 4.6, numerical evaluations

indicate that the use of aζ̃i.n.d.
= 1 leads to a sufficiently accurate approximation when

either (i) mm and ms are small and the a ratio of each of the individual generalized-

K RVs does not allow approximating the generalized-K RV by a Gamma RV (i.e.,

1/5 < ai < 5, i = 1, ..., N) or (ii) the individual ratios, a,s, are too different from

each other.

For the i.n.d. case, the CDF plot for the sum of two generalized-K RVs with

mm,1 = 2, ms,1 = 4, mm,2 = 3, ms,2 = 1, and Ω0,1 = Ω0,2 = 1 is given in Fig.

4.6; it shows the good fit obtained by the proposed selection of aζ̃i.n.d.
= 1 when the

individual ratios, a,s, are different.



45

−1.5 −1 −0.5 0 0.5 1 1.5
−4

−3.5

−3

−2.5

−2

−1.5

−1

−0.5

0

log(x)

lo
g(

P
(X

<
x)

 

 

The exact CDF
The approx CDF

Figure 4.6: The log-log (to base 10) CDF plot for the sum of two generalized-K RVs
and the approximating generalized-K RV for N=2 with mm,1 = 2,ms,1 = 4, and
mm,2 = 3,ms,2 = 1.

4.4 The Approximate Distribution of theWeighted

Sum of Independent Generalized-K RVs

The proposed moment matching approach used in the previous section can be further

used to approximate the PDF of a weighted sum of independent generalized-K RVs

that can be expressed as

ζw = c1z1w1 + c2z2w2 + ...+ cNzNwN , (4.15)

where the weights are assumed to be deterministic and are ordered in a descending

order such that c1 > c2 > . . . > cN > 0.
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The AF for the sum in (4.15) can be expressed as

AFζw,i.n.d.
=

N∑
j=1

c2jAFjΩ
2
0,j

(
N∑
j=1

cjΩ2
0,j)

. (4.16)

For the i.i.d. case, the expression in (4.16) reduces to

AFζw,i.i.d.
=

N∑
j=1

c2jAF

(
N∑
j=1

cj)2
. (4.17)

Equating the AF in (4.16) to the AF of the approximating generalized-K RV (similar

to the expressions in (4.10) will result in

mm,ζ̃w
=

(
(1 + aζ̃w) +

√
(1 + aζ̃w)

2 + 4
c̃mmms

k1aζ̃w

)
2(1 + a+ 1

ms
)

c̃mm, (4.18a)

ms,ζ̃w
=

mm,ζ̃w

aζ̃w
, (4.18b)

Ω0,ζ̃w
=

N∑
j=1

Ω0,j , (4.18c)

where c̃ =

(
N∑

j=1
cij

)2

N∑
j=1

c2ij

.

The parameter c̃ is always greater than unity since the sum of squares of positive

numbers is less than or equal to the square of the sum and is maximum when the

weights are equal. So, the resulting parameters of the approximating generalized-K

PDF decrease as the disparity between the weights increases and tend to under-

estimate the values of the multipath fading and shadowing parameters that of the

best-fitting generalized-K PDF in the lower tail region. For these cases, the in-
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RVs and the approximating generalized-K RV for different values of N with mm =
ms = 2 and c1 = 1, c2 = 0.75, c3 = 0.5, and c4 = 0.5.

troduced approximation represents a lower bound and the approximation accuracy

can be enhanced by an adjustment parameter ϵw (i.e., m̃m,ζ̃w
= mm,ζ̃w

+ ϵm,w and

m̃s,ζ̃w
= ms,ζ̃w

+ ϵs,w) that can be determined numerically. The CDF plots are shown

in Figs. 4.7 and 4.8 for mm = ms = 2 and mm = ms = 4 (such values of mm and

ms are expected since the fading severity gets less for reduced access distances). The

plots demonstrate that the approximation accuracy improves as the values of mm and

ms increases.

4.5 On the Statistics of the Sum of Correlated

Generalized-K RVs

The distribution of the sum of correlated generalized-K RVs is essential for the per-

formance analysis of diversity schemes since the shadowing components are expected
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Figure 4.8: The log-log (to base 10) CDF plots for the weighted sum of generalized-K
RVs and the approximating generalized-K RV for different values of N with mm =
ms = 4, and c1 = 1, c2 = 0.75, c3 = 0.5, and c4 = 0.5.

to be correlated across the geographically distributed ports in DASs, base stations

(BSs) in a multi-cell processing cellular system, or cooperating nodes in a multi-hop

network. However, the derivation of the exact sum distribution has shown to be

involved even for i.i.d. case [52], and no results have been reported so far for the

correlated case (one exception is the simple special case mentioned in [71] where the

shadowing components are assumed to be fully correlated) and the bivariate case in

[65]. This motivates, as an alternative, deriving the moments of the sum of correlated

generalized-K RVs and utilizing them in moment-based performance analysis.
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4.5.1 The AF for the Sum of Identically Distributed Corre-

lated Generalized-K RVs

The sum of N correlated generalized-K RVs can be written, using the fact that each

generalized-K RV is the product of two independent Gamma RVs, as

ξ = z1w1 + z2w2 + ...+ zNwN , (4.19)

where zi and wi denote the multipath fading and shadowing RVs, respectively. In

general, while the multipath and shadowing components are independent, correlation

among the zis and correlation among the wis may exist in certain physical scenarios

as discussed before.

In order to derive the AF expression for the sum of correlated generalized-K RVs,

first we need to develop the correlation coefficient expression between two generalized-

K RVs in terms of the correlation coefficients between their multipath and shadowing

components, respectively. The relevance of revealing the individual roles of the mul-

tipath correlations and the shadowing correlations is motivated by the fact that these

correlations take place at two different spatial scales as discussed before.

Lemma 4.1: The correlation coefficient between two generalized-K RVs, ρi,j, can

be expressed in terms of the correlation coefficient between their multipath com-

ponents (ρzi,zj) and the correlation coefficient between their shadowing components

(ρwi,wj
) as

ρi,j =
ρzi,zj

√
ms,ims,j + ρwi,wj

√
mm,imm,j + ρzi,zjρwiwj√

(mm,i +ms,i + 1)
√

(mm,j +ms,j + 1)
, (4.20)

and this simplifies for the identically distributed (i.d.) case to1

ρi,j =
ρzi,zjms + ρwi,wj

mm + ρzi,zjρwi,wj

mm +ms + 1
. (4.21)

1The same ρi,j expression for the i.d. case has recently been reported in [65] using a more involved
approach.
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Proof : The proof is given in Appendix B.

In the following proposition, based on Lemma 1, the AF for the sum in (4.19) is

expressed in terms of the multipath fading and shadowing correlation coefficients.

Proposition 4.2: The AF of the sum of identically distributed and equally corre-

lated (i.d.e.c.) N generalized-K RVs can be expressed as

AFi.d.e.c
ξ =

1− ρm
Nmm

+
1− ρs
Nms

+
1− ρmρs
Nmmms

+
ρm
mm

+
ρs
ms

+
ρsρm
msmm

, (4.22)

where ρm = ρzizj and ρs = ρwiwj
, ∀ i, j = 1, ..., N .

Proof : The proof is given in Appendix B.

The results in Lemma 4.1 and Proposition 4.2 have several interesting implications.

First, the expressions in (4.21) and (4.22) quantify the individual role of the multipath

correlation and the shadowing correlation in the overall correlation between the signals

experiencing composite fading, and consequently, in the AF expression for the sum of

N i.d.e.c. generalized-K RVs. Secondly, the result in (4.22) indicates the existence

of a non-vanishing part of AFξ, with respect to increasing N, in correlated composite

fading channels. The existence of this term explains why a correlated composite

fading channel cannot approach a non-fading channel (AF = 0) as N → ∞, since

AFξ is always lower bounded as AFξ ≥ ρAF0, where AF0 is the AF of each of the

individual summands as given in (3.31). Although the expression in (B.6) applies

for an arbitrary correlation model, the equal correlation model, which applies for an

array of three antennas placed on an equilateral triangle or for closely spaced antennas

other than linear arrays [72], is considered here since it results in the largest AF.

The case where ρs > 0 and ρm ≈ 0 represents a real scenario in both wireless

channels and radar scattering when the fast fading components (multipath or speckle)

are uncorrelated while the slow fading (shadowing) components are correlated; the
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corresponding expression of the AF is

AFi.d.e.c.
ξ =

1

Nmm

+
1− ρs
Nms

+
1

Nmmms

+
ρs
ms

. (4.23)

We observe from (4.23) that the AF due to the multipath component will vanish

as N → ∞ and the non-vanishing part (as N → ∞), as expected, is due to the

correlated shadowing. However, that non-vanishing part, with respect to increasing

N, disappears as ms → ∞ due to the fact that the Gamma PDF, corresponding to

the shadowing component, approaches a Dirac Delta PDF as ms → ∞ so that the

resulting composite fading PDF will be mainly the Gamma PDF associated with the

power of the multipath fading component.

Remark 4.6: The existence of negative shadowing correlations was reported in

some propagation scenarios [73, 74]. So, it is of relevance to analytically investigate

the effect of such correlations. The expression in (4.23) shows that negative shadowing

correlation tends to decrease the non-vanishing term and to increase the part of the

AF that vanishes as N → ∞. The gain due to the existence of negative correlations

was reported in [74].

For N=2, the AF with negative shadowing correlations becomes

AFi.d.e.c
ξ =

1

2mm

+
1− ρs
2ms

+
1

2mmms

+
ρs
ms

. (4.24)

The above expression shows that the effect of shadowing disappears for ρs = −1

(where the second and last terms sum to zero). ForN=3, the positive semi-definiteness

(PSD) condition for a 3 × 3 correlation matrix can be expressed, using the fact

that a necessary and sufficient condition for a symmetric N × N matrix, A, to

be PSD is that all the possible principal minors of A are non-negative [75], as

1 + 2(ρ1,2ρ1,3ρ2,3)− |ρ1,2|2 − |ρ1,3|2 − |ρ2,3|2 ≥ 0. Using this inequality, the maximum

possible value of ρs is -1/2 which will also result in canceling the effect of shadowing.
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For N=4, it can be found that the corresponding value is -1/3. In general, it can

be proved (using the result in [76, problem 6.2.14(b)]) (see Appendix B) that the

maximum allowable value, due to the PSD constraint, is ρs,max = −1/(N−1), N > 1;

hence ρs,max approaches zero as N → ∞. Physically, this takes place since the AF

cannot be less than zero.

Note: In the expressions above, the correlation coefficients among the multipath

components and the correlation coefficients among the shadowing components are

not related to the multipath fading and shadowing parameters, respectively. This

assumption is valid for shadowing correlations where the correlation coefficient is

dependent on the distance between the receiving antennas and possibly on the angle

of arrival [77] and not related to the standard deviation (ms parameter) [78]. The

multipath fading components, for geographically distributed antenna ports/nodes,

are typically uncorrelated.

4.5.2 The AF for the Sum of Non-identically Distributed Cor-

related Generalized-K RVs

A general expression of the AF for non-identically distributed correlated generalized-

K RVs with arbitrary different values of mm and ms can be obtained by substituting

(4.20) in (B.6). However, assuming a uniform power profile (i.e., Ω0,1 = Ω0,2 = .... =

Ω0,N = Ω0), the AF expression becomes

AFξ =

N∑
i=1

(mm,i+ms,i+1)

mm,ims,i
+

N∑
i=1

N∑
j=1,i̸=j

[
ρwi,wj√
ms,ims,j

+
ρzi,zj√

mm,imm,j
+

ρwi,wj ρzi,zj√
mm,imm,j

√
ms,ims,j

]
N2

.

(4.25)

Furthermore, when only shadowing correlations are present, (4.25) reduces to

AFξ =

N∑
i=1

(mm,i+ms,i+1)

mm,ims,i
+

N∑
i=1

N∑
j=1,i ̸=j

ρwi,wj√
ms,ims,j

N2
. (4.26)
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Figure 4.9: The plot for the correlation coefficient between two i.d. generalized-K
RVs as a function of their multipath and shadowing parameters.

The plot of the correlation coefficient ρi,j, as given in (4.21), for ρm = 0, ρs = 0.5,

and for different values of mm and ms is shown in Fig. 4.9. The main observation

is that the magnitude of ρi,j is dependent on the ratio ms

mm
which can be seen by

re-writing the expression in (4.21), for ρzi,zj = 0, as ρi,j = 1
1+ ms

mm
+ 1

mm

ρwi,wj
. This

indicates that ρi,j will decrease as the access distance (between the user terminal and

the distributed port) decreases when ms increases at a higher rate in comparison to

mm, and vice versa.

Using similar derivations, the AF for the sum of weighted and non-identically

distributed correlated generalized-K RVs

AFξw =

N∑
i=1

c2iAFiΩ
2
0,i +

N∑
i=1

N∑
j=1,i ̸=j

ρi,j
√
AFi

√
AFjciΩ0,icjΩ0,j(

N∑
i=1

ciΩ0,i

)2 , (4.27)
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where ξw is the weighted form of the RV in (4.19).

For the i.i.d. case, the AF reduces to

AFξw =

[
N∑
i=1

c2i +
N∑
i=1

N∑
j=1,i̸=j

ρi,jcicj

]
AF(

N∑
i=1

ci

)2 . (4.28)

As expected, the expression in (4.28) further reduces to the one in (4.22) for c1 =

c2 = . . . = cN .

Now, using the ergodic capacity approximate expression of a maximal ratio com-

bining receiver given in terms of the diversity factor (DF), which is simply the recip-

rocal of the AF, as in [79, Eqn. 3], we may write

C ≈ log2(1+SNR)− log2e

2

[
1

Nmm

+
1− ρs
Nms

+
1

Nmmms

+
ρs
ms

](
SNR

1 + SNR

)2

. (4.29)

Now, as N and mm increase, the AF decreases (the DF increases) and hence the

approximation in (4.29) tightens and reduces to

C ≈ log2(1 + SNR)− log2e

2

ρs
ms

(
SNR

1 + SNR

)2

, ρs ≥ 0. (4.30)

Since the approximation is tight for DF > 2 (i.e., AF < 0.5), then ρs
ms

< 0.5 (according

to (4.26)). For a DAS with correlated shadowing components, we may set ρs ≈ 0.5,

leading to ms > 1 which corresponds to σs < 7.2 dB; such non-severe shadowing

levels are expected in urban areas where DASs are typically deployed.

The ergodic capacity loss with respect to AF and SNR is shown in Fig. 4.10.

The main observation is that as both N → ∞ and SNR → ∞, the loss approaches a

limiting value (power offset) that can be easily quantified, using (4.30), or [79, Eqn.

9], as L∞ = log2e
2

ρs
ms

, ρs ≥ 0. Using the plot in Fig. 4.10, the loss in ergodic capacity

can be predicted for different values of ρs and ms for
ρs
ms

< 0.5.



55

0

10

20

30

0
0.1

0.2
0.3

0.4
0.5

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

SNR (dB)AF

T
he

 e
rg

od
ic

 c
ap

ac
ity

 lo
ss

Figure 4.10: The plot for the ergodic capacity loss versus the AF and the SNR.

Mathematically, the expression in (4.30) is valid only for the positive values of ρs

due to the PSD constraint as explained before; physically, the capacity of a fading

channel, without channel state information at the transmitter, can not exceed the

capacity of the corresponding additive white Gaussian noise (AWGN) channel.

4.6 Conclusions

In this chapter, the statistics for the sum and the weighted sum of generalized-K

RVs are investigated. First, the adjustable moment matching method, as introduced

in Chapter 3, is utilized to approximate, region-wise, the PDF of the sum of i.i.d.

generalized-K RVs by a Gamma PDF. Next, the approximation of the sum distri-

bution by another generalized-K distribution is introduced and is extended to the

weighted sum of independent generalized-K RVs. Finally, the expressions of the AF

for the sum and the weighted sum of correlated generalized-K RVs are developed.
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The approximate distributions for the weighted sum are further utilized in Chapter

6 for deriving the corresponding expressions for the ergodic capacity and information

outage probability for DASs in cellular networks. On the other hand, the AF for the

sum of correlated generalized-K RVs can be utilized further in moment-based anal-

ysis of MRC diversity scheme in generalized-K channels with correlated shadowing

components.



Chapter 5

On the Capacity of MIMO
Channels with Common and
Individual Power Constraint

In DASs, the individual power constraints can be imposed on each transmit antenna

port since each of them has its RF chain. This motivates looking into the capacity of

MIMO channels with such constraints. Moreover, in engineering design, we are often

interested in not only the numerical solution of a problem, but also in the details

of the structure of the optimal solution. This chapter presents a direct approach

for the maximization of mutual information in MIMO channels using the standard

Lagrangian formulation to investigate the range of the optimality of reduced-rank

signaling in MIMO channels with individual power constraint. Although the capacity

of point-to-point MIMO channels with a common power constraint was character-

ized, for deterministic channel matrix or perfect channel state information (CSI) (for

fading channels), using the singular value decomposition (SVD) approach which has

led to a numerically efficient tool to compute the channel capacity; the SVD ap-

proach basically transforms the physical channels into a virtual ones where the gain

of each channel is quantified by the corresponding singular value of the channel ma-

trix. Subsequent analysis of the capacity of MIMO channels were based on studying

the statistics of these gains (eigenmodes) for both uncorrelated and correlated sce-

narios. In this chapter, the Lagrangian method is utilized to characterize the optimal

57
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input covariance matrix for TIMO (two-input multiple-output) channels for both the

common and individual power constraint cases. The obtained results are applicable

for up-link transmission in single-user schemes where the user terminal is equipped

by a two transmit antennas and the CSI feedback is limited.

5.1 Related Work

The literature on MIMO channels is vast since this topic has been a very active one

over the last decade. In here, the main contributions on the characterization of the

optimal input covariance matrix in MIMO channels are highlighted. The information-

theoretic characterization of MIMO channels was launched by the seminal papers

[80, 81] where the main finding was that the capacity of a MIMO channel, for rich

scattering environments, increases linearly proportional to the minimum number of

transmit and receive antennas. In [81], it was shown that if the channel realization

is known at both the receiver and the transmitter, then the “water-filling” algorithm

[82] can be applied after converting the MIMO channel into a set of parallel channels

using the singular value decomposition of the channel matrix. It was also shown

that when only the channel distribution is known at the transmitter, the optimal

“capacity-achieving” transmission scheme for i.i.d. Rayleigh channels is the isotropic

Gaussian input. Subsequent work has been on the characterization of the MIMO

channel capacity under more realistic assumptions on the channel model and the

availability of the channel state information at both the transmitter and the receiver.

The effect of channel correlations on the capacity of MIMO systems was consid-

ered in [83] where it was shown that fading correlation affects the MIMO capacity

by modifying the distributions of the channel eigenmodes and the term “effective de-

grees of freedom” was introduced to quantify that effect. In [84], it was shown that

the linear growth rate of capacity in correlated MIMO channels is smaller than the
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uncorrelated case. The analytical tool used in [84] relies on the Stieltjes transform of

the asymptotic eigenvalue distribution. Another line of research has considered the

fact that even partial CSI such as the channel covariance information or the channel

mean information at the transmitters (CSIT) helps increase capacity [85]. In [86], it

was shown that with multiple receive antennas and imperfect feedback, beamforming

becomes the optimal strategy as the eigenvalues of the channel covariance matrix

become more disparate (due to strong correlations among the columns of the channel

matrix), as the variance of noise increases, and/or as the transmit power decreases.

This result was extended to account for receive correlations in [87]. A review of the

existing literature on the capacity-achieving input covariance matrix is presented in

[88].

In the literature on the design of the optimal transmission scheme for Gaussian

multiple-input multiple-output (MIMO) channels, [86, 87] and references therein, the

range of optimality of beamforming is of relevance since scalar coding can be used

to achieve the channel capacity. Moreover, the introduction of distributed MIMO

systems [16] and MIMO-OFDM (orthogonal frequency-division multiplexing) systems

[89] has motivated the research on the optimal input covariance for MIMO channels

with individual power constraints.

Notation: In this chapter, uppercase letters denote deterministic matrices and

bold-faced uppercase letters denote random matrices. For vectors, bold-faced lower-

case letters are used for both deterministic and random vectors where the distinction

is assumed to be clear context-wise. The determinant, trace, adjoint and Hermitian

of a matrix A are denoted as det[A], tr (A), Adj(A) and AH , respectively; and A ≽ 0

denotes a positive semi-definite matrix. For a complex number z, the conjugate of z

and the real and imaginary parts of z are denoted by z∗, ℜ(z), and ℑ(z), respectively.
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5.2 Capacity of MIMO Channels with a Common

Power Constraint

5.2.1 Deterministic Channel Matrix

The discrete-time received signal, at the ith time instant, in a MIMO system with L

transmit and M receive elements, as shown in Fig. 5.1, can be expressed as

y(i) = Hx(i) + n(i), (5.1)

where x is the transmitted vector and n denotes the complex Gaussian noise vector

H =



h1,1 h1,2 . . . h1,L

h2,1 h2,2 . . . h2,L

...
...

...
...

hM,1 hM,2 . . . hM,L


= [h1, . . . . . .hL], (5.2a)

x = [x1, . . . xL], (5.2b)

n = [n1 . . . . . . nM ]. (5.2c)

In (5.1), the M × L channel matrix H is deterministic and the noise components for

all receive elements are identical and independent zero-mean complex Gaussian RVs

with variance σ2
n.

The channel capacity of a MIMO channel for a deterministic channel matrix H ∈

CM×L can be expressed as [81]1

C = max
Q≽0,tr(Q)≤P

logdet

[
IM +

1

σ2
n

HQHH

]
= max

Q≽0,tr(Q)≤P
logdet

[
IL +

1

σ2
n

QHHH

]
,

(5.3)

1In this chapter, the log is to base 2 unless otherwise specified.



61

Figure 5.1: A MIMO channel with L transmit and M receive antennas.

where P is the total power constraint and Q ∈ CL×L is the positive semi-definite

covariance matrix of the proper complex Gaussian input vector [90]. In (5.3), IM de-

notes the M×M identity matrix and σ2
n is the variance of the complex Gaussian noise

at each receive element. In subsequent derivations σ2
n is set to unity for notational

simplicity.

The Singular Value Decomposition (SVD) Approach

The singular value decomposition (SVD) of the channel matrix results in H = UΛV

where U and V are unitary, and Λ is a diagonal matrix whose entries are the singular

values of H or square roots of the eigenvalues of HHH (denoted as λ). The columns

of U are the eigenvectors of HHH and the columns of V are the eigenvectors of HHH.

In the SVD approach, this decomposition is used to transform the physical MIMO

channel into a set of parallel (orthogonal) channels having gains that are proportional

to the non-zero singular values of the channel matrix so that the original channel is
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equivalent to the following channel

ỹ = Λx̃+ ñ, (5.4)

where ỹ = UHy, x̃ = V Hx and ñ = UHn. Since the rank H is equal to the number

of its non-zero singular values and is at most min(M,L), then (5.4) can be written

component-wise as

ỹ =
√

λix̃+ ñ, i = 1, . . . ,min(M,L), (5.5)

The mutual information is maximized by choosing the inputs to be independent

zero-mean complex Gaussian variables whose variances are determined via the power

allocation scheme known as “water-filling” as

E
[
ℜ (x̃)2

]
= E

[
ℑ (x̃)2

]
=

1

2

[
ν − λ−1

]+
, (5.6)

where ν is chosen to meet the input power constraint, [x]+ denotes max(0, x) and E

is the expectation operator. The resulting capacity is given as

C =
∑
i

(log2[νλ]) . (5.7)

Another interpretation of this approach is that if we decompose the input covari-

ance matrix as

Q = SΠSH , (5.8)

where Π is a non-negative diagonal matrix and S is a unitary matrix. Then, the

columns of S must equal the eigenvectors of the inner product matrix HHH whereas

the transmit powers, entries of Π corresponding to each eigenvector, can be found via

water-filling on the eigenvalues of HHH [81].
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5.2.2 Fading Channel Matrix

In a fading environment, the channel matrix is random and hence the instantaneous

mutual information2

I(H) = logdet

[
IM +

1

σ2
n

HQHH

]
(5.9)

is random and the channel capacity depends on the availability of CSI at the trans-

mitter and the receiver, and the channel statistics. If the CSI is available at the

transmitter and the receiver, then a well-known result for a fading MIMO channel

matrix is that the capacity with perfect CSI at the transmitter (CSIT) and at the

receiver (CSIR) is the average of capacities achieved for each “deterministic” channel

realization [85]

C = max
Q, tr(Q)≤P

logdet

[
IM +

1

σ2
n

HQHH

]
= max

Q≽0, tr(Q)≤P
logdet

[
IL +

1

σ2
n

QHHH

]
.

(5.10)

However, if only perfect CSIR is assumed, the ergodic capacity of a MIMO sta-

tionary and ergodic channel with perfect CSIR is defined as

C = max
Q, tr(Q)≤P

EH logdet

[
IM +

1

σ2
n

HQHH

]
= max

Q≽0, tr(Q)≤P
EH logdet

[
IL +

1

σ2
n

QHHH

]
,

(5.11)

where the expectation is over the random channel matrix H. However, the ergodicity

assumption is not always satisfied, for example, when the channel realization is chosen

randomly and remains fixed for the duration of transmission. In this case, the average

mutual information does not correspond to an achievable rate since there is always a

non-zero probability that the channel realization would not support any positive rate

R, so the rate of reliable transmission (the Shannon-sense capacity) is zero and the

notion of outage is introduced [1, 85].

2In here, the bold-faced matrix denotes being a random matrix, while for vectors, bold-faced
lowercase letters are used for both deterministic and random vectors where the distinction is assumed
to be clear context-wise.



64

Definition 5.1: For a fixed transmission rate R, the information outage probability

is defined as

Pout = Pr (I(H) < R) . (5.12)

Definition 5.2: The outage capacity of a MIMO random and non-ergodic channel

is defined as the largest rate such that the information outage probability is less than

ϵ, i.e.,

Cϵ = sup {R : Pr (I(H) < R) ≤ ϵ} . (5.13)

5.2.3 TIMO Channels with a Common Power Constraint

For a TIMO channel with a common power constraint, the capacity can be expressed,

using (5.3), as

C = max
Q, tr(Q)≤P

logdet
[
IM +HQHH

]
= max

Q≽0, tr(Q)≤P
logdet

[
I2 +QHHH

]
. (5.14)

The optimization problem in (5.14) and hence the channel capacity was character-

ized in [81] by considering the corresponding set of the orthogonal channels, obtained

using the SVD approach, and then applying the water-filling power allocation over

these channels as described before. However, in here we will consider the solution of

(5.14) using standard Lagrangian approach. In this regard, we may express the input

covariance matrix of the input complex Gaussian vector as

Q =

 σ2
1 ρ12σ1σ2

ρ21σ1σ2 σ2
2

 . (5.15)

It can be shown using the proposed solution in Appendix C that we may express the
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optimal input correlation coefficient as

ρ12 =
hH
1 h2√

P 2

4
−∆2 [|h1|2|h2|2 − |hH

1 h2|2] + µ1

, for |ρ12|2 < 1,∆ ̸= P

2
, and hH

1 h2 ̸= 0,

(5.16)

where h1 and h2 denote the first and second columns of the channel matrix, respec-

tively, and ∆ denotes the disparity between the allocated powers as σ2
1 = P

2
±∆ and

σ2
2 = P

2
∓ ∆. Furthermore, the minimum input SNR below which beamforming is

optimal is given as √
P 2

4
−∆2 ≤ hH

1 h2

[|h1|2|h2|2 − |hH
1 h2|2]

. (5.17)

For MIMO channels with a common power constraint, substituting ∆ = ∆1 as given

in (C.7) in Appendix C leads to

P ≤

√
4|hH

1 h2|2 + (|h2|2 − |h1|2)2

[|h1|2|h2|2 − |hH
1 h2|2]

2 . (5.18)

The same result can be obtained using the SVD approach since the minimum nor-

malized power can be expressed for the two-input two-output case as P ≤ 1
λ2

− 1
λ1

where λ1 and λ2 denote the eigenvalues of H
HH [91]; this expression can be extended

to the TIMO case to get the one in (5.18).

The observation that σ1 > 0 and σ2 > 0 implies that beamforming takes place in

correlated TIMO channels through having |ρ12|2 = 1 while beamfoming takes place

in uncorrelated TIMO channels through having |ρ12|2 = 0 and σ1 = 0 or σ2 = 0

(since uncorrelated transmission is always optimal for uncorrelated MIMO channels).

Moreover, this explains why the capacity of correlated MIMO channels exceeds the

capacity of uncorrelated MIMO channels at low SNR [92].
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5.3 Capacity of MIMO Channels with Individual

Power Constraints

In addition to DASs (D-MIMO systems), the problem of determining the capacity

of MIMO channels with individual “elemental” power constraints arises in (i) collo-

cated MIMO systems where each antenna is equipped with its own power amplifier,

(ii) MIMO-OFDM systems where it is preferable to use uniform power allocation

across the transmit antennas, and (iii) digital subscriber lines with individual power

constraints per modem.

In general, for a MIMO channel with individual power constraints, the capacity

can be expressed as

C = max
Q≽0,Qii=pi

logdet
[
IM +HQHH

]
= max

Q≽0, Q,Qii=pi
logdet

[
I2 +QHHH

]
, (5.19)

where Qii denotes the ith diagonal element of Q and
L∑
i=1

pi = P .

5.3.1 TIMO Channels with Individual Power Constraints

Deterministic Channel Matrix

For TIMO channels with individual power constraints, the optimization problem is

similar to the one in (5.15) but with the diagonal elements of Q being predeter-

mined since the allocated powers are non-zero, hence the optimal input correlation

coefficient, analogous to (5.16), can be expressed as

ρ12 =
hH
1 h2√

P 2

4
−∆2

2 [|h1|2|h2|2 − |hH
1 h2|2] + µ2

, for 0 < ∆2 <
P

2
and hH

1 h2 ̸= 0,

(5.20)

where again ∆2 denote the difference in power allocation such that σ2
1 = P

2
± ∆2,

σ2
2 = P

2
∓∆2, and µ2 has the same expression as that of µ1.
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Proposition 5.1: The range of the normalized input SNR for which rank-1 signaling

is optimal (capacity-achieving) for correlated TIMO channels with individual power

constraints is given as

0 < P ≤ 2

√
|hH

1 h2|2

[|h1|2|h2|2 − |hH
1 h2|2]

2 +∆2
2 for 0 < ∆2 <

P

2
and hH

1 h2 ̸= 0. (5.21)

Proof : The proof is straightforwardly obtained using the expression in (5.20) and the

fact that µ2 > 0 for |ρ12|2 = 1.

The capacity of a MIMO channel with a common power constraint and a MIMO

channel with individual power constraints is shown in Fig. 5.1 forM=2 and ∆ = P/4.

The plots demonstrate the capacity loss due individual power constraints especially

for high SNR where equal power allocation is asymptotically optimal. In Fig. 5.2,

the capacity of the MIMO channel with individual power constraints is shown along

with the achievable rates of uncorrelated transmission (where ρ12 = 0) and beam-

forming. The plots demonstrate the optimality range for beamforming and suggest

that proper switching between baemforming and uncorrelated transmission (beyond

the beamforming optimality range) can approach the channel capacity.

Remark : For the case L=3, the optimization problem can be expanded using the

expression in (5.19). However, the condition for Q to be semi-positive definite is more

involved for L=3. Again using Sylvester’s criterion for positive semi-definiteness [75],

the non-negativity condition for the principal minors can be expressed as

σ2
1 ≥ 0, σ2

2 ≥ 0, σ2
3 ≥ 0, (5.22a)

|ρ12|2 ≤ 1, |ρ13|2 ≤ 1, |ρ23|2 ≤ 1, (5.22b)

σ2
1σ

2
2σ

2
3 [1 + 2ℜ[ρ12ρ23ρ31]− |ρ12|2 − |ρ31|2 − |ρ23|2] ≥ 0. (5.22c)

Now, since the allocated powers are non-zero for a MIMO channel with individual
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Figure 5.2: The plots of the MIMO capacity with common and individual power
constraints.
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power constraints, the problem of finding the rank of Q, and hence the Rank-1 case,

reduces to computing the corresponding optimal input correlation coefficients and

determining the corresponding rank. Using the fact that for the non-singular matrix

IL +QHHH,

∂
[
det(IL +QHHH)

]
∂ρi,j

= tr

(
Adj(IL +QHHH)

∂{IL +QHHH}
∂ρi,j

)
, (5.23)

the Karush–Kuhn–Tucker (KKT) conditions needed to solve for the optimal correla-

tion coefficients can be expressed as

c21σ1σ2|h1|2 + c22σ1σ2h
H
1 h2 + c23σ1σ2h

H
1 h3 + µ2ρ12 + µ3[ρ32ρ31 − ρ12] = 0, (5.24)

c31σ1σ3|h1|2 + c32σ1σ3h
H
1 h2 + c32σ1σ3h

H
1 h3 + µ4ρ13 + µ3[ρ12ρ23 − ρ13] = 0, (5.25)

c31σ2σ3h
H
2 h1 + c32σ2σ3|h2|2 + c32σ2σ3h

H
2 h3 + µ5ρ23 + µ3[ρ21ρ13 − ρ23] = 0, (5.26)

where cij denotes the (i, j) entry of Adj
(
(I3 +QHHH)

)
and are given in Appendix

C, and

µ3 =

 0 if 1 + 2ℜ[ρ12ρ23ρ31]− |ρ12|2 − |ρ31|2 − |ρ23|2 ≥ 0 ;

> 0 if 1 + 2ℜ[ρ12ρ23ρ31]− |ρ12|2 − |ρ31|2 − |ρ23|2 < 0 ,

µ4 =

 0 if |ρ13|2 ≤ 1 ;

> 0 if |ρ13|2 = 1 ,

and

µ5 =

 0 if |ρ23|2 ≤ 1 ;

> 0 if |ρ23|2 = 1 .
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Random Channel Matrix

It is well-known that the capacity of a flat fading channel with perfect channel state

information at the transmitter (CSIT) and perfect channel state information at the

receiver (CSIR) is the average of the maximum mutual information for each channel

realization; hence the expression in (5.10) should apply for each fading state. On the

other hand, with perfect CSIR only, the ergodic capacity, is given as [85]

C = max
Q

EH

[
logdet

[
I2 +QHHH

]]
. (5.27)

The optimal Q is dependent on the stationary distribution of the channel process.

One way to approximate the capacity is to optimize for the Jensen’s upper-bound on

the mutual information obtained by using Jensen’s inequality [93, 94] as

EH

[
logdet

[
I2 +QHHH

]]
≤ logdet

[
I2 +QEH

[
HHH

]]
. (5.28)

Then similar to the expression in (5.16), we may express the optimal input corre-

lation coefficient for L=2 as

ρ12 =
E
[
hH
1 h2

]√
P 2

4
−∆2

2 [E|h1|2E|h2|2 − E [|hH
1 h2|2]] + µ1

, for 0 < ∆2 <
P

2
. (5.29)

Moreover, an analogous form of Proposition 5.1 will follow.

5.4 Conclusions

The design of DAS (D-MIMO) systems has motivated the problem of characterizing

the capacity of MIMO channels with individual power constraints. In this chapter, the

design of the optimal input covariance matrix in a Gaussian MIMO channel with both

common and individual power constraint is considered. Carrying out the optimization
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analytically using the standard Lagrangian approach has led to an explicit expression,

in terms of the difference between the allocated powers and the channel correlations,

for the range of input SNR for which beamforming is optimal in TIMO channels with

individual power constraints. The results are extended to random channels using

Jensen’s upper bound on mutual information. Moreover, the obtained expressions

explain the observation that the capacity of correlated TIMO channels can exceed

the capacity of uncorrelated TIMO channels at low SNR for TIMO channels with

common power constraints and highlight the limitations on the beamforming for

TIMO channels with individual power constraints.



Chapter 6

On the Capacity of Distributed
Antenna Systems in Cellular
Networks

As discussed in the thesis introduction, the performance analysis of different commu-

nication schemes in DASs is dependent on the underlying channel model; hence, in

this chapter the applications of the results obtained previously, for the generalized-K

model, to different performance metrics such as the ergodic capacity and the infor-

mation outage probability are presented.

In this chapter, the performance of DASs for single-user schemes in single-cell

and multi-cell environments is considered. The deployment of the DAPs is based

on centralized architectures. In centralized architectures, all the antenna ports are

individually connected via dedicated links to the BS. On the other hand, in serially-

distributed architectures, the DAPs are connected to each other serially and only

the last “leading” antenna port is connected to the BS. The adoption of centralized

architectures is motivated by (i) the amount of signal processing at the DAPs should

be kept minimal, (ii) the fiber-optic links have large capacity and immunity that

enable conveying the received signals to the BS. 1

1The assumption of an ideal delay-less and infinite information capacity wired medium (backbone)
may be reconsidered and proposals on more effective utilization of the bandwidth of the wired part
of the network were introduced [95].

72
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6.1 Related Literature

The single-user ergodic channel capacity of DASs and the sum rate of a multi-user

DAS in single-cell environments were investigated and compared with those of col-

located antenna systems (CAS) using Monte Carlo simulation in [18] and [19], re-

spectively, where improvements of the outage capacity have been observed which

is due to the independent shadowing statistics (macro-diversity) at the distributed

ports. In [96], the performance of optimum microscopic combining, which takes into

account interference suppression, and macroscopic MRC in multi-cell environments

is compared. It was shown, by simulations, that microscopic combining outperforms

macroscopic MRC in high interference scenarios. In [97], the ergodic capacity of both

selective transmission (where just one or two of the distributed antennas are used)

and blanket transmission (where all antennas in the cell broadcast data) is analyzed

using the lognormal-based composite fading model. The main conclusion is that se-

lective transmission outperforms blanket transmission in multicell environments since

it reduces the total interference experienced by each UT. A similar analysis was car-

ried out in [98] where the performance of a transmission scheme that is based on

the cooperation of a subset of cooperating DAPs is compared to the performance of

single-antenna selective transmission. It was found that there are “cross-over” points

among the different cooperative schemes and an adaptive cooperation scheme where

the number of the cooperating DAPs is changed according to the received signal-to-

interference ratio (SIR). The obtained results were again mainly based on simulations

due the use of the lognormal-based fading model.

6.2 Centralized DAS Architectures

A centralized architecture is shown in Fig. 6.1 where a set of N DAPs are deployed

in an arrangement that is determined by the scatterers layout, the user density, etc.
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Figure 6.1: A multicell DAS with six DAPs per cell.

All the DAPs are assumed to convey their received signals to the central processor

via the dedicated fiber-optic links. In general, the user terminal and each distributed

port have M and L antenna elements, respectively. This system is also known as

the distributed MIMO system [16] where the differences from the collocated MIMO

system, as discussed in Chapter 1, are on the channel statistics, the power constraints,

and the wired medium (backbone) constraints. Again the latter one is not considered

here since the fiber optic links and network backbone are assumed to be noise-less

and delay-less.
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6.3 The Performance of DAS in a Single-cell Sce-

nario

6.3.1 The Signal and Channel Model

The received signal at the BS, through the set of the cooperating (participating)

DAPs, can be expressed as

y =


√

w1

r1
h1

...√
wNcp

rNcp
hNcp

 x+ n, (6.1)

where hi for i = 1, . . . , Ncp denotes the small-scale (multipath) channel coefficient from

the UT to the ith DAP, wi is the shadowing component, β is the path loss exponent

(typically ranging from 2 to 4), x is the transmitted signal and n is the Ncp × 1 zero-

mean complex additive white Gaussian noise vector distributed as N
(
0, σ2

nINcp

)
. The

number of cooperating DAPs is Ncp ⊆ N . For analytical tractability, the path loss

exponent is assumed to be the same for all cooperating antennas. Such an assumption

is reasonable since the cooperating DAPs are expected to lie in the same environment

(typical urban, suburban, etc.).

The normalized distance r can be expressed as

ri =

(
dBS

d1

)β (
d1
di

)β

, i = 1, . . . , Ncp, (6.2)

where di denotes the distance between the UT and the ith DAP where the minimum

distance (to the nearest DAP) is denoted as d1, and dBS denotes the distance between

the UT and the BS which is included to reveal the gain of reducing the access distance

when the UT is far away from the BS but near one or more of the DAPs. The ratios
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(
dBS

d1

)β
and

(
d1
di

)β
will be used in the selection criterion of the cooperating DAPs as

described later.

The envelope of the fading signal, |h|, is modeled by the versatile Nakagami distri-

bution due to its applicability in different propagation environments where the fading

statistics between the UT and nearby DAPs are expected to follow a Nakagami or

Rician distribution rather than a Rayleigh one due to the higher probability of having

a line-of-sight component or strong specular components (i.e., mm > 1). So, using

the expression in (3.5), we may write

p|h|(x) =
2

Γ(mm)

(mm

Ω

)mm

x2mm−1exp

(
−mmx

2

Ω

)
. (6.3)

6.3.2 The Ergodic Capacity and the Information Outage Ca-

pacity of a Single-user DAS Over Independent Generalized-

K Channels

For the single-user case with a single antenna and single-antenna ports, the equivalent

model is a distributed single-input multiple-output (D-SIMO) channel whose ergodic

capacity, assuming an ergodic channel and a long coding period, can be expressed as

Cerg = E

[
log2

(
1 + SNR

(
dBS

d1

)β Ncp∑
i=1

(
d1
di

)β

ziwi

)]
, (6.4)

where zi = |hi|2 for i = 1, . . . , Ncp, and SNR is the input signal-to-noise ratio P/σ2
n.

On the other hand, if coding is over only a small number of the channel coherence

periods, then one needs to resort to the notion of the probability of outage for a target

rate R, which can be expressed as

Pout(R) = P

(
log2

[
1 + SNR

(
dBS

d1

)β Ncp∑
i=1

(
d1
di

)β

ziwi

]
≤ R

)
. (6.5)
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Clearly, both performance measures are dependent on the distribution of the following

ζw =
N∑
i=1

(
d1
di

)β

ziwi. (6.6)

As shown in Chapter 4, the PDF of the weighted sum of independentN generalized-

K RVs, in (4.15), can be well-approximated by another N generalized-K PDF using

the moment matching method and that the approximation improves as the weights

get equal. So, for the DASs set-up considered, since the participating (cooperating)

set of DAPs contains only the ones having relatively strong weights (small access

distances), the approximation accuracy, without adjustment, will be sufficient to ap-

proximate or lower bound the CDF of the weighted sum of N generalized-K RVs.

So, we may express the ergodic capacity, using [33, Eqn. 7.811.1], as

Cerg =
1

In(2)Γ
(
mm,ζ̃w

)
Γ
(
ms,ζ̃w

)G4,1
2,4

[
mm,ζ̃w

ms,ζ̃w

Ω0,ζ̃w
SNRe

x|0,10,0,mm,ζ̃w
,mm,ζ̃w

]
, (6.7)

where SNRe = P
σ2
n

(
dBS

d1

)β
. The expression in (6.7) is simpler to obtain and more

compact than the one in [49, Eqn. 7]. The information outage probability versus R

can be derived, using [51, Eqn. 26], as

Pout = CDF(γ)| 2R−1
SNRe

=
1

Γ
(
mm,ζ̃w

)
Γ
(
mm,ζ̃w

)G2,1
1,3

[
mm,ζ̃w

ms,ζ̃w

Ω0,ζ̃w

2R − 1

SNRe

|1mm,ζ̃w
,ms,ζ̃w

,0

]
.

(6.8)

The previous results can be extended to the case where each of the distributed

ports has multiple antennas (L of them); in that case, the output, after MRC, can be

expressed as

γt =

Ncp∑
i=1

(
d1
di

)β L∑
l=1

γl,i. (6.9)

However, since the signals received at each port experience the same shadowing statis-

tics, it is straightforward to show that each γp =
L∑
l=1

γl has a generalized-K PDF with
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mm,p = Lmm, ms,p = ms, and Ω0,p = LΩ0. Hence, the expression in (6.9) reduces to

γt =

Ncp∑
i=1

(
d1
di

)β

γp,i. (6.10)

In Figs. 6.2 and 6.3, the plots of the information outage probability versus the

target rate and the ergodic capacity of the DAS system, as compared to the CAS

(where, in general, NBS antennas are collocated at the BS), demonstrate the attained

gains due to reduced access distance (as seen from the CAS curve as compared to the

DAS one for Ncp = 1), better multipath fading conditions and macrodiversity (the

improvement attained from Ncp = 1 to Ncp = 4), and that most of this gain is attained

through three cooperating DAPs only. For both plots, we setmm = 2 for the DAS and

mm = 1 for the CAS,ms = 2 (σs = 5.5 dB), and β = 3 for both systems. Note that for

the collocated case, it can be shown that the sum, at the BS, has a generalized-K PDF

with mm,sum = NBSmm (assuming that the multipath components are independent),

ms,sum = ms (since fully correlated shadowing is experienced), and Ω0,sum = NBSΩ0.

To demonstrate the accuracy of the approximate ergodic capacity and information

outage probability expressions, the obtained curves in Figs. 6.2-3 (for Ncp = 2 and

Ncp = 4) are plotted with the simulation-based curves in Fig. 6.4-5.

Remark : For a multi-antenna UT, (i.e., M > 1), lower and upper bounds on the

mutual information in [99, Proposition 4] and [100, Appendix B] can be computed

using the introduced approximation for the PDF of the weighted sum of generalized-

K RVs since both bounds are dependent on the squared Frobenius norm ∥G∥2F which

can be expressed as

∥G∥2F = tr
(
GHG

)
=

Ncp∑
i=1

(
d1
di

)β M∑
j=1

γi,j, (6.11)

where G denotes the Ncp×M channel gain matrix from the UT to the Ncp cooperating
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Figure 6.2: The plot of the outage probability versus the target rate for different
numbers of cooperating DAPs at P/σ2 = 10 dB where the c′is are as defined in (4.15)

such that ci =
(

d1
di

)β
.
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Figure 6.3: The plot of the ergodic capacity for different numbers of cooperating
DAPs.
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versus the target rate for different numbers of cooperating DAPs.
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Figure 6.5: The plot of the approximate and actual ergodic capacity for different
numbers of cooperating DAPs.

DAPs which include the effect of multipath fading, shadowing and the relative access

distance ratios. Again the approximate PDF of the double summation in (6.11) can

be obtained in a two-step approach as described before for the one in (6.9).

For the downlink scenario, the information capacity formulation is different from

the classical collocated MISO channel due to the individual power constraint at each

DAP. We may consider the case of Ncp = 2 where the mutual information of the

equivalent D-MISO channel can be expressed as

I(x; y) =

log2

(
1 +

1

σ2
n

(
dBS

d1

)β
(
σ2
1|h1|2 +

(
d1
d2

)β

σ2
2|h2|2 +

(
dBS

d1

)−β/2(
d1
d2

)β/2

σ1σ2κ1

))
,

(6.12)

where hi denotes the ith entry of the channel vector between the two transmitting
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DAPs and the UT, σ1 and σ2 denote the allocated powers at the two transmit DAPs,

and κ1 = [ρ21h2h
∗
1 + ρ12h1h

∗
2]. Now, if full CSI is available at the transmitter, then

we may set ρ12 =
h2h∗

1

|h1||h2| and the instantaneous channel capacity can be expressed as

C =

log2

(
1 +

1

σ2
n

(
dBS

d1

)β
(
σ2
1|h1|2 +

(
d1
d2

)β

σ2
2|h2|2 +

(
dBS

d1

)−β/2(
d1
d2

)β/2

σ1σ2κ2

))
,

(6.13)

where κ2 = 2|h1||h2|.

A lower bound on the achievable ergodic capacity corresponds to the case where

no CSI is available at the transmitter where the ergodic capacity is

Cerg = E

[
log2

(
1 +

1

σ2
n

(
dBS

d1

)β
(
σ2
1|h1|2 +

(
d1
d2

)β

σ2
2|h2|2

))]
, (6.14)

which again can be computed using the proposed approximation for the weighted sum

of N generalized-K RVs.

6.4 The Performance of DASs in Multi-cell Envi-

ronments

In a multi-cell DAS consisting of Bb BSs with N DAPS per cell, the downlink signal

received at the single user in the 0th cell, for Ncp cooperating DAPS, can be expressed

as

y =


√

w1,0

r1,0
h1,0

...√
wNcp,0

rN,0
hNcp,0


T

x+

BI∑
j=1


√

w1,j

r1,j
h1,j

...√
w

N
′
,j

r
N

′
,j

hN
′
,j


T

xj + n, (6.15)
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where

ri,j =

(
dBS,j

d1,j

)βj
(
d1,j
di,j

)βj

, for i = 1, . . . , N
′
, (6.16)

where di,j denotes distance between the UT and the ith DAP in the jth cell with a

minimum of d1,j, dBS,j denotes the distance between the UT and the jth BS, which

is included to reveal the effect of reducing the access distance, and N
′
denotes the

number of active DAPs in interfering cells (N
′
= Ncp for the 0th cell).

The signal-to-interference ratio (SIR), where the role of thermal noise is neglected

(for interference-limited scenarios) and equal power allocation among the DAPs in

all the cells is assumed, for the single user at the 0th cell can be expressed, through

extending the expression in [98, Eqn. 4], as

γmc,0 =

(
dBS,0

d1,0

)β Ncp∑
i=1

(
d1,0
di,0

)β
γi

rdmax

BI∑
j=1

(
dBS,j

d1,j

)βj N ′∑
i=1

(
d1,j
di,j

)βj

γi,j

, (6.17)

where BI ≤ Bb − 1 denotes the cardinality of the subset of interfering BSs and

rdmax = max
(

dBS,j

d1,j

)βj

, for j = 1, . . . , BI . In (6.17), it is assumed that the interfering

signals from the jth cell experience the same path loss exponent βj. The expression in

(6.17) indicates that while the integration of DAPs tends to enhance the desired signal

(in the 0 th cell), it also enhances the inter-cell interference, by the factor
(

dBS,j

d1,j

)βj

,

where the nearest interfering DAP, from the jth cell, is almost always nearer to the

desired user than the BS in that interfering cell.

Since each of the instantaneous powers of both the desired user and the interfer-

ers, in (6.15), has a generalized-K PDF, then the PDF of γmc,0 can be obtained by

approximating the PDF of the interference in the denominator by a generalized-K

PDF using a two-step approximation. In the first step, the PDF of the weighted sum

of the N
′
generalized-K RVs for each cell individually is approximated by another

generalized-K PDF and then, in the second step, the PDF of the weighted sum of the
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resulting BI generalized-K RVs is further approximated by another generalized-K

PDF. Finally, to get the approximate distribution of γmc,0, we will need to deter-

mine the distribution of the quotient of two independent generalized-K RVs; so, if

we denote the quotient of two independent generalized-K RVs, X1 and X2, whose

parameters are mm,1, ms,1, and Ω0,1; mm,2, ms,2, and Ω0,2, respectively, as χ = X1

X2
,

then, using [50, Theorem 6.4.3], the PDF of χ can be expressed as (see appendix D)

p(χ) = d1G
2,2
2,2

[(
mm,1ms,1Ω0,2

mm,2ms,2Ω0,1

)
χ∥−mm,2,−ms,2

mm,1−1,ms,1−1

]
, χ > 0, (6.18)

where d1 = mm,1ms,1Ω0,2

Γ(mm,1)Γ(ms,1)Γ(mm,2)Γ(ms,2)Ω0,1
. The expression in (6.18) is more compact

than the expression obtained in [53, Eqn. 15].

The corresponding achievable rates can be expressed as

Ra,j = E [log2 (1 + γmc,j)] , for j = 1, . . . , Bb, (6.19)

and can be derived using [33, Eqn. 7.811.1]. Furthermore, the network throughput is

given as

T =

Bb∑
j=1

Ra,j. (6.20)

Similarly, the corresponding information outage probability for the UT in the jth

cell can be expressed as

Pout(R) = P (log2 (1 + γmc,j) ≤ R) , (6.21)

and can be derived using [51, Eqn. 26].
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Figure 6.6: A cooperative multicell DAS with six DAPs per cell.

6.4.1 Extension to the BSs Cooperative Schemes

The developed expressions above for the ergodic capacity and the information outage

probability can be extended to the scenario where a set of neighboring BSs may

cooperate to transmit to their users jointly (instead of having each BS transmitting

to its single user only). For example, a cell-edge UT can be served by its nearby

DAPs being connected to Bc cooperating BSs (including its own cell BS) as shown

in Fig. 6.6. The SIR expression in (6.17) can be extended as
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γmcoop,0 =(
dBS,0

d1,0

)β N
′
cp∑

i=1

(
d1,0
di,0

)β
γi + rdmax,c

Bc−1∑
j=1

(
dBS,j

d
(cp)
1,j

)βj N
′
cp∑

i=1

(
d1,j
di,j

)βj

γi,j

rdmax,1

BI∑
j=1

(
dBS,j

d1,j

)βj N ′∑
i=1

(
d1,j
di,j

)βj

γi,j + rdmax,2

Bc−1∑
j=1

(
dBS,j

d
(ncp)
1,j

)βj N ′∑
i=N

′
cp

(
d1,j
di,j

)βj

γi,j

,

(6.22)

where N
′
cp denotes the number of the cooperating DAPs (i.e., sending to the desired

UT) in each of the Bc cooperating cells, d
(cp)
1,j and d

(ncp)
1,j denote the distance from

the UT to the nearest cooperating DAP and the nearest non-cooperating DAP in

the jth cooperating cell (since cooperating BSs transmit to their own users too),

respectively. Subsequently, rdmax,c = max

(
dBS,j

d
(cp)
1,j

)βj

, for j = 1, . . . , Bc − 1 and

rdmax,2 = max

(
dBS,j

d
(ncp)
1,j

)βj

, for j = 1, . . . , Bc − 1.

The PDF of the expression in (6.22) can be approximated using the approach

used before (for the one in (6.17)) and subsequent information capacity analysis can

be carried out.

6.5 Conclusions

In past literature, capacity analysis of DASs in cellular networks was carried out us-

ing the intractable lognormal-based composite fading models where either numerical

integration techniques or Monte Carlo simulations were used. In this chapter, the

obtained results in previous chapters on the more tractable generalized-K model,

namely the approximate distributions for the sum and the weighted sum of inde-

pendent generalized-K RVs, are utilized to develop closed-form expressions for the

ergodic capacity and the outage probability for DASs in both single-cell and multi-cell
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scenarios for both cooperative and non-cooperative schemes. The developed expres-

sions can be used for computing the information outage probability or the ergodic

capacity of centralized DAS architectures in cellular networks without resorting to

extensive simulations.



Chapter 7

Conclusions and Future Research

This thesis work was motivated by the new modeling problems that the emerging

DASs (or D-MIMO systems) have spurred and the subsequent role of such models in

the performance of these systems. In this thesis, we have developed some of the tools

needed to model and further analyze the performance of DASs. First, the characteri-

zation of composite fading channels is considered where the generalized-K composite

fading model is introduced and an approximate Gamma model is proposed. Next,

the statistics for the sum and the weighted sum of generalized-K RVs are studied due

to their essential role in the performance analysis of different trans-receiver schemes.

Then, the design of the optimal input covariance matrix for MIMO channels with

individual power constraint is considered. Finally, the developed results for the sum

statistics are utilized to study the information capacity of DAS architectures in cel-

lular networks.

7.1 Summary and Conclusions

After stating the motivations for the thesis work and giving some background material

on some related topics to DASs, the generalized-K composite fading model, which

has been introduced as an alternative to the less tractable lognormal-base models, is

presented and an approximation of the generalized-K PDF by a Gamma PDF using

88
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the moment matching method is proposed. The obtained results indicate that the

generalized-K model can be approximated, in a certain region of interest, by the

simple Gamma model. Such an approximation can be utilized in further performance

analysis. For example, the ergodic capacity of the generalized-K channel can be

well-predicted by the approximating Gamma model.

In Chapter 4, two approximations for the distribution of the sum of independent

generalized-K RVs are proposed: The region-wise approximation using the Gamma

distribution and the approximation of the sum distribution and the weighted sum

distribution (in both the lower tail and upper tail regions) using another generalized-

K distribution. The approximation accuracy is verified using the CDF plots and least

square fit. In addition, the expression for the total correlation coefficient between two

generalized-K RVs in terms of the correlations among their multipath components

and their shadowing components is derived, and then the expressions for the AF for

the sum of correlated generalized-K RVs are presented.

In Chapter 5, the standard Lagrangian formulation is utilized to derive the op-

timal correlation coefficient of the input covariance matrix for TIMO channels with

individual power constraints. The range for beamforming optimality is expressed

in terms of the input SNR, the channel correlation, and the disparity among the

individual power constraints.

In Chapter 6, the applications of the results obtained in Chapter 4 on the statis-

tics for the weighted sum of generalized-K composite fading RVs to the information

capacity of DASs in both single-cell and multi-cell scenarios are presented. The ob-

tained expressions quantify the gains due reduced access distance, macrodiversity,

and less severe multipath fading conditions in DASs.
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7.2 Future Research Directions

The work presented in the thesis can be extended in the following directions:

• For Chapter 3, further applications of the introduced approximation of the

generalized-K composite fading model by the Gamma model to the perfor-

mance analysis of selection diversity schemes can be carried out since the CDF

of the approximating Gamma distribution is much simpler to handle as com-

pared to CDF of the generalized-K distribution. Moreover, the introduced

approximation can be extended to approximate the generalized-K distribution

by a mixture of Gamma PDFs using the theory on the moment-based approx-

imation for the distribution of a univariate RV by a mixture of Gamma PDFs

[101]. In this regard, an approximation of the Gamma-lognormal instantaneous

composite fading power PDF by a mixture of Gamma PDFs was recently in-

troduced in [102] and the fit accuracy of the proposed mixture distribution was

compared with generalized-K distribution.

• For Chapter 4, first, the exact distribution for the sum of independent generalized-

K RVs, particularly for the case of the sum of two generalized-K RVs, may be

tackled through generalized Meijer function since the characteristic function of

the sum, being the product of two Meijer functions leads to a generalized Meijer

function with two arguments. However, up to the knowledge of the author, the

inverse Laplace transform of the generalized Meijer function is not available.

So, one may look for the possible representations, for some specific values, of

the generalized Meijer function in terms of more familiar functions or for the

use expansions that may lead to Laplace invertible expressions. Second, math-

ematical inequalities such as the arithmetic-geometric mean inequality and its

weighted form; and Chebyshev inequality can be utilized to bound the CDFs

of both the sum and the weighted sum distributions.
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• For Chapter 5, the Lagrangian approach gets tedious for a larger number of

transmit antennas which suggests looking for an approach that would transform

the optimization problem into a more tractable one.

• For Chapter 6, the developed approximate closed-form expressions can be used

for further performance analysis particularly for the multicell scenario. This

may include the performance analysis for the uplink where the random location

and number of interfering users necessitates the use of a spatially stochastic

model such as the Poisson model. Moreover, it is interesting for future cellu-

lar networks to further study the performance of DASs in cooperative cellular

networks where a subset of the BSs do exchange information that would allow

joint detection and hence reduce the effect of intercell interference. This would

soften the constraints on the transmitted power from DAPs and allow higher

network data rates.
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Appendix A

The H-function Distribution
Family

Definition: The H-function can be defined as

Hm,n
p,q

[
z|(a1,α1),...,(ap,αp)

(b1,β1),...,(bq ,βq)

]
=

1

2πi

∫
C

∏m
j=1 Γ (bj − βjs)

∏n
j=1 Γ (1− aj + αjs)∏q

j=m+1 Γ (1− bj + βjs)
∏p

j=n+1 Γ (aj − αjs)
zsds,

(A.1)

where 0 ≤ m ≤ q, 0 ≤ n ≤ p, αj > 0, βj > 0. and aj (j = 1, 2, ....p) and bj

(j = 1, 2, ....q) are complex numbers such that no pole of Γ (bj − βjs) for j = 1, 2, ...m

coincides with any pole of Γ (1− aj + αjs) for j = 1, 2, ...., n. The contour C is a

straight line parallel to the imaginary axis in the complex plane and the poles of

Γ (bj − βjs) lie on the right of C while those of Γ (1− aj + αjs) lie on the left of C.

Many of the so-called special functions are special cases of the H-function, includ-

ing Gauss and confluent hypergeometric functions, MacRobert E-function, Meijer

function, and Bessel functions [50, 103].

The Meijer function can be expressed as

Gm,n
p,q

[
x|a1,...,apb1,...,bq

]
= Hm,n

p,q

[
z|(a1,1),...,(ap,1)(b1,1),...,(bq ,1)

]
. (A.2)

93



94

Definition: The H-function distribution can be expressed as

p(x) = kHm,n
p,q

[
cx|(a1,α1),...,(ap,αp)

(b1,β1),...,(bq ,βq)

]
, x > 0, (A.3)

where k and c are the parameters of the distribution such that
∫∞
0

p(x)dx = 1.

The characteristic function of the H-function distribution can be derived as

ϕ(t) =
k

c
Hn+1,m

q,p+1

[
− i

c
x|(0,1),(1−a1−α1,α1),...,(1−ap−αp,αp)

(1−b1−β1,β1),...,(1−bq−βq ,βq)

]
, x > 0. (A.4)

Many non-negative distributions are special cases of the H-function including the

Gamma distribution, the Weibull distribution, the Beta distribution, the Rayleigh

distribution, and the general hypergeometric distribution.



Appendix B

Derivations for Chapter 4

B.1 Derivation of the Maximum Possible Negative

Correlation Coefficient

Although a sketchy proof of the statement on the maximum possible negative corre-

lation coefficient was given in [104], a more systematic presentation of the proof is

given here. First, consider the covariance matrix of a vector of N RVs which can be

expressed as

Q =



σ2
1 ρ1,2σ1σ2 . . . ρ1,Nσ1σN

ρ2,1σ1σ2 σ2
2 . . . ρ2,Nσ1σN

...
...

...
...

ρN,1σ1σN . . . . . . σ2
N


. (B.1)

On the other hand, the determinant of the following matrix, using the result in

[76, Problem 6.2.14(b)]), can be expressed as

∣∣∣∣∣∣∣∣∣∣∣∣∣

α β β . . . β

β α β . . . β

β β α . . . β

...
...

...
. . .

...

∣∣∣∣∣∣∣∣∣∣∣∣∣
n×n

=

 (α− β)n
(
1 + nβ

α−β

)
if α ̸= β

0 if α = β .
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Now considering the equally correlated case (i.e., ρi,j = ρ for i, j = 1, . . . , N and i ̸=

j), we may set, without loss of generality, the variances to unity (i.e., α = 1) and

β = ρ and equate the determinant to zero to result in

(1− ρ)n
(
1 +

nρ

1− ρ

)
= 0. (B.2)

Since (1− ρ)n is always positive, we may write
(
1 + nρ

1−ρ

)
= 0 from which we get

ρ = −1
N−1

and the statement follows. The geometric reasoning of this observation

was stated by the mathematician Bruno de Finitti in one of his papers that he had

published in 1937 [105] as “we can always represent n random numbers by n vectors

having a modulus equal to their standard deviations and forming - two by two - an

angle whose cosine (in magnitude and sign) is measured by the correlation coefficient.

Now, n vectors can surely be orthogonal among each other (no-correlation case), or

can form acute angles (positive correlation), but it is impossible that they form angles

which are all obtuse (over a certain angle limit). For example, three vectors can form,

among one another, angles of at most 120. In general n vectors can form angles whose

cosine is at most equal to - 1/(n-1). And, therefore, this is the maximum negative

correlation coefficient that we can simultaneously observe among n random numbers.”

B.2 Derivation of (4.20)

We may write the correlation coefficient between the ith and the j th generalized-K

RVs as

ρi,j =
E[ziwizjwj]− E[ziwi]E[zjwj]

σziwi
σzjwj

. (B.3)
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Since the multipath components are independent from the shadowing components,

the term E[ziwizjwj] can be expressed as

E[ziwizjwj] = E[zizj]E[wiwj]. (B.4)

Substituting (B.4) in (B.3), and using E[zizj] = ρzi,zjσziσzj+E[zi]E[zj] and E[wiwj] =

ρwi,wj
σwi

σwj
+ E[wi]E[wj], result in

ρi,j =
[ρzi,zjσziσzj + E[zi]E[zj]][ρwi,wj

σwi
σwj

+ E[wi]E[wj]]− E[ziwi]E[zjwj]

σziwi
σzjwj

. (B.5)

Now, using the interpretation of the generalized-K composite fading model as

a multiplication of two Gamma RVs where the mean of the one corresponding to

multipath fading is unity and the mean of the other corresponding to the shadowing

is Ω0, we may write E[zi] = 1, σzi =
√

1
mm,i

, E[wi] = Ω0,i, σwi
=

√
Ω2

0,i

ms,i
, E[ziwi] = Ω0,i,

and σziwi
=

√
(mm,i+ms,i+1)Ω2

0,i

mm,ims,i
. With the substitutions, (B.5) leads to the expression

in (4.20).

B.3 Proof of Proposition 4.2

The AF for the sum of N correlated generalized-K RVs can be expressed as

AFξ =

N∑
i=1

AFiΩ
2
0,i +

N∑
i=1

N∑
j=1,i ̸=j

ρi,j
√
AFi

√
AFjΩ0,iΩ0,j

(
N∑
i=1

Ω0,i)2
. (B.6)

Adopting the general exponential correlation model, we may write

ρi,j = ρ0exp|i− j|, (B.7)
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where ρ0 denotes the correlation coefficient between the adjacent antenna elements.

Substituting in (B.6)

AFξ =

N∑
i=1

AFiΩ
2
0,i +

N∑
i=1

N∑
j=1,i ̸=j

ρ0exp|i− j|
√
AFi

√
AFjΩ0,iΩ0,j

(
N∑
i=1

Ω0,i)2
. (B.8)

Assuming i.i.d. composite fading conditions,

AFξ =
AF0

N
+

AF0

N∑
i=1

N∑
j=1,i ̸=j

ρ0exp|i− j|

N2
. (B.9)

For the constant correlation model (ρi,j = ρ0), the AF expression reduces further

to

AFξ =
(1 + (N − 1)ρ0)AF0

N
=

(1− ρ0)

N
AF0 + ρ0AF0. (B.10)

Now, using Lemma 1, we may substitute (4.20) in (B.10) to get (4.22).



Appendix C

Derivations for Chapter 5

The determinant of
[
I2 +QHHH

]
can be written as

det
[
I2 +HHHQ

]
= det

1 + σ2
1|h1|2 + ρ12h

H
2 h1 σ2

1h
H
1 h2 + ρ12σ1σ2|h2|2

ρ21σ1σ2|h1|2 + σ2
2h

H
2 h1 1 + ρ21σ1σ2h

H
1 h2 + σ2

2|h2|2

 .

(C.1)

The expression in (C.1) can be further expanded as

det
[
I2 +HHHQ

]
= 1 + σ2

1|h1|2

+ σ2
2|h2|2 + σ1σ2

[
ρ12h

H
2 h1 + ρ21h

H
1 h2

]
+ σ2

1σ
2
2

[
|h1|2|h2|2 − |hH

1 h2|2
]
[1− ρ12ρ21].

(C.2)

Since the logarithm function can be maximized by maximizing its argument [p.

278] [60], then we may derive the optimal Q by considering the following reduced

problem:

max
Q

det
[
I2 +QHHH

]
, s.t. σ2

1 + σ2
2 = P, σ2

1 ≥ 0, σ2
2 ≥ 0, and |ρ12|2 ≤ 1. (C.3)
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Using the Karush–Kuhn–Tucker conditions for the optimization problem, we get

σ2
1

[
|h1|2 + σ2

2

[
|h1|2|h2|2 − |hH

1 h2|2
]
(1− ρ12ρ21)− ν

]
= −σ1σ2ℜ

[
ρ12h

H
2 h1

]
, (C.4a)

σ2
2

[
|h2|2 + σ2

1

[
|h1|2|h2|2 − |hH

1 h2|2
]
(1− ρ12ρ21)− ν

]
= −σ1σ2ℜ

[
ρ12h

H
2 h1

]
,(C.4b)

and

ρ12 =
hH
1 h2

σ1σ2 [|h1|2|h2|2 − |hH
1 h2|2] + µ1

, (C.5a)

ρ21 = ρ∗12, (C.5b)

where

µ1 =

 0 if |ρ12|2 < 1 ;

> 0 if |ρ12|2 = 1 ,

and ν is the Lagrange multiplier associated with the equality constraint. Note that

non-negativity constraint for σ1 and σ2 is implicitly included in the expressions in

(C.4a) and (C.4b). First, we observe that the optimal σ1 and σ2 have to be non-zero

as far as hH
1 h2 ̸= 0 which can be seen from the expressions in (C.2) and (C.5a) . So, if

we set σ2
1 = P

2
+∆ and σ2

2 = P
2
−∆, where ∆ < P

2
, then the expression in (5.16) will

follow from (C.5a). Furthermore, since µ1 > 0 for |ρ12| = 1 (i.e., when beamforming

takes place), the expression in (5.18) will follow.

Second, for MIMO channels with a common power constraint, the expressions in

(C.4a) and (C.4b) are involved to solve for σ1 and σ2, and determine ∆; instead, we

propose the following solution: we may first solve for σ1 and σ2 (by setting |ρ12| = 0)

and then compute the corresponding value ρ12 using (C.5a); however if the magnitude

of ρ12 becomes unity or one of the allocated powers comes out to be zero (which

will violate the observation stated above), then we go back to (C.4a) and (C.4b)

to solve for σ1 and σ2 with |ρ12| = 1. The intuition behind this solution is that

as far as beamforming is not the optimal transmission strategy, we may consider
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two uncorrelated Gaussian inputs, determine the optimal allocated powers, and then

introduce the optimal correlation between them. So, setting |ρ12| = 0 in (C.4a) and

(C.4b) results in

|h1|2 + σ2
2

[
|h1|2|h2|2 − |hH

1 h2|2
]
− ν = 0, (C.6a)

|h2|2 + σ2
1

[
|h1|2|h2|2 − |hH

1 h2|2
]
− ν = 0, (C.6b)

from which we may straightforwardly get σ2
1 = 1

2

[
|h1|2−|h2|2

[|h1|2|h2|2−|hH
1 h2|2]

+ P

]
and σ2

2 =

1
2

[
|h2|2−|h1|2

[|h1|2|h2|2−|hH
1 h2|2]

+ P

]
. However, since 0 < σ2

1 < P and 0 < σ2
2 < P , then based

on these expressions, we may define

∆1 =
1

2

|h1|2 − |h2|2

[|h1|2|h2|2 − |hH
1 h2|2]

. (C.7)

Now if ∆1 = P
2
, then a violation will take place since either σ1 or σ2 would be

zero. The candidate solution is to set |ρ12| to unity and compute the corresponding

optimal values of the allocated powers. Substituting |ρ12| = 1 in (C.4a) and (C.4b)

results in

σ2
1

[
|h1|2 − ν

]
= −σ1σ2ℜ

[
ρ12h

H
2 h1

]
, (C.8a)

σ2
2

[
|h2|2 − ν

]
= −σ1σ2ℜ

[
ρ12h

H
2 h1

]
. (C.8b)

Using (C.8a) and (C.8b), we may get
σ2
1−σ2

2

σ1σ2
= |h1|2−|h2|2

ℜ[ρ12hH
2 h1]

which can be solved numer-

ically for σ2
1 and σ2

2.
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The cij expressions in (5.24)-(5.26) are given as:

c21 =σ2
1σ2σ3

[
ρ31ρ12

[
hH
1 h2h

H
2 h3 − hH

1 h3|h2|2
]
+ ρ32

[
hH
1 h3|h2|2 − hH

1 h2h
H
2 h3

]]
+ σ2

1σ
2
3

[
hH
3 h2h

H
1 h3 − hH

1 h2|h3|2 + |ρ13|2
[
hH
1 h2|h3|2 − hH

3 h2h
H
1 h3

]]
+ σ1σ2σ

2
3

[
ρ12
[
|hH

2 h3|2 − |h2|2|h3|2
]
+ ρ32ρ13

[
|h2|2|h3|2 − |hH

2 h3|2
]]

− σ2
1h

H
1 h2 − ρ12σ1σ2|h2|2 − ρ13σ1σ3h

H
3 h2,

(C.9)

c22 =σ2
1σ2σ3

[
ρ31ρ12

[
hH
2 h1h

H
1 h3 − hH

2 h3|h1|2
]
+ ρ32

[
hH
2 h3|h1|2 − hH

1 h3h
H
2 h1

]]
+ σ2

1σ
2
3

[
|h1|2|h3|2 − |hH

1 h3|2 + |ρ13|2
[
hH
3 h1h

H
1 h2 − |h1|2|h3|2

]]
+ σ1σ2σ

2
3

[
ρ12
[
hH
2 h1|h3|2 − hH

2 h3h
H
3 h1

]
+ ρ32ρ13

[
hH
3 h1h

H
2 h3

]]
+ 1 + σ2

1|h1|2|+ ρ12σ1σ2h
H
2 h1 + ρ31σ1σ3h

H
1 h3 + ρ13σ1σ3h

H
3 h1 + σ2

3|h3|2|

+ ρ32σ2σ3h
H
2 h3,

(C.10)

c23 =σ2
1σ2σ3

[
ρ32
[
|hH

1 h2|2 − |h1|2|h2|2
]
+ ρ12ρ31

[
|h1|2|h2|2 − |hH

1 h2|2
]]

+ σ2
1σ

2
3

[
hH
1 h2h

H
3 h1 − hH

3 h2|h1|2 + |ρ13|2
[
hH
3 h2|h1|2 − hH

1 h2h
H
3 h1

]]
+ σ1σ2σ

2
3

[
ρ12
[
hH
3 h2|h2|2 − hH

2 h1h
H
3 h2

]
+ ρ32ρ13

[
hH
3 h2h

H
2 h1 − hH

3 h1|h2|2
]]

− ρ13σ1σ2h
H
1 h2 − ρ32σ2σ3|h2|2 − σ2

3h
H
3 h2,

(C.11)
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c31 =σ2
1σ2σ3

[
ρ13ρ21

[
hH
3 h2h

H
1 h3 − hH

1 h2|h3|2
]
+ ρ32

[
hH
2 h3|h1|2 − hH

1 h3h
H
2 h1

]]
+ σ2

1σ
2
2

[
hH
1 h2h

H
2 h3 − hH

1 h3|h2|2 + |ρ12|2
[
hH
1 h3|h2|2 − hH

2 h3h
H
1 h3

]]
+ σ1σ

2
2σ3

[
ρ13
[
|hH

2 h3|2 − |h2|2|h3|2
]
+ ρ12ρ23

[
|h2|2|h3|2 − |hH

2 h3|2
]]

,

(C.12)

c32 =σ2
1σ2σ3

[
ρ13ρ21

[
h1|2|h3|2 − |hH

1 h3|2
]
+ ρ32

[
|hH

1 h3|2 − |h1|2|h3|2
]]

+ σ2
1σ

2
2

[
hH
2 h1h

H
1 h3 − hH

2 h3|h1|2 + |ρ12|2
[
hH
2 h3|h1|2 − hH

2 h1h
H
1 h3

]]
+ σ1σ

2
2σ3

[
ρ13
[
hH
2 h1|h3|2 − hH

3 h1h
H
2 h3

]
+ ρ12ρ23

[
hH
3 h1h

H
2 h3 − hH

2 h1|h3|2
]]

− ρ12σ1σ2h
H
1 h3 − σ2

2h
H
2 h3 − ρ12σ1σ2|h3|2,

(C.13)

and

c33 =σ2
1σ2σ3

[
ρ13ρ21

[
hH
3 h1h

H
1 h2 − hH

3 h2|h1|2
]
+ ρ32

[
hH
3 h2|h1|2 − hH

3 h1h
H
1 h2

]]
+ σ2

1σ
2
2

[
|h1|2|h2|2 − |hH

1 h2|2 + |ρ12|2
[
|hH

1 h2|2 − |h1|2|h2|2
]]

+ σ1σ
2
2σ3

[
ρ13
[
hH
3 h1|h2|2 − hH

2 h1h
H
3 h2

]
+ ρ12ρ23

[
hH
2 h1h

H
3 h2 − hH

3 h1|h2|2
]]

+ 1 + σ2
1|h1|2|+ ρ12σ1σ2h

H
2 h1 + ρ13σ1σ3h

H
3 h1 + ρ21σ1σ2h

H
1 h2σ

2
2|h2|2|

+ ρ23σ2σ3h
H
3 h2.

(C.14)



Appendix D

Derivations for Chapter 6

To express the distribution of the quotient of two generalized-K RVs, we use again the

expression of the generalized-K PDF as a special case of the H-function distribution

family as in (3.17). Hence, if we denote the quotient of two independent generalized-

K RVs, X1 and X2, whose parameters are mm,1, ms,1, and Ω0,1; mm,2, ms,2, and

Ω0,2, respectively, as χ = X1

X2
, then, using [Theorem 6.4.3] [50], the PDF of χ can be

expressed as

p(χ) = ϖ1H
2,2
2,2

[(
mm,1ms,1Ω0,2

mm,2ms,2Ω0,1

)
χ|(−mm,2,1),(−ms,2,1)

(mm,1−1,1),(ms,1−1,1)

]
, χ > 0, (D.1)

where ϖ1 =
mm,1ms,1Ω0,2

Γ(mm,1)Γ(ms,1)Γ(mm,2)Γ(ms,2)Ω0,1
which reduces to

p(χ) = ϖ1G
2,2
2,2

[(
mm,1ms,1Ω0,2

mm,2ms,2Ω0,1

)
χ|−mm,2,−ms,2

mm,1−1,ms,1−1

]
, χ > 0. (D.2)
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Papers Published, Submitted, and
in Preparation

Chapter 3

• Saad Al-Ahmadi and Halim Yanikomeroglu, “On the approximation of the

generalized-K distribution by a Gamma distribution for modeling composite

fading channels,” IEEE Trans. Wirel. Commun., vol. 8, no. 2, pp. 586-592,

Feb. 2010.

• Saad Al-Ahmadi and Halim Yanikomeroglu, “On the approximation of the

generalized-K PDF by a Gamma PDF using the moment matching method,” in

Proc. IEEE Wireless Communications and Networking Conference (WCNC),

Apr. 2009.

• Saad Al-Ahmadi and Halim Yanikomeroglu, “On the use of high-order moment

matching to approximate the generalized-K distribution by a Gamma distri-

bution,” Proc. IEEE Global Telecommunications Conference (GLOBECOM),

Dec. 2009.

Chapter 4

• Saad Al-Ahmadi and Halim Yanikomeroglu,“On the approximation of the PDF

of the sum of independent generalized-K RVs by another generalized-K PDF
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with applications to distributed antenna systems,” appeared in Proc. IEEE

Wireless Communications and Networking Conference (WCNC), Apr. 2010.

• Saad Al-Ahmadi and Halim Yanikomeroglu, “On the statistics of the sum of

correlated generalized-K RVs,” in Proc. IEEE International Conference on

Communications (ICC), May 2010.

• Saad Al-Ahmadi and Halim Yanikomeroglu, “On the amount of fading for

the sum of correlated generalized-K RVs,” submitted to IEEE Transactions

on Communications (submission: 18 November 2009, 1st results: 18 February

2010).

Chapter 5

• Saad Al-Ahmadi and Halim Yanikomeroglu, “On the Beamforming Optimality

Range in TIMO Channels with Common and Individual Input Power Con-

straints,” accepted to IEEE Transactions on Communications.

• Saad Al-Ahmadi and Halim Yanikomeroglu, “On the role of the input power

constraint in the beamforming optimality range in TIMO channels,” 11th Cana-

dian Workshop on Information Theory (CWIT), May 2009.

Chapter 6

• Saad Al-Ahmadi and Halim Yanikomeroglu, “The ergodic and outage capacities

of distributed antenna systems in generalized-K fading channels, accepted to

IEEE International Symposium on Personal, Indoor and Mobile Radio Com-

munications (PIMRC), Sept. 2010.

• Saad Al-Ahmadi and Halim Yanikomeroglu, “The information capacity of dis-

tributed antenna systems over generalized-K composite fading channels,” in

preparation for IEEE Journal on Selected Areas in Communications. Special

issue on “Distributed Broadband Wireless Communications”.
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