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Abstract

The main objective of this study is to investigate the structures and procedures

which are promising to achieve higher rates and larger rate regions in the relay chan-

nels and the communication networks that contain relay nodes. In particular, the

study places particular emphasis on the relaying techniques pertaining to compress-

and-forward.

The thesis first examines a generalization of decode-and-forward (DF) and

compress-and-forward (CF) in Gaussian channels. Although this generalization has

been known for over thirty years, the result in this thesis is the first to illustrate the

signal-to-noise ratio (SNR) regions in which the generalization reduces to constituent

DF or CF schemes. In particular, the thesis demonstrates the existence of SNR re-

gions in which the generalization is guaranteed to supersede both DF and CF, but

with a gain of within 0.5 bits per channel use.

Having gained insight into the random binning in the CF scheme, this thesis argues

that a new decoding procedure exploiting the N -to-1 mapping based on binning is

able to relax the rate constraint on the relay transmission, and generalize the noisy

network coding based schemes which are constrained to the 1-to-1 mapping. This

thesis identifies two instances in which exploiting the N -to-1 mapping inherent in

this generalization yields rate gains, even though it does not yield such a gain in

other multimessage networks.

ii



In the analysis of a secure communication problem, the thesis introduces the con-

cept of “friendly” eavesdropper in a broadcast channel in the presence of a malicious

Gaussian jammer. Taking advantage of the N -to-1 mapping, it is shown that the new

decoding procedure enables CF to achieve the capacity of the channel.
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Chapter 1

Introduction

1.1 Motivation

Wireless communication has become an integral part of our daily lives, covering

applications that range from entertainment-centric to military-centric ones. The main

feature that distinguishes wireless communications from wired ones, is that in the

former, the information signals are air-borne. Hence, these systems not only alleviate

a considerable portion of the infrastructure required to establish communication links,

but also offer flexible connectivity between communicating parties.

Despite its advantages, wireless communications suffer from more adverse propa-

gation conditions than their wired counterparts. This is because signals emitted from

a wireless transmitter usually take indirect routes to reach the receiver. Each of these

routes is usually composed of a cascade of multiple links, and each link is usually com-

posed of multiple parallel paths. The number of paths of each link and the number

of links of each route depend on the locations, obstructions and objects surrounding

the transmitter and the receiver. The variations in the number and lengths of routes

and the number of paths that each route comprises result in reverberations in the

signal impinging on the antennas of the receiver. These reverberations have different
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phases and may combine constructively to increase the signal strength, or destruc-

tively to decrease it. The fluctuations in the signal strength caused by the various

paths traveled by the signal is collectively known as fading. To facilitate its analysis,

fading is usually classified into various types, fast and slow, depending on the rate at

which the signal fluctuates, and frequency-flat and frequency-selective depending on

the delay between reverberations arriving at the receiver.

Analyzing fading reveals that it can have a fundamental impact on the data rate

that can be reliably communicated over the channel. This impact depends, naturally,

on the type of fading experienced by the signal; fast frequency-selective fading is the

most challenging one. This type of fading arises in high mobility communication

scenarios with multiple geographically dispersed scatterers.

Combating fading in point-to-point communications revolves around techniques

by which the receiver combines phase-aligned versions of the signals arriving at the

receiver at different time slots. Despite their advantages, these techniques are only

capable of recovering the transmitted signals when the channel between the transmit-

ter and the receiver is relatively strong. Unfortunately, in many practical scenarios,

this is not the case. For instance, in high density city centres, buildings and other

objects such as trees, cars and pedestrians in the street canyon create multiple signal

paths. The mobility of such objects causes the paths to vary from time to time, and

subsequently causes, in many cases, the signal from the transmitter to the receiver to

experience severe fast and frequency-selective fading. In those cases, using traditional

point-to-point techniques to combat fading are likely to fail to provide reliable com-

munication at satisfactory data rates. However, an effective means for combating the

deleterious effect of fading in these situations is through the deployment of communi-

cation assisting nodes, known as relays. The presence of such nodes gives rise to what

is arguably the simplest multinode communication model. Studying such models in

their general form from an information-theoretic perspective has proven difficult over
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the years. However, even with our incomplete understanding of these models, the

role of using relays can be appreciated for instance by considering communication

scenarios in which the geometry of the propagation environment is extremely hostile

to the wireless signal emitted from the transmitter, e.g. in mountainous terrains and

underground tunnels. In fact, without relays, wireless communications in many such

scenarios would be practically impossible.

Because of the fundamental impact that a relay has on the communication channel,

using relays in cellular systems provides a cost-effective means for extending the

coverage area and the number of users in each cell; the cost of a relay is usually

negligible compared to that of a base station. Various kinds of relays are currently

available. Among these kinds are fixed relays which are usually deployed by the

system operator at specific well-chosen locations to serve a particular region, nomadic

relays which are usually deployed by the user to enhance his/her own communication

channel, and terminal relays which comprise of the communication devices of idle

users.

Owing to their effectiveness in improving coverage and increasing the number of

the users at low cost, relay-assisted communications have been widely adopted in

many wireless standards, including IEEE 802.11ah (Wi-Fi), IEEE 802.16j (WiMAX)

and 3GPP (LTE-A), and is likely to be included in future standards as well.

In order to extract the potential gains offered by a relay-assisted communication

channel, the role of the relay ought to be carefully contemplated. Generally speaking,

the relay cooperates with the transmitter by providing the receiver with additional

information about the transmitter’s signal or, in some cases, the channel condition.

Such information can be constructed either in analog or in digital domains. For

instance, in the analog domain the relay may only amplify its received signal, and

forwards it to the destination without recovering the original message. In contrast,

in the digital domain, the relay may use various procedures to extract and possibly



4

reconstruct and communicate a description of the original signal to the receiver. The

understanding of the performance of these procedures under various conditions is

key to realizing the gain offered by relays. The focus of this thesis to analyze these

structures and procedures.

1.2 Background

The standard three-node relay channel includes one source node that wishes to

transmit messages to a receiver at one destination node. A relay node, which does not

have its own message to transmit, assists the communication from the source to des-

tination. The relay channel was originally studied in [1] in 1971 and two fundamental

relaying schemes, namely decode-and-forward (DF) and compress-and-foward (CF)

were proposed in [2] in 1979. In DF, the relay recovers the source message, whereas

in CF, the relay provides a description of its received signal. Although the analysis of

relaying schemes started more than forty years ago, it was not until the early twenty-

first century that they attracted significant attention from the cooperative network

communication point of view [3, 4].

In DF and CF, the cooperation between the source and the relay differs in the way

the codewords they transmit are constructed. In many cases, to cooperate with the

source, the relay transmitted codeword contains the information about the received

signal at the destination. This information may be regenerative information of the

codeword transmitted by the source, or non-regenerative information that only con-

tains some description of relay received signal. The codebook structure and encoding

procedure at the source and the relay enable the relay to convey such information to

the destination. The destination exploits the source-relay cooperation through the

decoding procedure that it uses to recover the source message. It was shown in [2]

that relay node enables more rate-efficient source-to-destination communication to be
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achieved.

Despite the progress that has been made in the relay channel in the past forty

years, especially the significant advances in the past fifteen years, there are still many

unknowns about the relay channel at large. In fact, the capacity of the general three-

node relay channel remains an open problem. Achieving higher rates, let alone finding

the capacity, for the channels and networks with relay nodes poses great challenges

to the information theory community.

The focus of this thesis is on investigating the codebook structure, encoding pro-

cedure and decoding procedure, in particular, those that incorporate CF constituents,

to achieve higher rate or larger rate region in the communication network with relay

nodes.

1.3 Overview

1.3.1 Generalized DF-CF Relaying

In [2, Theorem 7], a generalization of the DF and CF relaying is proposed. This

generalization uses both the DF and CF codebook structures to generate a composite

codeword. This codeword is in fact the superposition of the CF codeword on the DF

codeword. In decoding, the receiver recovers the DF codeword and the CF codeword

successively. This generalization provides a lower bound on the capacity of the general

three-node relay channel. It was shown in [2] that using a specific codebook structure,

the generalized DF-CF reduces to either DF or CF, and hence in those cases, the

generalization does not provide a rate advantage over the constituent DF or CF

schemes for the three-node relay channel. In contrast, in [5], numerical instances

for which the generalization yields higher rate than both DF and CF were provided.

However, no analytical guarantees to ensure that the generalized DF-CF can provide
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a rate gain over DF and CF are available in the literature.

To study the gain of the generalized DF-CF scheme, we particularize the three-

node relay channel to the Gaussian case. The source and the relay use Gaussian

codebooks with average transmit power constraint. We then formulate the achievable

rate problem as an optimization problem of power allocations. Albeit the problem is

not convex, we are able to analyze the power allocation and the achievable rate by

using the Karush-Kuhn-Tucker (KKT) [6] conditions. Using the KKT conditions, we

identify the optimal power allocation in various signal-to-noise ratio (SNR) regions

of the source-to-relay link. In these SNR regions, the optimal power allocation at

the source and relay reduces the generalized DF-CF to the underlying DF or CF

schemes. On the other hand, using the KKT conditions, we showed that there exist

SNR regions, in which the generalized DF-CF is guaranteed to yield strictly higher

rates than the underlying DF and CF schemes. Furthermore, this rate gain was shown

to be upper bounded by 0.5 bits per channel-use (bpcu).

Although the rate gain of the generalized DF-CF scheme over individual schemes

was shown not to be substantial, the analysis of the power allocation in various SNR

regions reveals that a strategy of switching between DF and CF is able to yield sig-

nificant gain over fixed DF or CF relaying. Using this insight, we evaluated the

performance of DF-CF switching in the Rayleigh fading channel [7] through simula-

tions. The numerical results confirmed our analysis and a significant rate gain was

observed.

1.3.2 Exploiting the N-to-1 Mapping in CF Relaying

In CF, the relay does not decode the source transmitted codeword. Instead, the

relay provides a description of its received signal. The information of this description

is sent to the destination and “facilitates” the decoding at the receiver. CF relaying

uses Wyner-Ziv binning [8] to encode this information in its transmitted codeword. In
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particular, each description codewords is mapped to a bin index. In general, Wyner-

Ziv binning results in an N -to-1 mapping from the codewords of the relay description

of its received signal to its transmitted codewords that represents the bin indices. In

decoding [2], the receiver successively recovers the bin index, the relay description of

its received signal and then the source message.

In the recent development of CF-based relaying schemes, namely noisy network

coding (NNC) [9] and short message NNC (SNNC) [10], the N -to-1 mapping from

Wyner-Ziv binning has been simplified to a 1-to-1 mapping. It has been shown that

there is no rate loss due to such simplification in the network considered therein, and

NNC and SNNC can generally yield larger rate regions in comparison with CF in the

multimessage networks considered therein.

To understand the impact of different mappings, we analyze the rate constraint on

the relay transmission, i.e., the rate of the codewords that represent the bin indices, in

these CF-based relaying schemes. In conventional CF, a rate constraint is imposed on

the bin indices due to the fact that the receiver decodes the bin index first. In contrast,

NNC and SNNC do not impose the same constraint. However, the 1-to-1 mapping

implies that the rate of the bin indices equals that of the codewords representing the

relay description of its received signal. This can be seen as an implicit constraint on

the bin indices.

In this thesis, we propose a modified CF decoding procedure. This procedure

uses the N -to-1 mapping as opposed to the 1-to-1 mapping. It uses forward decoding

and is based on a layered framework. Using this procedure, we were able to obtain

the rate expression for the same multimessage network in [9, 10]. Although the new

procedure does not provide rate gain in that network, its rate expression subsumes

that of NNC/SNNC and the conventional CF [2]. In other words, it unifies the

conventional CF and NNC/SNNC.

An interesting outcome of this decoding procedure is that it is able to eliminate the
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rate constraint on the relay transmission imposed by the decoding procedure of the

conventional CF while it does not have the constraint inherent in the 1-to-1 mapping

in NNC and SNNC. Hence, the proposed decoding procedure is able to relax the rate

constraint on the relay transmission.

To exploit the gain of the N -to-1 mapping, we investigate two communication

networks. The first network is a broadcast relay chain network, whereas the sec-

ond considered network is a partial cooperative network, in which the relay has its

own independent message to send to a destination over a point-to-point channel.

We provided the achievable rate expressions for these networks for various relaying

strategies. When particularized to Gaussian, we show that in both cases, adopting

the proposed CF-based relaying scheme to exploit the N -to-1 mapping yields either

a higher achievable rate or a larger rate region in comparison with using either NNC

or SNNC which are constrained to the 1-to-1 mapping.

1.3.3 Military Application of the Advanced Relaying Scheme

A novel application of the proposed CF-based decoding procedure is studied in this

thesis. In the military communication, a jammer attempts to disrupt the source-to-

receivers communication by transmitting an independent high power Gaussian signal.

We introduce a “friendly” eavesdropper in this channel. The friendly eavesdropper

observes the jammer’s signal and assists the source-to-receivers communication. To

analyze the data rate in this channel, we conceive the role of the friendly eavesdropper

as a standard relay. We provide an upper bound on the achievable rate of this channel

and we show that this bound can be achieved using the proposed relaying scheme.

1.4 Contributions

The key contributions of this thesis are summarized as the following:
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• On Generalized DF-CF:

– Development of a mechanism to analyze the power allocation and achiev-

able rate of the generalized DF-CF scheme in the three-node Gaussian

relay channel. The mechanism can be readily applied to the recently de-

veloped generalization in [11]. Using this mechanism, various SNR regions

are identified in which the generalized DF-CF reduces to its underlying

DF and CF. It is proved that there exists an SNR region in which the

generalized DF-CF is guaranteed to yield strictly higher rates than the

underlying DF and CF. The rate gain is shown to be upper bounded by

0.5 bpcu. This analysis implies that DF-CF switching can yield significant

rate gain over fixed DF or CF, which is confirmed by the simulations.

– These results appear in [12] and [13].

• On Exploiting the N -to-1 Mapping in CF:

– Development of a structured forward decoding procedure with a layered

framework that exploits the N -to-1 mapping in the CF codebook struc-

ture. This decoding procedure is able to relax the rate constraint on the

relay transmitted codewords that represent the bin indices. Applying this

procedure in two particular networks, we obtain

∗ a higher achievable rate in a broadcast Gaussian relay chain network,

∗ a larger achievable rate region in a Gaussian partial cooperative net-

work,

in comparison with NNC and SNNC.

– The procedure and results are published in part in [14], and are described

in [15], which is currently undergoing a second review cycle.

• On A Military Application of the New Decoding Procedure:
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– Introducing of the concept of a “friendly” eavesdropper in a broadcast

channel in the presence of jamming and showing that the capacity of this

channel can be achieved by the proposed decoding procedure for CF re-

laying.

– The results are presented in [16], and are currently in preparation for a

journal submission.

1.5 Organization

In Chapter 2, we will discuss the achievable rate of the generalized DF-CF relaying

in [2, Theorem 7]. In Chapter 3, we will focus on the CF-based relaying scheme and

propose a modified decoding procedure for CF relaying. We will show the advan-

tage of this new procedure in two particular networks in Chapter 4. In Chapter 5,

we will study a military application of the proposed relaying scheme in battle field

communications in the presence of a malicious jammer.

1.6 Notation

In this thesis, regular-face upper and lower case letters will refer to random vari-

ables, and their corresponding realizations, respectively. Boldface letters will refer to

length-n sequences, and the calligraphic font will be used to refer to sets of nodes. A

sequence x of an index s transmitted or selected by a node dk in block b is denoted

by xk(sk,b). The jointly ε-typical set of length-n sequences is denoted by A(n)
ε .



Chapter 2

Analysis of the Generalization of DF and

CF in Gaussian Relay Channels: An

Optimization-Based Approach

In this chapter, we consider a quasi-static communication system in which a

relaying node is used to assist communication between a source-destination pair.

Our goal is to determine the relaying mode that enables rate-efficient communication

under given channel conditions. To achieve this goal, the generalized decode-and-

forward and compress-and-forward relaying scheme is studied when the source and

relay signals are synthesized from commonly-used Gaussian codebooks. These signals

are shown to enable the capacity of the considered channel to be achieved in two

asymptotic SNR regions. For two non-asymptotic SNR regions, the generalized DF-

CF scheme is shown to reduce to either DF or CF, depending on which scheme yields a

higher rate. For another non-asymptotic SNR region, the generalized DF-CF is shown

to yield strictly higher rates than both DF and CF. Despite the coding and decoding

complexity of the generalized DF-CF, its rate advantage over DF and CF is shown

to be upper bounded by 0.5 bits per channel use. This indicates that the practical

benefit of the analysis of this generalization is to enable appropriate selection of either

11
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the DF or CF relaying scheme for any given channel realization. Numerical results

show that, under Rayleigh fading channel conditions, this selection yields significant

gains over fixed DF and CF. The work in this chapter was published, in part, in [12]

and [13].

2.1 Introduction

Future advances in wireless communications are expected to bank on the sub-

stantial gains provided by effective cooperation between multiple nodes in the net-

work [17]. In one form, cooperation is established when a single relay node assists

communication between a source-destination pair [1,18]. Relaying operation schemes

can be categorized into either full-duplex operation, in which the relay uses the same

physical channel for transmission and reception, and half-duplex operation, in which

these channels are orthogonal. Due to its simplicity, half-duplex relaying is better

understood than its full-duplex counterpart. However, half-duplex operation is gen-

erally wasteful of the resources available for communication, and higher data rates

can be reliably communicated if the relay were to operate in a full-duplex mode [19].

Among the various cooperation schemes are the DF and CF techniques [2]. In DF,

the relay decodes its observed signal and generates auxiliary information that assists

the decoding of the transmitted signals at the destination. In contrast, in CF the

relay does not decode its observed signal, but uses a description of its received sig-

nal to generate auxiliary information that facilitates decoding at the destination [2].

When the relay channel is Gaussian, the optimal distribution of the DF signals is

Gaussian, whereas the optimal distribution of the CF signals is not known [20], ex-

cept for a special asymptotic case wherein that distribution is also Gaussian [21].

Despite the potential rate loss incurred by using Gaussian signals with CF relaying

at non-asymptotic SNRs, their asymptotic optimality and simplicity have made them
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commonly used for studying CF relaying in Gaussian channels.

Performance analyses of the DF and CF schemes with Gaussian signals were

conducted in [20] for special classes of relay channels. For the case of low-power

relays and fading channels, an analysis of the rates achievable by DF and time-division

multiplexing was conducted in [22], and comparisons of the DF scheme with direct

transmission and other relaying schemes were considered in [23]. In [24], it was shown

that, for Gaussian relay channels and Gaussian signals, the gap between the rate

achieved by the CF scheme and capacity is upper bounded by a constant. A relaying

scheme in which the relay switches to a CF operating mode if decoding fails was

analyzed in [25]. Further extensions of the DF and CF schemes are considered in [26]

for Gaussian channels with correlated relay and destination noises. The application of

DF and CF schemes have been extended to scalar Rayleigh fading channels in [20,27]

and to multiple antenna channels in [28]. The DF and CF schemes with Gaussian

signals have also been used in more general multi-terminal networks with multiple

sources, relays and destinations [29].

Despite the envisioned advantages of cooperative communications, the capacity of

relay channels, including scalar ones with one relay, remains an open problem, and

only partial results are available. An upper bound on the capacity of relay channels

is given by the cut-set bound [18]. This bound is attained by most of the relaying

strategies that are known to achieve capacity [2,21,30–33]. In contrast, an interesting

result in [34] showed that the capacity of the relaying channel considered therein can

be strictly below the cut-set bound. Another relaying technique known as quantize-

map-forward was proposed in [35] and [36] for Gaussian relay networks and was shown

to achieve a rate within a constant gap to the cut-set bound, and hence to capacity.

The generalized DF-CF scheme considered in this thesis was originally proposed

in [2, Theorem 7]. The key idea of this generalization is to explore the potential of
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achieving higher rates by superimposing the DF and CF coding strategies. In par-

ticular, in this generalization the relay combines partial decoding and the description

of its received signal to generate the auxiliary information to assist decoding at the

destination. This generalization resembles, to some extent, the philosophy that un-

derlies the generalization in [25]. However, it avoids unsuccessful decoding attempts

at the relay and provides deterministic thresholds beyond which the relay ought to

switch its operating mode.

The generalized DF-CF scheme has received significantly less attention than either

DF or CF. An instance in which a special case of this scheme was used to develop

a lower bound on the capacity of the static relay channel was considered in [21].

Another instance was considered in [37], wherein a particular geometric setup of a

Gaussian relay network was considered and a numerical demonstration of the rate

advantage of the generalized DF-CF scheme over DF and CF was provided. Building

on the generalized DF-CF scheme, other potentially more advantageous, mixed DF

and CF schemes have been recently proposed in [5, 38, 39]. Similar to the general-

ization proposed in [2, Theorem 7], the mixed schemes proposed in [5, 38, 39] rely

on the fundamental mechanism of superimposing DF and CF. Hence, the analysis

methodology proposed herein for the generalized DF-CF scheme in [2, Theorem 7]

can be extended to those mixed strategies. Numerical examples that demonstrate the

potential advantage of the generalized DF-CF [2, Theorem 7] with Gaussian signals

over the individual DF and CF schemes were provided in [5]. However, in that work,

the SNR regions at which the generalized DF-CF reduces to either the DF or the

CF scheme were not identified, nor those at which the generalization is guaranteed

to yield strictly higher rates. In fact, the analysis of the generalized DF-CF in [5]

did not prove the existence of distinct SNR operation regions and did not bound the

maximum rate advantage.

In this chapter, we consider a full-duplex single relay communication system in
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which the source transmissions are received by both the relay and the destination. The

relay does not have its own message and its output depends either deterministically or

stochastically on its observed signal [1,18]. The destination uses a noisy combination

of the source and relay signals to decode its intended message. We consider the

generalized DF-CF scheme in [2, Theorem 7]. Since this scheme subsumes both DF

and CF, it will enable us to determine the appropriate relaying mode corresponding to

a given SNR and will also enable us to obtain explicit expressions for SNR thresholds

at which the relay ought to switch its operating mode, depending on the given channel

realization. Numerical results show that, for quasi-static Rayleigh fading channel

conditions, this selection can yield significant gains over fixed DF and CF. The SNR

thresholds and the bound on the rate of the generalized scheme are obtained by

particularizing the generalized DF-CF in [2, Theorem 7] to the case in which the source

and relay signals are Gaussian and the relay channel is also Gaussian. The KKT

optimality conditions corresponding to the problem of maximizing the achievable rate

are then analyzed to draw insight into the generalized DF-CF scheme and to obtain

the aforementioned results. A similar approach can be used to analyze the mixed

DF-CF strategies in [5, 38, 39], but this is beyond the scope of this thesis. To obtain

a better understanding of the generalized DF-CF, we further analyze its maximum

achievable rate and show that it is at most 0.5 bpcu higher than that achieved by the

underlying DF and CF schemes.

2.2 System Model

We consider the standard three-node Gaussian relay channel depicted in Fig. 1.

In this channel, the gain of the source-to-destination link is normalized, and the

gains of the source-to-relay and the relay-to-destination links are denoted by a and

b, respectively. The source and relay transmit signals are denoted by X1 and X2,
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Figure 1: Gaussian three-node relay channel.

respectively, and the additive Gaussian noises at the relay and destination are inde-

pendent and are denoted by Z1∼N (0, N) and Z∼N (0, N), respectively. The relay

and destination received signals are respectively denoted by Y1 and Y , and can be

expressed as

Y1 = aX1 + Z1, (1a)

Y = X1 + bX2 + Z. (1b)

The transmit power budgets at the source and relay are denoted by P1 and P2,

respectively. Using this notation, we define

γ0 ,
P1

N
, γ1 ,

a2P1

N
and γ2 ,

b2P2

N
(2)

to be the SNR of the source-to-destination, the source-to-relay, and the relay-to-

destination links, respectively.

We assume that the source and relay transmit signals are Gaussian distributed.

Next, we will proceed to review the generalized DF-CF scheme described in [2, The-

orem 7] and particularize it to the Gaussian channel in Fig. 1.
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2.3 Generalization of DF and CF for Gaussian Re-

lay Channels

In this section, we provide a concise information theoretic background on the

generalized DF-CF scheme and its application to Gaussian signals.

2.3.1 An Information-Theoretic Background

Codebook structure: The generalized DF-CF codebook structure is described

in [2,38] and is reviewed here for completeness. The codebooks V and U are available

at both the source and the relay. The codebook X1 is available at the source, and the

codebook X2 is available at the relay. At the source, each v ∈ V represents a centre of

a partition of U , and each u ∈ U represents a centre of a partition of X1, that is, each

u ∈ U plays a dual role: a satellite of a codeword v ∈ V and a centre of a partition

of X1. At the relay, each v ∈ V represents a centre of two partitions: a partition of

U and a partition of X2. Each (u,x2) pair corresponds to a centre of a partition of

an estimation codebook Ŷ1. The partitions of U , X1, X2 and Ŷ1 are non-overlapping

and the codebooks are the unions of the respective partitions.

We note that the message indices are encoded in the auxiliary information in u

and x1.

An achievable rate: In the structure described above, the cooperation between

the source, relay and destination is established using three auxiliary random variables,

which are denoted by U , V and Ŷ1. Using these variables and the construction , the
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following achievable rate expression is provided in [2]:

R∗
G = sup

{

min
{

I(X1; Y, Ŷ1|X2, U) + I(U ; Y1|X2, V ),

I(X1, X2; Y )− I(Ŷ1; Y1|X2, X1, U, Y )
}

}

, (3a)

where I(X ; Y ) is the standard mutual information functional for the random

variables X and Y [18], and the supremum is taken over joint distributions of

(V, U,X1, X2, Y, Y1, Ŷ1) of the form:

p(u, v, x1, x2, y, y1, ŷ1) = p(v)p(u|v)p(x1|u)p(x2|v)p(y, y1|x1, x2)p(ŷ1|x2, y1, u).

that satisfy

I(Ŷ1; Y1|Y,X2, U) ≤ I(X2; Y |V ). (3b)

The cut-set bound: An upper bound on the capacity, C, of a general multi-

terminal channel is given by the cut-set bound in [18]. Applying this bound to the

standard three-node relay channel yields [2, Theorem 4]

C ≤ sup
p(x1,x2)

min
{

I(X1; Y, Y1|X2), I(X1, X2; Y )
}

. (4)

2.3.2 Application to Gaussian Signals

We now derive the expressions corresponding to (3a) and (3b) when the relay

channel and the signals are Gaussian. To map the codebook structure described

in [2,38] to Gaussian signals, we define the power partitions {αi}2i=0 to be used at the

source for constructing U and X1, and {βj}1j=0 to be used at the relay for constructing

V and X2. The power partitions satisfy αi, βj ≥ 0, i = 0, 1, 2, j = 0, 1,
∑2

i=0 αi = 1,

and
∑1

j=0 βj = 1. For the Gaussian signals, we let V ∼N (0, 1), V1 =
√
α0P1V , and
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V2 =
√
β0P2V .

Consider the construction of the auxiliary codebook U described in Section 2.3.1.

This construction implies that each signal U can be expressed as the superposition of

a (base) component V1 and another independent component that contains incremental

information that is decodable at the relay, which we denote byX11. The corresponding

codebook is denoted by X11. The signals X1, X2 are constructed similarly using base

components U and V2 and incremental components X12 and X22, respectively.

Using the approach in [20] and [21], the auxiliary signal Ŷ1 can be expressed as the

superposition of Y1, X2 and U , as a base component, and a statistically independent

estimation noise Z ′, as an incremental component. In particular, we can write

U = V1 +X11, X1 = U +X12, (5a)

X2 = V2 +X22, Ŷ1 = Y1 +X2 + U + Z ′, (5b)

where Z ′ ∼N (0, N ′). Note that, in this construction, V,X11 and X22 are mutually

statistically independent, and U and X12 are statistically independent; X1 and X2 are

correlated through V . The source uses the power fraction α0P1 to transmit V1, the

power fraction α1P1 to transmit X11 and the power fraction α2P1 to transmit X12.

The relay uses the power fraction β0P2 to transmit V2 and the power fraction β1P2 to

transmit X22.

2.4 The Generalized DF-CF: Achievable Rate and

Analysis

We begin the analysis of the achievable rate of the generalized DF-CF scheme.
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Using the notation of Section 2.2 and the construction of the Gaussian signals in

Section 2.3.2, we obtain the following result.

Proposition 1. Using C(x) , 1
2
log2(1 + x), x ≥ 0 and γ′ , N ′/N and applying the

generalized DF-CF scheme with Gaussian signal components to the Gaussian relay

channel in Figure 1 yields the following rate:

R∗
G = max

{αi}2i=0,{βj}1j=0,γ
′

min
{

R1, R2

}

, (6a)

subject to

γ′ ≥ (1 + α2(γ0 + γ1))(1 + (α1 + α2)γ0)

(1 + α2γ0)β1γ2
, (6b)

R1 = C
( α2γ1
1 + γ′ + α2γ0

)

+ C
( α1γ1
1 + α2γ1

)

, (6c)

R2 = C
(

γ0 + γ2 + 2
√

α0β0γ0γ2
)

− C
(

1/γ′), (6d)

2
∑

i=0

αi = 1,

1
∑

j=0

βj = 1, (6e)

αi ≥ 0, βj ≥ 0, ∀ i, j, (6f)

Proof. See details in Appendix A.1.

In subsequent analysis, we will seek solutions of the optimization problem in (6)

for different SNR regions. Towards that end, we will recast (6) in a more convenient

form. First, we introduce a new variable t ≥ 1 such that 1
2
log(t) is a lower bound on

R1 and R2 in the objective in (6a). Then, invoking the fact that the log(·) function
is monotonically increasing, the optimization problem in (6) is recast as

max t, (7a)

subject to gi(t, α0, α2, β0, γ
′) ≤ 0, i = 1, . . . , 8, (7b)
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where

g1(t, α0, α2, β0, γ
′) , t−

(

1 +
α2γ1
1 + γ′ + α2γ0

)1 + (1− α0)γ1
1 + α2γ1

,

g2(t, α0, α2, β0, γ
′) , t−

(

1 + γ0 + γ2 + 2
√

α0β0γ0γ2
) γ′

1 + γ′ ,

g3(t, α0, α2, β0, γ
′) , 1 +

α2γ1
1 + α2γ0

− (1− β0)γ2
1 + (1− α0)γ0

γ′,

g4(t, α0, α2, β0, γ
′) , −α2,

g5(t, α0, α2, β0, γ
′) , −α0,

g6(t, α0, α2, β0, γ
′) , α0 + α2 − 1,

g7(t, α0, α2, β0, γ
′) , β0 − 1,

g8(t, α0, α2, β0, γ
′) , −β0.

In the formulation in (7) we have used the fact that αi ≥ 0, i = 0, 1, 2 and βj ≥ 0,

j = 0, 1 and the fact that
∑2

i=0 αi = 1 and
∑1

j=0 βj = 1 to eliminate α1 and β1.

It can be readily verified that the optimization in (7) is not convex. However,

it satisfies the qualification conditions and hence the KKT conditions are necessary

for optimality [40]. Letting λi denote the Lagrange multipliers corresponding to the

constraint gi in (7b), respectively, i = 1, . . . , 8, the Lagrangian can be written as To

write these conditions, we consider the Lagrangian function, which is given by

L =(λ1 + λ2 − 1)t+ λ1

(

1 +
α2γ1
1 + γ′ + α2γ0

)1 + (1− α0)γ1
1 + α2γ1

+ λ2

(

1 + γ0 + γ2 + 2
√

α0β0γ0γ2
) γ′

1 + γ′

+ λ3

(

1 +
α2γ1

1 + α2γ0
− (1− β0)γ2

1 + (1− α0)γ0
γ′
)

− λ4α2 − λ5α0 + λ6(α0 + α2 − 1) + λ7(β0 − 1)− λ8β0.
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Using this Lagrangian, the KKT system can be written as

λ1 + λ2 − 1 = 0, (8a)

λ1

(

1 + α2γ0 +
α2γ1
1 + γ′

)( γ1
1 + α2γ1

)

− λ2
√
γ0γ2

√

β0

α0

( γ′

1 + γ′

)

− λ3
γ0γ2γ

′(1− β0)
(

1 + (1− α0)γ0
)2

− λ5 + λ6 = 0, (8b)

− λ1

(

1 + γ1(1− α0)
)(

γ0(1 + γ′)− γ1γ
′)

(

1 + γ′
)(

1 + α2γ1
)2 + λ3

γ1
(

1 + α2γ0
)2 − λ4 + λ6 = 0, (8c)

− λ2
√
γ0γ2

√

α0

β0

( γ′

1 + γ′

)

+ λ3
γ2γ

′

1 + (1− α0)γ0
+ λ7 − λ8 = 0, (8d)

λ1

γ1α2

(

1 + γ1(1− α0)
)

(1 + γ′)2(1 + γ1α2)
− λ2

1 + γ0 + γ2 + 2
√
α0β0γ0γ2

(1 + γ′)2
− λ3

γ2(1− β0)

1 + γ0(1− α0)
= 0,

(8e)

gi(t, α0, α2, β0, γ
′) ≤ 0, λigi(t, α0, α2, β0, γ

′) = 0, λi ≥ 0, i = 1, 2, ..., 8,

(8f)

where (8a), (8b), (8c), (8d) and (8e) can be obtained, respectively, by setting

∂L
∂t
, ∂L
∂α0

, ∂L
∂α2

, ∂L
∂β0

and ∂L
∂γ′ to zero.

To study the KKT system for different SNR regions, we begin by determining the

values of α0, α2, β0 and γ′ for which the generalized DF-CF scheme reduces to the DF

and CF schemes.

We begin by providing achievable rates of the DF and CF schemes for the Gaussian

channel in Figure 1. For the DF scheme, the maximum achievable rate is achieved

with Gaussian signals [20, Proposition 2] and is given by

R∗
DF = max

{ρi}1i=0

min
{

RDF,1, RDF,2

}

, (9)

where RDF,1 = C
(

ρ1γ1
)

and RDF,2 = C
(

γ0 + γ2 + 2
√
ρ0γ0γ2

)

, ρ0 and ρ1 satisfy
∑1

i=0 ρi = 1, and
√
ρ0 = E{X1X2}, where E{·} denotes the expectation operator;
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cf. [2, Theorem 1]. See details in Appendix A.2. In contrast with the DF scheme,

in the CF scheme it is not known if using Gaussian signalling achieves its maximum

rate. However, the maximum rate achieved with Gaussian signals is given by

R∗
CF = C

(

γ0 +
γ1γ2

1 + γ0 + γ1 + γ2

)

, (10)

where the normalized variance of the estimation noise that enables this rate to be

achieved is given by

γ′∗
CF ,

1 + γ0 + γ1
γ2

. (11)

See details in Appendix A.2.

Remark 1. Let γi ∈ (0,∞), i = 0, 1, 2. Then, setting α2 = 0 and β0 = 1, the

generalized DF-CF scheme yields the maximum achievable rate of the DF scheme,

R∗
DF. Furthermore, setting α2 = 1 and β1 = 1, the generalized DF-CF scheme yields

the maximum achievable rate of the CF scheme with Gaussian signals, R∗
CF. In

particular, R∗
G

∣

∣

∣α2=0
β1=0

= R∗
DF, and R∗

G

∣

∣

∣α2=1
β1=1

= R∗
CF, with γ′∗

∣

∣

∣α2=1
β1=1

= γ′∗
CF.

Proof. Direct substitution in (6) yields the statements of the remark.

We now analyze the rates yielded by the problem in (6) for different choices of γ0,

γ1 and γ2. In particular, we will partition γ1 into different regions and consider the

case of γ0(1 + γ2) < γ1 < ∞, the case of γ1 ≤ γ0, and the case of SNRs that yield

R∗
DF = R∗

CF to draw insight into the gains of the generalized DF-CF scheme. We will

also touch upon two asymptotic cases, viz., γ2 → ∞ and γ0 → 0.

2.4.1 The Case of γ0(1 + γ2) < γ1 < ∞

In this region the gain of the source-to-relay link is greater than that of the source-

destination link; i.e., a > 1 in Fig. 1. For this case, we first record an observation in

the following lemma.
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Lemma 1. When γ1 > γ0(1 + γ2), Proposition 1 yields that γ′ must satisfy

γ′ >
γ0

γ1 − γ0
. (12)

Proof. We proceed by contradiction. Suppose that γ′ ≤ γ0
γ1−γ0

. In this case, the

constraint in (6b) yields (1+α2(γ0+γ1))(1+(α1+α2)γ0)
(1+α2γ0)β1γ2

≤ γ0
γ1−γ0

, which, by the fact that

β1 ≤ 1, implies that

(

1 + α2

(

γ0 + γ1
))(

1 +
(

α1 + α2

)

γ0
)

≤ γ0
γ1 − γ0

(

1 + α2γ0
)

γ2.

Manipulating this inequality and using
∑2

i=0 αi = 1 yields

γ0(1 + γ2)− γ1
γ0(γ1 − γ0)

− α2γ1γ2

(γ1 − γ0)
(

1 + α2(γ0 + γ1)
) ≥ 1− α0,

which requires γ0(1+γ2)−γ1
γ0(γ1−γ0)

≥ 1 − α0. If γ1 > γ0(1 + γ2), this inequality implies that

α0 > 1, which violates the constraint that α0 ≤ 1 in (6e). Hence, we conclude that

when γ1 > γ0(1 + γ2), we must have γ′ > γ0
γ1−γ0

.

Now, we provide our main result for the case γ0(1+γ2) < γ1 < ∞ in the following

theorem.

Theorem 1. When the channel gains in Fig. 1 satisfy γ1 > γ0(1+γ2), the generalized

DF-CF scheme using Gaussian signals reduces to the DF scheme. In particular,

R∗
G = R∗

DF. (13)

Proof. Detailed proof is provided in Appendix A.3.

Theorem 1 indicates that if the channel gain of the source-relay link is sufficiently

large, compared to the other two links, the generalized DF-CF with Gaussian signals
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does not yield rates higher than those achieved by the DF scheme. In this region DF

outperforms CF.

Remark 2. By comparing R1 ≤ C(α1γ1) in (64) with R2 ≤ C(γ0 + γ2 + 2
√
α0γ0γ2)

in (65) in Appendix A.3, it can be seen that when γ0(1+γ2) < γ1 < γ0+γ2, R1 < R2;

i.e., R1 is the constraining rate. In this case, β0 can be set to be less than 1 without

reducing the achievable rate of the generalized DF-CF scheme. Setting β0 < 1 implies

that the relay uses a fraction β1 > 0 of its power to transmit its estimation of the

received signal. Setting α1 = 1 and restricting R2 to be greater than or equal to R1

yields β1 ≤ 1+γ0
1+γ1

(

1− γ1−γ0
γ2

)

. �

This remark implies that the generalized DF-CF can be beneficial in scenarios

that are more general than the considered three-node one. Drawing insight from

this remark, we note that for the generalized DF-CF scheme with β1 > 0 to yield the

same rate as the DF scheme, the source encodes the message and the relay successfully

decodes it as in the DF scheme. The relay uses the decoded message and an estimation

of the received signal to synthesize its transmitted codeword. However, the estimation

of the received signal will not provide the destination with additional information

about the codeword transmitted by the source, and any additional information it may

contain will depend on the noise at the relay. Because this noise and the noise at the

destination are independent, the additional information potentially contained in the

estimation portion of the signal at the destination does not facilitate decoding. This

implies that, in this SNR region, the generalized DF-CF scheme may be advantageous

than the DF and CF schemes considered in [26] for Gaussian channels when the relay

and destination noises are correlated.
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2.4.2 The Case of γ1 ≤ γ0

When γ1 ≤ γ0, the channel gain of the source-to-relay channel is less than or equal

to that of the source-to-destination channel, which corresponds to the case of a ≤ 1

in Fig. 1.

To arrive at the main result in this SNR region, we first provide the following two

lemmas.

Lemma 2. For the Gaussian channel shown in Fig. 1, the maximum rate that the

generalized DF-CF scheme achieves using Gaussian signals is attained when the con-

straint in (6b) is satisfied with equality, that is, in that case,

I(Ŷ1; Y1|X2, U, Y ) = I(X2; Y |V ). (14)

Proof. We consider the channel in Fig. 1 for the case of the Gaussian signals and

Gaussian channels. To prove this lemma, consider the following three cases of α2 and

γ′:

1. α2 = 0, arbitrary γ′;

2. α2 > 0, γ′ < ∞; and

3. α2 > 0, γ′ → ∞.

We will show that in each case if the maximum rate of the generalized DF-CF scheme

is attained, the constraint on γ′ in (6b) is satisfied with equality. See details in

Appendix A.4.

Lemma 3. Rate R1 and R2 in (3) (cf. Theorem 7 in [2]) satisfy

R1 = R2 +∆, (15)
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where ∆ = −I(X2, U ; Y ) + I(X2; Y |V ) + I(U ; Y1|X2, V ).

Proof. Invoking Lemma 2 in the expression of R2 in Theorem 7 in [2] yields

R2 = I(X1, X2; Y )− I(Ŷ1; Y1|X2, X1, U, Y )

= I(X1, X2; Y )− I(Ŷ1; Y1|X2, X1, U, Y )− I(X2; Y |V ) + I(Ŷ1; Y1|X2, U, Y )

= I(X1; Y |X2) + I(X1; Ŷ1|X2, U, Y ) + I(V ; Y )

= I(V ; Y ) + I(U ; Y |X2, V ) + I(X1; Y, Ŷ1|X2, U), (16)

where the second equality follows from Lemma 2. The third and fourth equalities

follows from using the chain rule and the fact that, by construction, (V,X2, Y ) form

the Markov chain V → X2 → Y and that, conditional on (X2, U), (X1, Y1, Ŷ1) form

the Markov chain X1 → Y1 → Ŷ1, and (U,X1, Y ) form the Markov chain U → X1 →
Y .

Substituting for I(X1; Y, Ŷ1|X2, U) from (16) in the first term of R1, in (3a) yields

R1 = R2 − I(V ; Y )− I(U ; Y |X2, V ) + I(U ; Y1|X2, V )

= R2 − I(X2, U, V ; Y ) + I(X2; Y |V ) + I(U ; Y1|X2, V )

= R2−I(X2,U ; Y )+I(X2; Y |V )+I(U ; Y1|X2,V ) (17)

= R2 +∆,

where ∆ , −I(X2, U ; Y )+I(X2; Y |V )+I(U ; Y1|X2, V ). In writing (17) we have used

the fact that, conditioned on (X2, U), Y is independent of V .

The main result for the SNR region γ1 ≤ γ0 is provided in the following theorem.

Theorem 2. When the channel gains in Fig. 1 satisfy γ1 ≤ γ0, the generalized DF-CF
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scheme using Gaussian signals reduces to the corresponding CF scheme. In particular,

R∗
G = R∗

CF. (18)

Proof. Detailed proof is provided in Appendix A.5.

Theorem 2 suggests that when the signals are Gaussian and the channel gain of

the source-to-relay link is less than or equal to that of the source-destination link,

the generalized DF-CF scheme does not provide higher rate than the CF scheme. In

this region, CF outperforms DF. To draw further insight into this theorem, we note

that when, γ1 ≤ γ0, the rate of the DF scheme is constrained by the rate that can

be reliably communicated over the source-relay link. Now, in the generalized DF-CF

scheme, the partial codewords {u} = U contain the messages to be decoded by the

relay. However, since the source-relay link is weaker than the source destination-link,

the rate of U must be sufficiently small to ensure its successful decoding. In fact,

Theorem 2 asserts that, when the signals are Gaussian, this rate must be exactly

zero.

2.4.3 The Case of SNRs Yielding R∗
DF

= R∗
CF

In this section we will show that in the SNR region at which R∗
DF = R∗

CF, the rate

yielded by the generalized DF-CF scheme is strictly higher than the rate yielded by

either scheme. We begin by stating the following lemma.

Lemma 4. For the Gaussian channel shown in Figure 1, the DF scheme and the CF

scheme using Gaussian signals yield the same maximum achievable rate if and only

if

γ1(1 + γ1) = γ0(1 + γ0 + γ2) (19)

Proof. To prove the direct part of this lemma, we substitute γ1(1+γ1) = γ0(1+γ0+γ2)
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in (10). Simplifying yields R∗
CF = C(γ1). In this SNR region, it can be seen that

γ1 < γ0 + γ2. Using this in (9), we have RDF,1 < RDF,2, which implies that R∗
DF =

R∗
DF,1 = C(γ1). This completes the proof of the direct part.

To prove the converse, we need to show that if R∗
DF = R∗

CF then γ1(1 + γ1) =

γ0(1 + γ0 + γ2). We begin by providing an upper bound on the maximum achievable

rate of the CF scheme using Gaussian signals, R∗
CF. From (10), we have, for any

ρ0 ≥ 0,

R∗
CF = C

(

γ0 +
γ1γ2

1 + γ0 + γ1 + γ2

)

< C(γ0 + γ2 + 2
√
ρ0γ0γ2).

Comparing this bound with (9), it can be seen thatR∗
CF < RDF,2. This implies that

if the maximum achievable rate of the DF scheme is given by R∗
DF = RDF,2 ≤ RDF,1,

then R∗
CF < R∗

DF. Hence for R∗
DF to be equal to R∗

CF, RDF,1 must be the constraining

rate of the DF scheme, i.e., R∗
DF = RDF,1 < RDF,2. However, from (9), this implies

that γ1 < γ0 + γ2. Otherwise, if this condition is not satisfied, the maximum rate

of the DF scheme is achieved with ρi ≥ 0, i = 0, 1, such that
∑1

i=0 ρi = 1 and

RDF,1 = RDF,2.

From (9), it can be seen that, for γ1 < γ0 + γ2, R
∗
DF = RDF,1 = C(γ1). Equating

this rate with R∗
CF in (10) yields γ1(1 + γ1) = γ0(1 + γ0 + γ2), which completes the

proof of the lemma.

An important implication of this lemma is given in the following corollary.

Corollary 1. When γ1(1+ γ1) > γ0(1+ γ0 + γ2), R
∗
DF > R∗

CF and when γ1(1+ γ1) <

γ0(1 + γ0 + γ2), R
∗
DF < R∗

CF.

Proof. The SNR region γ1(1 + γ1) > γ0(1 + γ0 + γ2) can be divided into two non-

overlapping sub-regions: γ1 ≥ γ0 + γ2 and γ0 + γ2 > γ1 >
γ0(1+γ0+γ2)

1+γ1
.
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For SNRs satisfying γ1 ≥ γ0 + γ2, it can be seen from (9) that R∗
DF = RDF,1 =

RDF,2 > C(γ0 + γ2). Now, the expression of R∗
CF in (10) yields R∗

CF < C(γ0 + γ2).

Hence, in this SNR region, R∗
DF > R∗

CF.

We now consider the SNR region in which γ0 + γ2 > γ1 > γ0(1+γ0+γ2)
1+γ1

. In this

region, we have from (9) that R∗
DF = C(γ1) = RDF,1 < RDF,2. Using the fact that in

this region γ1 > γ0(1+γ0+γ2)
1+γ1

in (10) yields R∗
DF > R∗

CF, which completes the proof of

the first statement.

For the second statement of the corollary, it can be verified that the condition that

γ1(1+ γ1) < γ0(1+ γ0+ γ2) is equivalent to the condition that γ1 < γ0+
γ1γ2

1+γ0+γ1+γ2
<

γ0 + γ2. Using these inequalities to bound R∗
CF in (10) and noting that in this region

RDF,1 < RDF,2, it follows that R
∗
DF < R∗

CF, which completes the proof of the second

statement.

Corollary 1 provides an SNR threshold below which DF is more advantageous

than CF, and above which CF is more advantageous than DF. This result will be

used to develop a DF/CF switching scheme which will be shown to yield significant

rate advantages over individual schemes under quasi-static Rayleigh fading channel

conditions.

Using Lemma 4, we have the following result.

Theorem 3. Consider the Gaussian channel in Figure 1 and suppose that the channel

SNRs are finite and bounded away from zero, i.e., 0 < γ0, γ1, γ2 < ∞. If γi, i = 0, 1, 2,

satisfy (19), then there exist power partitions, {αi}2i=0 and {βj}1j=0, and normalized

estimation noise, γ′, such that the generalized DF-CF using Gaussian signals provides

a higher rate than the corresponding DF and CF schemes.

Proof. To prove this theorem, we will use contradiction. First, we will assume that

R∗
G = R∗

CF = R∗
DF, and then we will show that this R∗

G and the corresponding power

partitions and γ′ do not satisfy the KKT necessary optimality conditions in (8).
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First, we recall the result of Remark 1, indicating that the generalized DF-CF

scheme reduces to the CF scheme when α2 = 1 and β1 = 1. Substituting from (19)

in (11) yields

γ′ =
γ0

γ1 − γ0
. (20)

Note that the SNR condition in Lemma 4 implies that γ1 > γ0, and hence that γ′ > 0.

Next, we will examine the KKT system (8). We note that if α2 = 1 and β1 = 1

are optimal, then for the inequalities in (8f) with i = 4, 7, we must have λ4 = λ7 = 0.

Substituting for γ′ from (20) in (8c), the coefficient of λ1 vanishes and using λ4 = 0

yields λ3
γ1

(1+γ0)2
+ λ6 = 0, which implies that λ3 = λ6 = 0. Using this result and the

fact that γ1 > γ0 in (8e) yields λ1γ1 = λ2(1 + γ0 + γ2).

Now, invoking λ1+λ2 = 1, yields λ1, λ2 > 0; both λ1 and λ2 are finite and bounded

away from 0. Substituting for λ3, λ7 and γ′ in (8d) yields −λ2

√

α0

β0

γ0
√
γ0γ2

γ1
= λ8. Since

λ2 > 0, for this equality to be satisfied, we must have λ8 = 0, and

√

α0

β0
= 0. (21)

Substituting for λ3, λ6 and γ′ in (8b) yields

λ1γ1 = λ2

√

β0

α0

γ0
√
γ0γ2

γ1
+ λ5. (22)

Now, the left hand side is finite. However, using (21), and the fact that λ2 > 0

and λ5 ≥ 0 implies that the right hand side is infinite. Hence, we conclude that

the equality in (22) does not hold, which indicates that, when the SNRs satisfy the

condition in Lemma 4, the power partitions α2 = 1 and β1 = 1 do not satisfy the KKT

conditions necessary for optimality. In other words, reducing the generalized DF-CF

scheme to the CF scheme by setting α2 = β1 = 1, is suboptimal; i.e., R∗
G > R∗

CF.

To complete the proof of the theorem, we note that at the SNRs satisfying
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Lemma 4, R∗
DF = R∗

CF, which implies that, in this region, R∗
G > R∗

DF.

Theorem 3 shows that for SNRs satisfying the condition of Lemma 4, the general-

ized DF-CF using Gaussian signals yields strictly higher rates than the corresponding

DF and CF schemes.

So far we have restricted our attention to strictly positive finite SNRs. In the

following remarks we will consider two extreme cases, namely, γ2 → ∞ and γ0 → 0.

Remark 3. When γ2 → ∞ and 0 < γ0, γ1 < ∞, the generalized DF-CF scheme using

Gaussian signals reduces to the corresponding CF scheme and achieves the capacity

of the relay channel; i.e., R∗
G = R∗

CF = C. �

The proof of this remark uses the fact that the Gaussian distribution maximize the

cut-set bound [20] for the considered Gaussian channel and that this bound is achieved

by the CF scheme using Gaussian signals when γ2 → ∞. A similar observation has

been independently made in [21]. The fact that CF is a special case of the generalized

CF-DF yields the result.

Remark 4. When γ0 → 0, 0 < γ1 and γ2 < ∞, the generalized DF-CF scheme

reduces to the DF scheme, and achieves the capacity of the channel in Fig. 1. In

particular, R∗
G = R∗

DF = C.

�

To prove this remark, we invoke the fact that the cut-set bound is maximized by

the Gaussian distribution and that Gaussian signals maximize the rate achieved by

the DF scheme for the considered relay channel. Direct substitution for γ0 → 0 in the

corresponding rate expressions shows that the DF scheme meets the cut-set bound

and hence achieves capacity. The fact that DF is a special case of the generalized

CF-DF scheme yields the result.
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2.4.4 An Upper Bound on the Gain of the Generalized DF-

CF

We now provide an upper bound on the gain of the generalized DF-CF using

Gaussian signals over the corresponding DF and CF schemes. In particular, we prove

the following theorem.

Theorem 4. Using Gaussian signals, the maximum rate achieved by the generalized

DF-CF scheme is at most 0.5 bpcu higher than that achieved by the individual DF

and CF schemes.

Proof. Detailed proof is provided in Appendix A.6.

This theorem implies that, despite the inherent coding and decoding complexity

of the generalized DF-CF, its rate advantage over DF and CF is relatively small.

This indicates that the practical benefit of the analysis of this scheme is to enable

appropriate selection of either DF or CF relaying depending on the given channel

realization.

2.5 Numerical Results

In this section, we will confirm the analysis of Section 2.4 by numerical examples.

We will also provide an example in which this analysis is exploited to adapt the relay

operation mode to the channel gains.

The maximum DF rate, R∗
DF, is obtained using (9), by setting ρ∗0 = 0, or such

that RDF,1 = RDF,2, depending on the values of γi, i = 0, 1, 2. The maximum CF

rate, R∗
CF, is evaluated using (10), and the maximum generalized DF-CF rate, R∗

G,

is evaluated by using the KKT conditions corresponding to (6) to reduce the search



34

for γ′∗ and the optimal power partitions to two parameters, viz., α0, β0 ∈ [0, 1]. The

cut-set bound is calculated using the expression in Theorem 4 in [2].

In Fig. 2, the SNR of the source-destination link is set to be γ0 = 5 dB and that of

the relay-destination link is set to be γ2 = 5.5 dB, which yields γ0(1 + γ2) = 11.5 dB.

From Fig. 2(a) it can be seen that, in agreement with Theorem 1, for γ1 > 11.5 dB,

the maximum achievable rate of the generalized DF-CF scheme, R∗
G, coincides with

the maximum achievable rate of the DF scheme, R∗
DF. Similarly, in agreement with

Theorem 2, for γ1 ≤ 5 dB, R∗
G coincides with the maximum achievable rate of the CF

scheme, R∗
CF.

To investigate the performance of the generalized DF-CF scheme when γ0 < γ1 ≤
γ0(1 + γ2), in Figure 2(b), we plot a magnified version of the region spanned by

γ1 ∈ [6.3, 6.6]. As asserted by Theorem 3, it can be seen that, when γ1 = 6.496377 dB,

R∗
DF = R∗

CF = 1.22486 bpcu. At this SNR, the generalized DF-CF scheme yields

a rate advantage ∆G = R∗
G − R∗

DF = 2.62 × 10−3 bpcu. This rate advantage is

obtained by setting α0 = 0.004, α1 = 0.762621, α2 = 1 − α1 − α0, β0 = 0.179, and

β1 = 1−β0. In agreement with Theorem 4, the gain offered by the generalized DF-CF

scheme is strictly less than 0.5 bpcu. Similar to the numerical results reported for

the generalization in [39], the rate advantage of the generalization considered herein

is marginal. However, this does not preclude the possibility that the generalized DF-

CF might yield higher rate gains for more general networks, or when the relay and

destination noises are correlated; cf. Remark 2.

In Fig. 3 we verify Remarks 3 and 4. In Figure 3(a), we set γ0 = 1 dB and

γ1 = 5 dB. In accordance with Remark 3, it can be seen that as γ2 becomes sufficiently

large, R∗
G coincides with R∗

CF and with the cut-set bound. Figure 3(b) is obtained by

setting γ1 = 10 dB and γ2 = 5 dB. As stated in Remark 4, as γ0 becomes sufficiently

small, R∗
G coincides with R∗

DF and with the cut-set bound.

Finally, we provide a numerical example to expose the practical implications of
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Figure 2: Maximum achievable rate of the generalized DF-CF scheme.

the analysis of the generalized DF-CF scheme. To do so, we consider a quasi-static

frequency-flat Rayleigh fading relay channel in which the channel coefficients take

on random values, but are held constant for the entire signalling duration. The

coefficients are drawn from the standard zero mean Gaussian distribution with the

variance adjusted to yield average SNRs of γ̄0 = E{γ0} = 5 dB, γ̄2 = E{γ2} = 5.5 dB

and γ̄1 = E{γ1} ranging between 0 and 20 dB. We assume that the instantaneous

channel gains, and hence {γi}2i=0, are available at source, relay and destination, and

we compare the following three schemes: the standard DF and CF schemes and a

DF/CF switching scheme. In the standard schemes the relay uses either DF or CF

relaying regardless of the channel realization, whereas in the switching scheme, the

relay uses Corollary 1 to select its operation mode depending on the current realization

of {γi}2i=0. From Figure 4, it can be seen that enabling the relay to switch between DF

and CF operating modes yields a significant gain over either scheme. For instance,

at a rate of 1.1 bpcu, the gain of the DF/CF switching scheme over the standard DF

and CF schemes is about 4 dB.



36

5 10 15 20 25 30 35
0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

 

 

γ2 [dB]

R
at
e
(b
it
s
p
er

ch
an

n
el

u
se
)

DF
CF
Generalized DF-CF
Cut-set bound

(a) Generalized DF-CF reduces to CF and
achieves capacity

−6 −4 −2 0 2 4 6
0.8

1

1.2

1.4

1.6

1.8

2

 

 

γ0 [dB]

R
at
e
(b
it
s
p
er

ch
an

n
el

u
se
)

DF
CF
Generalized DF-CF
Cut-set bound

(b) Generalized DF-CF reduces to DF and
achieves capacity

Figure 3: Asymptotic optimality of the generalized DF-CF scheme
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Figure 4: Maximum achievable rate in quasi-static Rayleigh fading channel.



Chapter 3

A New Decoding Procedure to Support

the N-to-1 Mapping in

Compress-and-Forward Relaying

In this chapter, a forward decoding procedure is developed for the compress-

and-forward relaying scheme. This procedure uses a layered framework and is based

on exploiting a feature of the N -to-1 mapping inherent in the underlying Wyner-

Ziv binning. It is shown that exploiting this mapping enables the relaxation of the

constraint on the rate of the relay codewords representing the bin indices. The work in

this chapter was published, in part, in [14]. A more complete version is currently under

review for potential publication in the IEEE Transactions on Information Theory,

see [15].

3.1 Introduction

Compress-and-forward (CF) [2] is a classical relaying scheme for communicating

over relay channels. In conventional CF, the source transmits a new codeword in

each time block. The relay uses a pre-designed codebook to generate descriptions of

its received signal. Using Wyner-Ziv binning [8], the codewords in the codebook of

37
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this description are randomly partitioned into non-overlapping bins, a process that

results in an N -to-1 mapping from the description codewords to the bin indices, where

N ≥ 1. In each block, the CF relay provides a description of its received signal and

sends its bin index in the next block to facilitate decoding at the receiver. Decoding

at the CF receiver comprises three steps [2]:

1. decoding the bin index transmitted from the relay;

2. using the received signal as side information [8] to decode the relay description

codeword in the bin; and

3. recovering the transmitted codeword from the source with the facilitation of the

relay description and its corresponding bin index.

The last two steps can also be performed jointly [41].

CF relaying was originally proposed for the three-node relay channel, but was

later extended to channels with multiple relays [20, 42, 43]. CF is also known to be

capacity achieving for various classes of relay channels [31, 34, 44–46].

Akin to CF is the noisy network coding (NNC) scheme provided in [9]. The

philosophy that underlies this scheme resembles, to some extent, that of CF. However,

there are three differences between the CF scheme and the NNC one.

• First, in contrast with random binning used in CF, in NNC the relay transmits

a codeword that bears a 1-to-1 correspondence with the description codeword.

• Second, in NNC the source uses repetitive transmission, wherein one long mes-

sage is encoded over a large number of blocks. This is in contrast with conven-

tional CF, wherein a new short message is transmitted by the source in each

time block.



39

• Finally, in NNC, the received signals in all time blocks are concatenated and

decoded jointly; in CF the decoding is performed on a forward block-by-block

basis.

Repetitive encoding of long messages over a large number of blocks incurs signifi-

cant delay, which renders short messaging more desirable. Variations of the original

NNC that use short message encoding (SNNC) were proposed in [10,47–49]. Despite

their differences, both NNC and SNNC decoding use the inherent 1-to-1 mapping

between the description codewords at the relay and its transmitted codewords. This

1-to-1 mapping can be seen as a special case of the general Wyner-Ziv binning with

equal rate of the Wyner-Ziv codes and the description codewords at the relay.

In [47], SNNC was studied for the standard three-node relay channel when forward

and backward decoding are used. In [10] and [48], it was shown that SNNC yields

the same rate region as NNC when either backward decoding or joint decoding with

concatenated blocks is used in the multimessage network considered therein. It is

worth noting that although short messages are encoded at the source, either backward

decoding or joint decoding with concatenated blocks decoding still causes long delay

since both decoding procedures require the reception of all the transmitted codewords

from the source.

Forward decoding that uses the SNNC codebook structure was investigated for

the multimessage network in [49]. This decoding is based on ordered partitions of all

the nodes in the network, thereby resulting in a set of constraints on the achievable

rate. Using a geometric approach, it was shown that, in the multimessage network

considered in [49], there exist ordered partitions that yield a rate region that coincides

with the one achieved by NNC.

In the standard three-node relay channel, conventional CF, NNC and SNNC

achieve the same rate. However, in more general multimessage networks consid-

ered in [9, 10, 49], NNC and SNNC achieve rate regions larger than that achieved by
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conventional CF.

In this chapter, we consider a multimessage network similar to the one considered

in [9,10,49]. For this network, we develop a decoding procedure based on the conven-

tional CF codebook structure. The proposed procedure uses multiple layers of the

joint typicality sets, which will be defined in Section 3.2, for decoding. At each layer,

a subset of the transmitted codewords and the codewords of the relay descriptions are

uniquely decoded. The codebooks that contain these uniquely decoded codewords are

used to construct the joint typicality set at the next decoding layer. Such sequential

construction of the joint typicality set at each layer provides a hierarchical structure

whereby the joint typicality set at one layer is a proper subset of that at the layer

below it. This construction provides in effect a systematic method for obtaining the

ordered partitions conceived in [49]. In addition to the layered framework, the pro-

posed decoding procedure exploits the N -to-1 mapping that underlies the Wyner-Ziv

binning. We show that this procedure is able to achieve the same rate region as that

achieved by SNNC in the multimessage network. However, because of the N -to-1

mapping, this procedure enables the relaxation of the constraint on the rate of the

bin indices. We will show that in the considered multimessage network, our decoding

procedure allows the rate of the relay bin indices to be strictly lower than the rate

of the relay description of its received signal and still achieves the same rate regions

as NNC and SNNC. This result implies that, although in general, the N -to-1 map-

ping inherent in the Wyner-Ziv binning introduces ambiguity in conveying the relay

description to the receivers, certain level of ambiguity does not cause additional rate

loss when side information is available at the receivers.

Notation: In this chapter, a sequence of random variables of node index dk is

denoted as Xk. A k-tuple of random variables is denoted as XA , (Xk : dk ∈ A).

The sum rate of the codebooks of a set of nodes A is denoted by RA ,
∑

dk∈ARdk .
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3.2 Preliminaries

We first provide definitions of typical sequence and jointly typical sequences ac-

cording to [18].

Definition: A sequence x ∈ X is said to be ε-strongly typical with respect to a

distribution p(x) on X if:

1. For all a ∈ X with p(a) > 0, we have

∣

∣

∣

∣

∣

1

n
N(a|x)− p(a)

∣

∣

∣

∣

∣

<
ε

|X | .

2. For all a ∈ X with p(a) = 0, N(a|x) = 0.

N(a|x) is the number of occurrences of a in the sequence x.

Definition: A pair of sequences (x,y) ∈ X ×Y is said to be ε-strongly typical with

respect to a distribution p(x, y) on X × Y if:

1. For all (a, b) ∈ X × Y with p(a, b) > 0, we have

∣

∣

∣

∣

∣

1

n
N(a, b|x,x)− p(a, b)

∣

∣

∣

∣

∣

<
ε

|X ||Y| .

2. For all (a, b) ∈ X × Y with p(a, b) = 0, N(a, b|x,y) = 0.

N(a, b|x,y) is the number of occurrences of (a, b) in the pair of sequences (x,y).

The set of sequences (x,y) ∈ X × Y such that (x,y) is strongly typical is called

the strong joint typicality set, or referred to as joint typicality set in this thesis, and

is denoted by A(n)
ε .

Next, we provide the following three important lemmas according to [41].
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Conditional Typicality Lemma: Let (X, Y ) ∼ p(x, y). Suppose that x ∈ A(n)
ε′

and Y ∼ p(y|x) =∏n
i=1 pY |X(yi|xi). Then, for every ε′ < ε,

lim
n→∞

P{(x,Y ∈ A(n)
ε )} = 1.

Joint Typicality Lemma: Let (X, Y, Z) ∼ p(x, y, z) and ε′ < ε. Then there exists

δ(ε) > 0 that tends to zero as ε → 0 such that the following statements hold:

1. If (x̃, ỹ) is a pair of arbitrary sequences and Z̃ ∼∏n

i=1 pZ|X(z̃i|x̃i), then

P{(x̃, ỹ, Z̃) ∈ A(n)
ε } ≤ 2I(Y ;Z|X)−δ(ε).

2. If (x̃, ỹ) ∈ A(n)
ε′ and Z̃ ∼∏n

i=1 pZ|X(z̃i|x̃i), then

P{(x̃, ỹ, Z̃) ∈ A(n)
ε } ≥ 2I(Y ;Z|X)+δ(ε).

Covering Lemma: Let (U,X, X̂) ∼ p(u, x, x̂) and ε′ < ε. Let (U,X) ∼ p(u,x) be a

pair of random sequences with limn→∞ P{(U,X) ∈ A(n)
ε′ } = 1, and let X̂(m), m ∈ A,

where |A| ≥ 2nR, be random sequences, conditionally independent of each other and

of X given U, each distributed according to
∏n

i=1 pX̂ |U(x̂i|ui). Then there exists

δ(ε) > 0 that tends to zero as ε → 0 such that

lim
n→∞

P{(U,X, X̂(m)) /∈ A(n)
ε , for all m ∈ A} = 0,

if R > I(X ; X̂|U) + δ(ε).

Now we begin the analysis by reviewing the achievable rate of SNNC [10] (with

1-to-1 mapping) and conventional CF (with N -to-1 mapping) [41] in the standard

three-node relay channel [2] shown in Fig. 5. Our goal in this chapter is to gain

insight into the relay transmission rate and its impact to the achievable rate.
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For both SNNC and conventional CF, the source sends X1 in each block and

the relay and the receiver receive Y2 and YD, respectively. Upon receiving Y2,

the relay obtains a description, Ŷ2, of its received signal, which is mapped to X2

using Wyner-Ziv binning. The relay then sends X2 in the next block to the receiver

to facilitate decoding. The difference between SNNC and conventional CF in the

codebook structure is the relationship between Ŷ2 and X2. In SNNC, each ŷ2 is

mapped to a distinct x2, whereas in conventional CF, potentially multiple ŷ2 are

assigned to one bin index which is mapped to an x2.

YD

Y2

Ŷ2

X1

X2

Figure 5: Standard three-node relay channel (SNNC or CF).

Let R1, Ř2 and R̂2 be the rates of the codewords that represent the source mes-

sage, the relay bin index and the relay description of its received signal, respectively.

Consider the probability mass functions (pmfs) of the form

p(x1, x2, yD, y2, ŷ2) = p(x1)p(x2)p(yD, y2|x1, x2)p(ŷ2|x2, y2).

In SNNC [10, 49], Ř2 = R̂2, and the following rate can be achieved:

R1 ≤ I(X1; Ŷ2, YD|X2), (23a)

R1 ≤ I(X1, X2; YD)− I(Ŷ2; Y2|X1, X2, YD). (23b)

In conventional CF, Ř2 ≤ R̂2, and the rate satisfying (23a) and the following
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constraints is achievable, cf. [41, Sect. 16.7]:

R1 ≤ I(X1; YD|X2)− I(Ŷ2; Y2|X1, X2, YD) + Ř2, (24a)

Ř2 ≤ I(X2; YD). (24b)

Choosing Ř∗
2 = I(X2; YD) in (24b) maximizes R1 and yields the same rate expression

as SNNC.

For the three-node relay channel, it was shown in [39] and [41, Remark 16.3] that

the achievable rate is maximized when the two constraints in (23) are equal, which

yields

I(X2; YD) = I(Ŷ2; Y2|X2, YD). (25)

It can be seen that when (25) is satisfied, CF is able to achieve the same rate as SNNC

and yields Ř∗
2 = I(X2; YD) = I(Ŷ2; Y2|X2, YD) ≤ I(Ŷ2; Y2|X2) ≤ R̂2, which contrasts

the condition in SNNC, wherein Ř2 = R̂2.

In the next chapter, it will be shown that the fact that a modified CF decoding

procedure achieves the same rate as SNNC but uses a lower rate on the bin indices

holds in more general multimessage networks.

3.3 A Layered Forward Decoding Procedure for

Multimessage Network

In a relay network with multiple receivers, when SNNC (with 1-to-1 mapping) is

used, the rate of the codewords representing the bin indices at the relay is an inter-

mediate parameter and can be eliminated from the expressions of the achievable rate

region. In contrast, when conventional CF (with N -to-1 mapping) is used in the pres-

ence of multiple receivers, the rate of the codewords representing the bin indices at the
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relay cannot be readily eliminated. The decoding of the relay transmitted codewords

at each receiver imposes a constraint on the rate of the bin indices. This constraint

appears in the achievable rate expressions and induces a rate loss in comparison with

SNNC.

In this chapter, we analyze a CF forward decoding procedure in which two com-

ponent strategies are combined: the N -to-1 mapping characteristic of conventional

CF [2] and the sliding-window decoding of the relay messages characteristic of SNNC,

see e.g., [49]. Combining these components results in a new decoding procedure that

subsumes conventional CF and SNNC, and that therefore enables potentially higher

rates to be achieved. Indeed, subsequent developments in Theorems 5 and 6 show that

combining these components yields the same rate expressions as NNC and SNNC but

with a more relaxed constraint on rate of the bin indices at the relays. The advantage

of the relaxed constraint on rate of the bin indices will be illustrated in detail in the

next chapter.

Consider the multimessage network shown in Fig. 6. The network contains a set of

nodes N = {1, 2, . . . , N}, each of which acts as a source, a receiver and a relay. As a

source, node dk ∈ N sends an independent common message through the transmission

of Xk to the set of its destinations Ddk ⊆ N . The set of nodes that wish to send

messages to dk is denoted by Sdk ⊆ N . As a relay to assist the transmission of other

nodes, dk provides a description, Ŷk, of its received signal Ydk , and facilitates the

decoding at other nodes through the transmission of Xk. Cooperation between nodes

in this network is based on the facilitation provided by the encoding procedure at each

node and the use of received signal as side information in the decoding procedure at

each receiver.

In recovering the messages from the nodes in Sdk at dk, the receiver can treat the

information of the messages from the nodes in N \ Sdk as interference. Using this

approach and SNNC (with 1-to-1 mapping), expressions for the achievable regions
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(X1, Y1)

(X2, Y2)

... ...

... ...
... ...

... ...

(Xk, Yk)

(XN , YN)

p(y1, y2, . . . , yN |x1, x2, . . . , xN)

Figure 6: An N -node multimessage network.

are provided in [49]. In Theorem 5 herein, this result is extended to the codebook

structure that bears the general N -to-1 mapping. In contrast, in Theorem 6, an

achievable rate region is provided for the case when the receiver at dk treats the

interference from the nodes in N \ Sdk as noise instead of attempting to decode it.

Theorem 5. Let (×N
k=1Xk, p(y

N |xN),×N
k=1Ydk) be the general discrete memoryless

multimessage network, a rate tuple (R1, . . . , RN) is achievable if:

RS ≤ min
dk∈Sc∩DS

I(XS ; ŶŠc, Ydk |XSc)− I(ŶN\Šc; YN\Šc|XN , ŶŠc, Ydk) + ŘŠ , (26)

for all subsets S ⊂ N and Š ⊆ Sc = N \ S, such that Sc ∩ DS 6= ∅; the set

DS , ∪dl∈SDdl , Šc , Sc \ Š.

The implications of the inequalities in (26) can be inferred by considering a three

node network. In such a network, there are two possibilities for S: S = {1} and

S = {1, 2}. For the first possibility, there are two cases for Š: Š = ∅ and Š = {2}.
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Using these possibilities in (26) yields the following bounds on the source rate, R1:

for S={1},Sc={2}, Š=∅, Šc={2},R1≤I(X1;Ŷ2, YD|X2); (27a)

for S={1, 2},Sc=∅, Š= Šc=∅, R1≤I(X1, X2; YD)−I(Ŷ2;Y2|X1,X2,YD); (27b)

for S={1},Sc={2},Š = {2},Šc=∅, R1≤I(X1;YD|X2)−I(Ŷ2;Y2|X1,X2,YD)+Ř2.(27c)

The first two bounds are identical to the standard CF bounds, cf. [41, Sect. 16.7]

and (1a) and (1b). For the third bound we note that choosing Ř2 ≥ I(Ŷ2; Y2|X2, YD)

reduces (27c) to (27a), and choosing Ř2 ≥ I(X2; YD) reduces (27c) to (27b). This im-

plies that for this scenario, (27c) is redundant and subsequently, the proposed scheme

does not yield an advantage beyond conventional CF in the three node network.

The expression on the right hand side of (26) can be regarded as a generalization

of the rate achieved by NNC and SNNC. In particular, as shown in Remark 6, when

RŠ satisfies the conditions in (29), the rate expression in Theorem 1 reduces to the

one achieved by NNC and SNNC. As such, using the proposed signalling strategy in

particular networks can in general yield a rate region that includes the rate region

that can be achieved by the NNC and SNNC schemes; the additional advantage of the

proposed scheme follows from exploiting the N -to-1 mapping as elucidated in detail

in the proof of Theorem 5 and the examples in Sect. 4.1.1 and 4.1.2.

Proof. The decoding procedure uses strong joint typicality and features a layered

framework. For layer 1 in this framework, the receiver considers the codebooks of all

the nodes in the network and constructs the set containing the codewords that are

jointly typical with the signal received in a particular block. For layer 2, the receiver

considers only those codebooks that correspond to exactly one codeword in the joint

typicality set in layer 1, and subsequently constructs the set containing the codewords

that are jointly typical with the signal received in the following block. Hence, the

codebooks considered at layer 2 are only a subset of those at layer 1. Subsequent layers



48

are constructed in a similar way until all the relay description codewords are uniquely

decoded (further discussions on the number of decoding layers will be provided a the

end of Sect. 3.3). Using the joint typicality sets at all the layers jointly, the receiver

recovers the source messages. The details are provided in Appendix B.1.

Now, we make three remarks.

Remark 5. When A`m = A`z , we have Š = A`m \ A`z = ∅ and Šc = Sc. The result

in Theorem 5 reduces to the following simplified form:

R(S)≤I(XS ; ŶSc, Ydk |XSc)−I(ŶS; YS |XN , ŶSc, Ydk), (28)

for S ∩ Sdk 6= ∅.

The simplified form of the achievable rate region coincides with that of NNC and

SNNC.

Remark 6. The rate region described in Theorem 5 reduces to the simplified form

in (28) when ŘŠ satisfies the following condition:

ŘŠ ≥ min{I(XSc\Šc ; ŶŠc, Ydk |XŠc)−RSc\Šc , I(ŶŠ ; YŠ |XSc , ŶŠc, Ydk)}. (29)

Proof. See details in Appendix B.2.

Remark 7. Theorem 5 shows that the the proposed scheme achieves the same rate

region as NNC and SNNC but with reduced the rates of codewords representing the

bin indices. This reduction will be shown to result in a rate advantage in the next

chapter.

Proof. To expose the reduction in the rate of the bin indices, it suffices to show that
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the right hand side of (29) is upper bounded by R̂Š . We have

I(ŶŠ ; YŠ |XSc, ŶŠc, Ydk)

=
∑

i∈Š

I(Ŷi; YŠ |XSc , ŶKi
, ŶŠc, Ydk)

=
∑

i∈Š

I(Ŷi; Yi|XSc, ŶKi
, ŶŠc, Ydk)

≤
∑

i∈Š

I(Ŷi; Yi|Xi)

≤R̂Š ,

where we have used Š ⊆ Sc. Clearly, the lower bound on ŘŠ is lower than R̂Š .

We now consider the case in which the transmitted codewords from the nodes in

N \ Sdk can only provide information about the bin indices to facilitate decoding at

dk, and the receiver at dk treats the information representing the message indices in

XN\Sdk
as noise. Using this approach, we provide the following theorem.

Theorem 6. Let (×N
k=1Xk, p(y

N |xN),×N
k=1Ydk) be the general discrete memoryless

multimessage network, a rate tuple (R1, . . . , RN) is achievable if

RT ≤I(XT , US ; ŶŠc, Ydk |XT c , USc)− I(ŶN\Šc; YN\Šc|XSdk
, UN , ŶŠc, Ydk) + ŘŠ , (30)

for all subsets S ⊂ N , Š ⊆ Sc = N \ S and T ⊆ Sdk , where T 6= ∅; the subset

Šc = Sc \ Š and T c = Sdk \ T .

Similar to the case of Theorem 5, we note that the expression on the right hand

side of (30) can be regarded as a generalization of the rate achieved by NNC. In

particular, when RŠ satisfies the criteria in (32), the right hand side of (30) reduces

to (11), cf. Remark 9 and [9, Theorem 3]. Hence, in general, the signalling strategy

that underlies Theorem 6 offers the potential of achieving rate regions that include
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those achieved by the corresponding NNC scheme; the advantage of that signalling

strategy follows from exploiting the N -to-1 mapping as elucidated in detail in the

proof of Theorem 6 and the example in Sect. 4.1.2.

Proof. Using the same philosophy as that used in the proof of Theorem 5, the de-

coding procedure herein also features a layered framework. Details are provided in

Appendix B.3.

Next, we make three remarks.

Remark 8. When A`,s = A`,z, we have Š = A`s \ A`,z = ∅ and Šc = Sc. The result

in Theorem 6 reduces to the following simplified form:

RT ≤I(XT , US ; ŶSc, Ydk |XT c , USc)− I(ŶS ; YS |XSdk
, UN , ŶSc, Ydk). (31)

for T 6= ∅.

�

The simplified form of the achievable rate region coincides with Theorem 3 in [9].

Remark 9. The rate region described in Theorem 6 reduces to the simplified form

in (31) when ŘŠ satisfies the following condition:

ŘŠ ≥ min{I(USc\Šc ; ŶSc, Ydk |XŤ c , UŠc), I(ŶŠ; YŠ |XT c , USc , ŶŠc, Ydk)}. (32)

Proof. Detailed proof is available in Appendx B.4.

Remark 10. Theorem 6 shows that the proposed scheme achieves the same rate region

as NNC but with reduced bin indices rates. This reduction will be shown to result in

a rate advantage in Section 4.1.2.
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Proof. To expose the reduction in the rate of the bin indices, it suffices to show that

the right hand side of (32) is upper bounded by R̂Š . Towards that end, we write

I(ŶŠ ; YŠ |XT c , USc, ŶŠc, Ydk)

=
∑

i∈Š

I(Ŷi; YŠ |XT c , USc , ŶKi
, ŶŠc, Ydk)

=
∑

i∈Š

I(Ŷi; Yi|XT c , USc, ŶKi
, ŶŠc, Ydk)

≤
∑

i∈Š

I(Ŷi; Yi|Ui)

≤R̂Š ,

where we have used Š ⊆ Sc. Clearly, the lower bound on ŘŠ is lower than R̂Š .

Since the 1-to-1 mapping satisfies the condition in (32), the achievable rate region

of the simplified form in (31) can also be obtained by the use of short message encoding

with 1-to-1 mapping. This observation extends the results provided in [10] and [49]

for SNNC.

To obtain an upper bound on the maximum number of decoding layers, we recall

that the decoding procedure described in the proofs of Theorem 5 and 6 progresses

from one layer to the next depending on the outcome of a joint-typicality test. In

particular, if at a given layer i, multiple description codewords of a particular node are

found to be in the joint-typicality set, the decoding procedure excludes the codebooks

corresponding to the multiple description codewords and progresses to the next layer,

i.e., layer i+1. The decoding procedure stops once it reaches a layer with no multiple

description codewords of any node in the joint-typicality set. From this procedure,

it can be seen that the number of candidate description codebooks examined in each

layer decreases strictly from one layer to the next, which implies that the maximum

number of layers, L, is upper bounded by N − 1. Hence, the decoding delay in the
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network can be upper bounded by N−1 blocks. In block 1, each node uses a message

index and a known bin index in encoding. From block 2, each nodes encodes according

to the procedure provided in the proofs of the theorems. To end the transmission,

each node continues to encode and transmit for N − 2 blocks using a known message

index and the bin index of the description of its received signal in the previous block.

At last, we note that for the cooperative multimessage network shown in Fig. 6,

the results of using N -to-1 mapping in Theorem 5 and 6 do not yield rate gain in

comparison with their simplified forms which can also be achieved by SNNC (with

1-to-1 mapping). However, our goal is not to show the rate advantage of the N -to-1

mapping in this network, but rather to show its advantage in the network instances

considered in the next chapter.

3.4 Conclusion

In this chapter, we provided a layered forward decoding procedure that enables

exploiting the N -to-1 mapping that underlies CF relaying. This procedure relaxes the

rate constraint on the bin indices, and is subsequently able to yield a rate advantage

over CF-based schemes that use 1-to-1 mapping.



Chapter 4

Exploiting the N-to-1 Mapping in

Compress-and-Forward Relaying

In this chapter, we show that exploiting this mapping enables the relaxation of

the constraint on the rate of the relay codewords representing the bin indices. For

the cooperative multimessage network, the proposed procedure achieves the same rate

region as the short-message noisy network coding (SNNC) scheme. However, this pro-

cedure is more advantageous for other networks including the two networks presented

herein. The first network is a relay chain one with two destinations, whereas the

second network is a partially cooperative multimessage one with three destinations.

In both networks, side information is available to a subset of the decoding nodes,

but not to the rest of the nodes, and in both cases, the network benefits from the

relaxation of the rate of the CF bin indices. This relaxation results in rate regions

larger than those achieved by conventional CF and SNNC. The work in this chapter

is currently under review for the potential publication in the IEEE Transactions on

Information Theory, see [15].

53
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4.1 Introduction

Because of the N -to-1 mapping, the procedure provided in Chapter 3 enables

the relaxation of the constraint on the rate of the bin indices, which will be shown

to be beneficial in certain cases herein. In particular, we will provide hereinafter

instances in which the N -to-1 mapping yields a rate advantage. A key feature of

those instances is that side information from the source is available only to subset of

the nodes. This can be caused, for instance, when the link between the source and

the receiving node is broken. The lack of side information may induce rate loss when

the relay description is used to recover the CF bin indices. In such situations it is

more beneficial for the receiving node to recover the CF bin indices directly without

side information, which enables the node to take advantage of the relaxed constraint

on the rate of the CF bin indices. To investigate the gain of the relaxation of the rate

constraint on the CF bin indices, we consider two networks.

In the first network, a source broadcasts a common message to two destinations,

which are assisted by a chain of two cascaded relays, cf. [29]. In this chain, the first re-

lay receives signals from the source, uses the CF strategy and forwards the bin indices

of its description codewords to the second relay and the two destinations. The second

relay only receives signals from the first relay and uses the decode-and-forward (DF)

strategy to assist the destinations in recovering the bin indices transmitted by the

first relay. Since the DF relay does not have a direct link from the source, it does

not have access to side information. To assist decoding at the receiver, the DF relay

recovers the bin index transmitted by the CF relay without side information. This

implies that a lower transmission rate of the CF relay is beneficial to the DF relay

and hence a rate advantage can be observed.

In the second network, a source S sends common messages to two receivers D1 and

D2 with the assistance of a relay R. The relay R cooperates with S in the transmission
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to D1 and D2, and also sends independent messages to its own destination D3. Unlike

D1 and D2, destination D3 does not have direct link from S and hence the link

between R and D3 is a standard point-to-point one. Without the signal from S,

the cooperation between S and R is not available to D3. Therefore, the network is

only partially cooperative. Since the direct links from S to D1 and D2 provide side

information to D1 and D2, the results in Chapter 3 imply that using side information,

N -to-1 mapping and 1-to-1 can achieve the same rate for D1 and D2. In fact, the

relay transmission rate (the rate of the bin indices) can be strictly lower than the rate

of the relay description without inducing additional rate loss. However, the situation

for D3 is different. Since D3 only has a direct link from R, it does not have access

to side information. In this case the partial signal from R containing the relay bin

index can be seen as either noise or interference at D3. We will show that a lower

relay transmission rate (lower rate of the relay bin indices) by using N -to-1 mapping

is able to yield rate gains.

In the analysis of the different relay strategies in this chapter, we focus on the

comparison between SNNC and CF with the decoding procedure provided in Chap-

ter 3. We note that this does not necessarily restrict the advantage of using the new

decoding procedure over other strategies. However, detailed analysis in comparison

with those strategies is out of the scope of this thesis.

We now analyze the achievable rates of these two networks.

4.1.1 The Achievable Rate of A Broadcast Relay Chain Net-

work

We now describe the two-destination relay network shown in Fig. 7. In this

network, a source S wishes to send a common message to two destinations D1 and D2

through the transmission of X1 with the assistance of a CF relay R1 and a DF relay
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R2 in a chain. The received signals at relay R1 and R2 are denoted by Yi, i = 2, 3,

respectively, and the received signal Y3 is independent of X1. The received signals

at D1 and D2 are denoted by YDi
, i = 1 and 2, respectively.

YD1

YD2

Y2 Y3X1 X2 X3
S

R1 R2

D1

D2

Figure 7: A two-destination broadcast relay chain network.

Without R2, the network reduces to a broadcast relay channel, cf. [50]. In that

case, using N -to-1 mapping yields the same achievable rate R1 as the. However, since

Y3 is independent of X1, correct decoding at R2 imposes a constraint on the rate of

the CF bin indices.

We evaluate three relaying strategies in the analysis of the achievable rate of

this network. In all the considered strategies, node S uses the standard CF codebook

structure. The relay R2 uses the standard DF codebook structure and procedure. The

difference between these three strategies lies in the way that the relay R1 operates.

In particular, in

• Strategy 1, the decoding procedure combines DF decoding and the decoding

procedure of Theorem 5;

• Strategy 2, the decoding procedure combines DF decoding and the decoding

procedure of SNNC; and in
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• Strategy 3,the decoding procedure combines DF decoding and the decoding

procedure of conventional CF.

The detailed procedures are provided in Section 4.1.1.1.

Next, we provide the achievable rate expressions for these strategies for the discrete

memoryless case and the Gaussian case.

4.1.1.1 The discrete memoryless case

The achievable rate corresponding to the above relaying strategies for the discrete

memoryless case are provided in the following corollary.

Corollary 2. For the discrete memoryless network in Fig. 7, (X1, p(y2|x1)p(y3|x2)

p(yD1 , yD2 |x1, x2, x3),Y2 × Y3 × YD1 × YD2), the rate R1 is achievable, where

• for Strategy 1,

R1 ≤ sup min
i=1,2

min{I(X1; Ŷ2, YDi
|X2, X3), I(X1; YDi

|X2, X3)

− I(Ŷ2; Y2|X1, X2, X3, YDi
) + min{I(X2; Y3|X3), I(X2, X3; YDi

)}};
(33)

• for Strategy 2,

R1 ≤ sup min
i=1,2

min{I(X1; Ŷ2, YDi
|X2, X3),

I(X1, X2, X3; YDi
)−I(Ŷ2; Y2|X1, X2, X3, YDi

), (34)

subject to

I(Ŷ2; Y2|X2, X3) ≤ I(X2; Y3|X3);
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• for Strategy 3,

R1 ≤ sup min
i=1,2

{min{I(X1; Ŷ2, YDi
|X2, X3),

I(X1; YDi
|X2, X3)− I(Ŷ2; Y2|X1, X2, X3, YDi

)

+ min{I(X2; Y3|X3),min
i=1,2

I(X2, X3; YDi
)}}}, (35)

where the supreme is taken over the pmfs of the form

p(x1, x2, x3, y2, y3, yDS
, ŷ2) = p(x1)p(x2|x3)p(x3)

p(y2|x1)p(y3|x2)p(yD1 , yD2 |x1, x2, x3)p(ŷ2|x2, x3, y2).

�

Proof. See details in Appendix C.1.

We note that Strategies 2 and 3 can be regarded as special cases of Strategy 1.

Hence, Strategy 1 offers the potential of yielding a higher achievable rate than Strate-

gies 2 and 3. We will next show that this is actually the case when the network is

Gaussian.

4.1.1.2 The Gaussian case

Now, we compare the considered strategies for the Gaussian network depicted in

Fig. 8. The network shown in this figure, is composed of scalar channel coefficients,

independent additive Gaussian noises and Gaussian codebooks with average power

constraints. As shown in Fig. 8, the transmitted signals from nodes S, R1 and R2

are denoted by Xi ∼ N (0, Pi), where Pi is the average transmit power, i = 1, 2, 3,

respectively. The gain of the S-to-R1 and S-to-Di links are denoted by aSR and

aSDi
, i = 1, 2. The gain of the R1-to-R2 and R1-to-Di links are denoted by aRR and



59

aRDi
, i = 1, 2, respectively. The gain of the R2-to-Di link is denoted by aRSi , i = 1, 2.

The independent additive noises on the S-to-R1, and R1-to-R2 links are denoted by Z2

and Z3, respectively, and that at the receiver Di is denoted by ZDi
, i = 1, 2. All noises

are Gaussian distributed with zero mean and unit variance. Using this notation, the

received signals at R1, R2 and Di, i = 1, 2, can be expressed as

Y2 = aSRX1 + Z2,

Y3 = aRRX2 + Z3, (36)

YD1 = aSD1X1 + aRD1X2 + aRS1X3 + ZD1 ,

YD2 = aSD2X1 + aRD2X2 + aRS2X3 + ZD2 .

Denoting the description of the received signal at the R1 by Ŷ2 = Y2 + N ′, where

N ′ ∼ N (0, N ′) [21], we now define following SNRs:

γSR = a2SRP1, γRR = a2RRP2,

γSDi
= a2SDi

P1, γRDi
= a2RDi

P2

γRSi = a2RSi
P3, γ′ = N ′, i = 1, 2.

Let C(x) = 1
2
log2(1 + x) and let ρ be the correlation coefficient between X2 and
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X3, i.e., ρ = E(X2X3)√
P2P3

. Using the technique in [13], we have

I(X1; Ŷ2, YDi
|X2, X3)=C

( γSR
1 + γ′ + γSDi

)

,

I(X1; YDi
|X2, X3)=C(γSDi

),

I(X2, X3; YDi
)=C

(γRDi
+ γRSi + 2ρ

√
γRDi

γRSi

1 + γSDi

)

,

I(X1, X2, X3; YDi
)=C(γSDi

+γRDi
+γRSi+2ρ

√
γRDi

γRSi),

I(X2; Y3|X3)=C((1− ρ2)γRR),

I(Ŷ2;Y2|X1,X2,X3,YDi
)=C(1/γ′),

I(Ŷ2; Y2|X2, X3)=C
(1 + γSR

γ′

)

.

YD1

YD2

Y2 Y3X1 X2 X3

Z2

ZD1

ZD2
Z3

aSR

aSD1

aSD2

aRR

aRD1

aRD2

aRS1

aRS2

S
R1 R2

D1

D2

Figure 8: A two-destination Gaussian broadcast relay network with a relay chain,
where Z ′ is an independent additive noise and Z2, Z3, ZD1 and ZD2 ∼ N (0, 1).

Using these results in Corollary 2, we have the following proposition.

Proposition 2. For the network shown in Fig. 8, the rate R1 is achievable, where

• for Strategy 1:

R1 ≤ max
ρ,γ′

min
i=1,2

min
{

C
( γSR
1+γ′+γSDi

)

, C(γSDi
)−C

(1

γ′

)

+min
{

C
(γRDi

+ γRSi
+ 2ρ

√
γRDi

γRSi

1 + γSDi

)

, C((1− ρ2)γRR)
}}

;
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• for Strategy 2:

R1 ≤ max
ρ,γ′

min
i=1,2

min
{

C
( γSR
1 + γ′ + γSDi

)

,

C(γSDi
+γRDi

+γRSi+2ρ
√
γRDi

γRSi
)−C(1/γ′)

}

,

subject to

C
(1 + γSR

γ′

)

≤ C((1− ρ2)γRR);

• for Strategy 3:

R1 ≤ max
ρ,γ′

min
i=1,2

{

min
{

C
( γSR
1 + γ′ + γSDi

)

, C(γSDi
)− C(1/γ′)

+ min
{

C((1− ρ2)γRR),min
i=1,2

(γRDi
+ γRSi

+ 2ρ
√
γRDi

γRSi

1 + γSDi

)}}}

,

where ρ ∈ [−1, 1], γ′ ≥ 0.

0 0.5 1 1.5 2 2.5 3 3.5 4
0.5

0.55

0.6

0.65

0.7

0.75

0.8

Strategy 1

Strategy 2

Strategy 3

γRR

R
1
(b
p
cu
)

Figure 9: Achievable rates of a two-destination Gaussian broadcast relay chain
network in Fig. 8, γSR = 2, γSD1 = 1, γSD2 = 2, γRD1 = 2, γRD2 = 1, γRS1 = 2
and γRS2 = 1.

To illustrate the advantage of Strategy 1, in Fig. 9 we plot the achievable rates
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provided in Proposition 2 for the three strategies when γSR = 2, γSD1 = 1, γSD2 = 2,

γRD1 = 2, γRD2 = 1, γRS1 = 2, γRS2 = 1 and 0 ≤ γRR ≤ 4.

From Fig. 9 it can be seen that when γRR ≤ 0.7, Strategies 1 and 3 achieve

the same rate, which is higher than that achieved by Strategy 2. For γRR > 0.7,

Strategy 1 achieves a higher rate than both Strategies 2 and 3. Fig. 9 also shows that

for γRR ≤ 1.6, Strategy 3 achieves a higher rate than Strategy 2, and for γRR > 1.6,

Strategy 2 achieves a higher rate than Strategy 3. Note that if γRR is sufficiently

large, the constraint on γ′ in the achievable rate of Strategy 2 becomes inactive. In

that case, Strategies 1 and 2 yield the same rate.

4.1.2 Achievable Rate Region of A Partially Cooperative

Multimessage Network

In this section, we consider an example that belongs to a class of multimessage

network. In this class, each source node wishes to send an independent message

to its destinations with the assistance of relay nodes. Each relay node has its own

independent message and wishes to send it to its own destinations through the direct

link without the assistance of other nodes. The destinations of the relay nodes do

not have direct links from other nodes. The set of destinations of the source nodes

and the set of destinations of the relay nodes are disjoint. Each destination recovers

its intended messages without collaboration.

Fig. 10 shows an example of such network. In this example, source S wishes to

send a common message to two receivers D1 and D2, with the assistance of node

R. In addition, node R has its own independent message and wishes to send it to a

third destination, D3. Since the only link to D3 is the R-to-D3 one, node R sends

its message to D3 without being assisted by S. Hence, the network is only a partially

cooperative one.
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Figure 10: A two-message three-receiver partially cooperative network.

For the network in Fig. 10, we consider a relaying scheme in which node R facil-

itates decoding at D1 and D2 by transmitting the bin index of a description of its

received signal. Let X1 and X2 be the codewords sent by S and R, respectively. Let

Y2 and YDi
be the received signal at R and Di, i = 1, 2, 3, respectively, and let Ŷ2

be the codewords corresponding to the description of R of its received signal. We

use R1, R2, Ř2 and R̂2 to denote the rate of X1, the rate of the independent message

sent from R to D3, the rate of the relay bin indices and the rate of the description

codebook at the relay, respectively.

Without D3, the network reduces to a broadcast relay channel, cf. [50]. In that

case, Theorems 5 and 6 imply that using either the N -to-1 or the 1-to-1 mapping

yields the same achievable rate, R1. However, the presence of D3 and the fact that its

received signal, YD3 , does not contain information about X1 implies that these rates

are not necessarily identical. To explore this possibility, we consider the following

decoding strategies:

1. Use SNNC codebook structure at S and R. Use SNNC decoding procedure (The-

orem 5 with Ř2 = R̂2) at Di, i = 1, 2, 3. The corresponding achievable rate region

is denoted by R1.
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2. Use SNNC codebook structure at S and R. Only decodes desired codewords at

Di, i = 1, 2, 3, and treat the undesired signal as noise (Theorem 6 with Ř2 = R̂2).

The corresponding achievable rate region is denoted by R2.

3. Use CF codebook structure at S and R. Use the decoding procedure in Theorem 5

at D1 and D2, and directly recover the intended message from R at D3. The

corresponding achievable rate region is denoted by R3.

4. Use CF codebook structure at S and R. Use the decoding procedure in Theorem 6

at D1 and D2, and directly recover the intended message from R at D3. The

corresponding achievable rate region is denoted by R4.

Next, we provide the achievable rate expressions for these strategies for the discrete

memoryless case and the Gaussian case.

4.1.2.1 The discrete memoryless case

In the following corollary we provide expressions for the rate regions that can be

achieved by each of the above strategies in the discrete memoryless case:

Corollary 3. For the discrete memoryless network in Fig. 10,

(X1 ×X2, p(y2, yD1 , yD2 |x1, x2)p(yD3 |x2),Y2 × YD1 × YD2 × YD3),

consider fixed pmf of the form:

• for Strategy 1 and 3,

p(x1, x2, ŷ2, y2, yDS
, yD3) = p(x1)p(x2)p(ŷ2|x2, y2)p(y2, yD1 , yD2 |x1, x2)p(yD3 |x2).
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• for Strategy 2 and 4,

p(x1, x2, u, ŷ2, y2, yDS
, yD3)

= p(x1)p(x2|u)p(u)p(ŷ2|u, y2)p(y2, yD1 , yD2|x1, x2)p(yD3|x2).

Using Strategy 1, the rate pair (R1, R2) is achievable, where

R1 +R2 ≤ min
i=1,2

{I(X1, X2; YDi
)− I(Ŷ2; Y2|X1, X2, YDi

)}, (40a)

R1 ≤ min
i=1,2

I(X1; Ŷ2, YDi
|X2), (40b)

R1 +R2 ≤ I(X2; YD3
)− I(Ŷ2; Y2|X1, X2, YD3

). (40c)

Using Strategy 2, the rate pair (R1, R2) is achievable, where

R1≤min
i=1,2

{I(X1, U2; YDi
)− I(Ŷ2; Y2|X1, U2, YDi

)}, (41a)

R1 ≤ min
i=1,2

I(X1; Ŷ2, YDi
|U2), (41b)

R2 ≤ min{I(X2; YD3
|U), I(X2; YD3

)− I(Ŷ2; Y2|U2, YD3
)}. (41c)

Using Strategy 3, the rate pair (R1, R2) is achievable, if the sum rate and R1

satisfy (40a) and (40b), respectively, and the following constraints on R1 and R2 are

satisfied:

R1 ≤ I(X1; YDi
|X2)− I(Ŷ2; Y2|X1, X2, YDi

) + Ř2, (42a)

R2 ≤ I(X2; YD3)− Ř2. (42b)

Using Strategy 4, the rate pair (R1, R2) is achievable, if R1 satisfies (41a)
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and (41b), and the following constraints on R1 and R2 are satisfied:

R1 ≤ I(X1; YDi
|U2)− I(Ŷ2; Y2|X1, U2, YDi

) + Ř2, (43a)

R2 ≤ min{I(X2; YD3 |U2), I(X2; YD3)− Ř2}. (43b)

�

Next, we will particularize the network in Fig. 10 to the Gaussian case.

4.1.2.2 The Gaussian case

Now we consider the case that each link in Fig. 10 is an additive white Gaussian

channel with i.i.d. zero mean unit variance Gaussian noises Z2 at R, and ZDi
and at

Di, i = 1, 2, 3, respectively. Nodes S and R are assumed to use Gaussian codebooks

with average transmit power constraints. This case is shown in Fig. 11. For con-

structing the codebook of node R in Strategies 2 and 4, we use α0 ∈ [0, 1] to represent

the fraction of power that R allocates to transmit the bin index and α1 = 1 − α0 to

represent the fraction of power that R allocates to transmit its own message index.

The SNRs of the S-to-R, S-to-Di and R-to-Di links are denoted by γSR, γSDi
and γRDi

,

i = 1, 2, 3, respectively. The variance of the additional noise in the relay description of

its received signal is denoted by γ′ [21]. Using these notations and a technique similar

to the one in [13], Corollary 3 can be readily used to obtain expressions for achievable

rates on this network. These expressions are recorded in the following proposition.

Proposition 3. For the Gaussian network shown in Fig. 11, the rate pair (R1, R2)

is achievable, where for
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Figure 11: Gaussian particularization of the network in Fig. 10.

• Strategy 1:

R1 +R2 ≤ min
i=1,2

C(γSDi
+ γRDi

)− C(1/γ′), (44a)

R1 ≤ min
i=1,2

C( γSR
1 + γ′ + γSDi

), (44b)

R1 +R2 ≤ C(γRD3
)− C(1/γ′); (44c)

• Strategy 2:

R1 ≤ min
i=1,2

C
( γSDi

+ α0γRDi

1 + (1− α0)γRDi

)

− C(1/γ′), (45a)

R1 ≤ C
( γSR
1 + γ′ +

γSDi

1 + (1− α0)γRDi

)

, (45b)

R2 ≤ min
{

C
(

(1−α0)γRD3

)

, C(γRD3)−C
(1+γSR

γ′

)}

; (45c)
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• Strategy 3:

R1, R2 satisfy (44a) and (44b), (46a)

R1 ≤ min
i=1,2

C(γSDi
)− C(1/γ′) + Ř2, (46b)

R2 ≤ C(γRD3)− Ř2, (46c)

Ř2 ≤ C
(1 + γSR

γ′

)

; (46d)

• Strategy 4:

R1, R2 satisfy (45a), (45b) and (46d), (47a)

R1 ≤ min
i=1,2

C
( γSDi

1 + (1− α0)γRDi

)

− C(1/γ′) + Ř2, (47b)

R2 ≤ min
{

C
(

(1− α0)γRD3

)

, C
(

γRD3

)

− Ř2

}

; (47c)

where α0 ∈ [0, 1].

We now compare the rate expressions of Strategies 1 and 3. From Remark 6,

constraint (46b) on R1 in Strategy 3 coincides with (44b) in Strategy 1 when Ř2 =

maxi=1,2 C
(

1
γ′ +

γSR
γ′(1+γSDi

)

)

. Without loss of generality, assume γSD1 ≤ γSD2 . Then

let Ř2 = C
(

1
γ′ +

γSR
γ′(1+γSD1

)

)

and the constraint on R1 from the decoding at D1 is

tighter than that at D2 in both strategies according to (44b). In this case, from (46b)

and (46c), the constraint on the sum rate from the decoding at D1 and D3 is tighter

than that at D2 and D3 in Strategy 3. It can be seen that the sum rate constraint

from (46b) and (46c) in Strategy 3, C(γSD1)+C(γRD3)−C(1/γ′), is more relaxed than

that in (44c) in Strategy 1. Note that (44a) is a common sum rate constraint in both

strategies. Hence the sum rate constraint in Strategy 3 is more relaxed than that
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in Strategy 1 in general. This implies that in general, when (46c) is satisfied, the

constraint on R2 in Strategy 3 is more relaxed than that in Strategy 1 for the same

constraint on R1 between the two strategies, which yields R1 ⊆ R3.

To compare the rate expressions of Strategies 2 and 4, it can be shown that

from Remark 9, constraint (47b) reduces to (45a) when setting Ř2 = maxi=1,2 C
(

1
γ′ +

γSR(1+(1−α0)γRDi
)

γ′(1+(1−α0)γRDi
+γSDi

)

)

≤ C( 1
γ′ +

γSR
γ′ ). Using this in (47c) implies that Strategy 4 yields

a more relaxed constraint on R2 in comparison with the constraint in (45c) for Strat-

egy 2. Hence, we have R2 ⊆ R4.

Fig. 12 provides the achievable rate regions of each strategy for an SNR instance

in which γSR = 2, γSD1 = 1, γRD1 = 4, γSD2 = 2, γRD2 = 1, γRD3 = 1. For this

instance, it can be seen from Fig. 12 that R1 ⊂ R2 ⊂ R4 ⊂ R3. Strategy 1 in

which D1 and D2 treat undesired signal from R as interference, in comparison with

Strategy 2 in which D1 and D2 treat undesired signal from R as noise, yields smaller

achievable rate region. Interestingly, the same decoding does not induce rate loss in

Strategy 3 in comparison with Strategy 4. Under this SNR condition, it is beneficial

to use Strategy 3 which yields a larger achievable rate region.

4.2 Conclusion

In this chapter, we illustrate the advantage of the procedure provided in Chapter 3.

We considered two networks, a two-destination broadcast relay chain network and a

partially cooperative multimessage network. In both networks, side information is

only available to a subset of the receiving nodes, but not to the rest of the receiving

nodes. Our findings are confirmed by numerical evaluation of Gaussian instances of

these networks.
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Figure 12: Rate region for the network in Figure 11 (γSR = 2, γSD1 = 1, γRD1 = 4,
γSD2 = 2, γRD2 = 1, γRD3 = 1).



Chapter 5

Military Application of the Advanced

Relaying Strategy

In this chapter, we study a friendly eavesdropper who assists communication in

a broadcast scenario in which one transmitter wishes to send a common message to

two receivers in the presence of a malicious jammer. The jammer attempts to disrupt

communication by transmitting a high power Gaussian signal, whereas the friendly

eavesdropper ‘hears’ the jammer’s transmission and sends an assisting signal to the

destinations over an orthogonal channel in order to help them alleviate the jammer’s

impact. We derive an expression for capacity, i.e., the maximum data rate that can

be reliably communicated from the transmitter to the receivers, and we show that it is

optimal for the friendly eavesdropper to send a Gaussian description of the jamming

signal with the help of a scheme based on a modified compress-and-forward relaying

that uses the decoding procedure provided in the proof of Thereom 5. The work in

this chapter is to be presented in the IEEE Information Theory Workshop in Jeju,

Korea, November, 2015, see [16].

71
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5.1 Introduction

In various military applications a transmitter may wish to send a common message

to multiple receivers in the presence of an antagonistic jammer. This situation arises,

for instance in the scenario illustrated in Figure 13 when an unmanned drone wishes

to send a description of the battlefield to ground troops, and the adversary attempts

to disrupt communication. The impact of the jammer can be partially alleviated by

an ally agent in the geographic proximity of the jammer which acts as a friendly

eavesdropper that ‘hears’ the jammer’s signal and sends a description thereof to mul-

tiple receivers over an orthogonal channel. Neither the optimal signalling strategy of

the eavesdropper nor a quantification of its utility is available, and the focus of this

chapter is to investigate these aspects.

Figure 13: An illustration of the considered communication system.

The impact of jamming has been considered in various communication scenarios.

For instance, cases in which the jammer sends a correlated version of the transmit-

ter’s signal were considered in [51] from a mean-squared error perspective and in [52]

from a capacity perspective. The case in which the jammer’s signal are not correlated

with the transmitter’s signal was considered in [53]. It was shown therein that under
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individual average power constraints the transmitter signal that enables the highest

data rate to be communicated is Gaussian distributed and the jammer’s signal that

minimizes the communicated rate is also Gaussian distributed. Applications of Gaus-

sian jamming and counter jamming were studied in [54–56]. For instance, service

disruption due to the injection of malicious signals into an all-optical-network was

considered in [54], whereas the effect of multiple antenna jamming and the potential

of counter jamming in multi-carrier direct-sequence spread-spectrum systems were

considered in [55] and [56], respectively. Other instances of communication scenarios

in the presence of jamming can be found in [57–59].

In this chapter, we consider the situation in which a friendly eavesdropper assists

communication in a broadcast scenario [60]. In this scenario one transmitter wishes

to send a common message to two receivers in the presence of a malicious jammer

that sends a zero mean Gaussian signal; the jammer and the transmitter’s signals are

uncorrelated. The received power of the jammer’s signal is much higher than that

of the receivers’ background noises, which are therefore assumed to be negligible, see

e.g., [56]. A friendly eavesdropper is able to pick the jammer’s signal and attempts to

assist the receivers by sending a description of the jammer’s signal on an orthogonal

channel. The channel between the eavesdropper and the receivers can be modelled

as another Gaussian broadcast one. In fact, it is the noises on the links between the

eavesdropper and the receivers that render rate-efficient communication challenging;

without these noises the eavesdropper can simply forward its observation to the re-

ceivers in order to eliminate the jammer’s signal. The eavesdropper has a maximum

power budget which induces a constraint on its maximum transmission rate. The

structure of the jammer’s signal is unknown to the eavesdropper and the receivers.

To ensure causality, the eavesdropper’s transmitted signal lags its received signal

by one block. This implies that the jammer’s, and subsequently the receivers’ signals,

are statistically independent of the eavesdropper transmitted signal. To analyze the
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maximum data rate that can be communicated between the transmitter and the

receivers, we conceive the role of the friendly eavesdropper as that of a standard

relay, but with the exception that the relay (eavesdropper) in this case has no access

to the transmitter’s signal. Hence, the channel between the transmitter and the

receivers resembles a broadcast relay channel with strictly causal side information at

the relay, but with the key difference with this broadcast scenario [61] being that

the eavesdropper does not have access to the transmitter’s codebooks, and the key

difference with relaying schemes with strictly causal side information being that these

schemes do not consider a broadcasting scenario [62]. A counterpart of the scenario

considered herein is the one in [63]. Therein the eavesdropper was malicious and a

friendly jammer (relay) forwarded noise to the eavesdropper to confuse it.

To derive an expression for the capacity of the channel considered herein, we begin

by deriving an expression for the corresponding cut-set upper bound [18]. We then

show that this bound can be achieved by a signalling strategy in which the friendly

eavesdropper uses a scheme based on compress-and-forward (CF) [2] to send a descrip-

tion of the Gaussian jamming signal to the receivers. To decode the eavesdropper’s

signal and to subsequently use it to alleviate the effect of jamming, the receivers use

the decoding procedure provided in the proof of Thereom 5 (also cf. [38]) rather than

the standard CF one.

It is worth noting that although other relaying techniques might be able to achieve

the capacity of the channel considered herein, neither amplify-and-forward [21] nor

decode-and-forward [2] does: amplify-and-forward yields a strictly lower rate, as will

be shown below, and decode-and-forward can be readily excluded because the jammer

does not cooperate with the eavesdropper.
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5.2 Channel Model

Consider the channel model depicted in Figure 14. In this figure, the transmitter

sends a common signal to two receivers that cannot collaborate. A malicious jammer

attempts to disrupt communication by sending an independent Gaussian signal. The

jammer’s signal is ‘heard’ by a friendly eavesdropper, which attempts to assist the

receivers by sending a description of the jammer’s signal over an orthogonal channel.

Let the signal sent by the transmitter be denoted by X and let the signal sent by

the eavesdropper on an orthogonal channel be denoted by Xe. The jamming signal is

denoted by J ∼ N (0, PJ). The jammer-eavesdropper channel gain is normalized to

1, the transmitter-receiver i channel gain is denoted by ai and the jammer-receiver i

channel gain is denoted by bi, i = 1, 2. The received signal of the eavesdropper

is denoted by Ye. Each receiver i, receives two orthogonal signals: one from the

transmitter contaminated by the jammer’s signal, which is denoted by Yi, and one

from the friendly eavesdropper contaminated by additive Gaussian noise, which is

denoted by Ys,i, i = 1, 2. We denote the additive Gaussian noise component of Ys,i

by Zi ∼ N (0, Ni), i = 1, 2. The friendly eavesdropper transmits its signal at a rate

Re ≤ supp(xe)maxi=1,2 I(Xe; Ys,i). Using this notation, the received signals at the

eavesdropper and receiver i, i = 1, 2, can be expressed as

Ye = J,

Y1 = a1X + b1J, Y2 = a2X + b2J,

Ys,1 = Xe + Z1, Ys,2 = Xe + Z2.

(48)

The average power of the jammer’s Gaussian signal is given by E(J2) = PJ , whereas

the transmitter and the friendly eavesdropper each is subject to its individual average
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transmit power constraint, E(X2) ≤ P , and E(X2
e ) ≤ Pe, respectively. In the next

Transmitter

Receiver 1

Receiver 2

Jammer Friendly
Eavesdropper

Y1

Y2

Ys,1

Ys,2

YeX J Xe

Z1 ∼ N (0, N1)

Z2 ∼ N (0, N2)

a1

a2

b1

b2

1 Re

Figure 14: A broadcast channel in the presence of a Gaussian jammer with a friendly
eavesdropper, J ∼ N (0, PJ).

section, we will show that a modified CF scheme that uses the decoding procedure

provided in the proof of Thereom 5 can be used to achieve the capacity of the channel

in Figure 14.

5.3 Capacity Results

Let the maximum signal-to-jamming power ratio (SJR) of the transmitter-

receiver i channel be denoted by γi =
a2iP

b2
i
PJ
, i = 1, 2, and let the maximum SNR

of the eavesdropper-receiver i channel be denoted by γe,i = Pe

Ni
, i = 1, 2. Let

C(x) , 1
2
log2(1 + x). Our main result is recorded in the following theorem.

Theorem 7. The capacity of the channel in Figure 14 can be achieved when the

eavesdropper sends a Gaussian description of the jammer’s signal at a rate Re =
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max{C(γe,1), C(γe,2)}. This capacity is given by

C = min
{

C(γ1) + C(γe,1), C(γ2)+ C(γe,2)
}

. (49)

Proof. To prove the converse, we first show that choosing X and Xe to be Gaussian-

distributed with average powers P and Pe, respectively, maximizes the cut-set upper

bound [41, Sect. 18.1].

To complete the proof of the theorem, we show that the cut-set upper bound can be

achieved when the eavesdropper uses a strategy that resembles standard CF relaying,

but with the decoding procedure provided in the proof of Thereom 5. In particular,

the eavesdropper uses two Gaussian codebooks Ŷe and Xe with the powers and rates

described in Appendix D.1. Upon receiving the jammer’s signal, the eavesdropper

finds a codeword in Ŷe that is jointly typical with it. The eavesdropper uses Wyner-

Ziv binning [8] to determine the codeword to be transmitted in the next block from

Xe. Instead of using standard CF decoding, the receivers use the decoding procedure

provided in the proof of Thereom 5 (cf. [38]) to recover the eavesdropper’s message. In

the decoding procedure, each receiver uses its knowledge of the codebooks Ŷe and X as

side information to recover the message from the eavesdropper and subsequently the

message from the transmitter. (In standard CF Ŷe and X are not used in recovering

the message from the eavesdropper.)

Detailed proof is provided below.

Proof of Converse: Using the cut-set bound, the rate, R, of the common

message to both receivers can be upper bounded by

R ≤ min
i=1,2

I(X,Xe; Yi, Ys,i). (50)
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From (50), it follows that, for i = 1, 2,

R ≤I(X,Xe; Yi, Ys,i)

=h(Yi, Ys,i)− h(Yi, Ys,i|X,Xe)

=h(aiX + J,Xe + Zi)− h(J, Zi).

Since J and Zi are independent, and X and Xe are independent of J and Zi, choosing

X and Xe to be independent maximizes h(aiX + J,Xe + Zi), and hence maximizes

I(X,Xe; Yi, Ys,i). The independence of (X, Yi) and (Xe, Ys,i) implies that

R ≤ I(X ; Yi) + I(Xe; Ys,i), i = 1, 2. (51)

Since Ys,i and Yi are received on orthogonal channels, and X and Xe must satisfy

their respective average power constraints, it can be readily seen that choosing X

and Xe to be independent Gaussian random variables maximizes the right hand side

of (51), whence R ≤ C(γi) + C(γe,i).

Proof of Achievability: The proof of achievability resembles that of Theorem 5

in Section. 3.3. See detailed proof in Appendix D.1.

It is worth noting that in proving Theorem 7 we assumed that both receivers use

the same decoding procedure. However, the statement of the theorem holds if the

receiver with less noise power on the eavesdropper link uses standard CF decoding to

recover the eavesdropper’s message; standard CF decoding is more straightforward.

In contrast to CF, NNC and SNNC, hash-and-forward (HF) [31] is a relaying

scheme in which the relay partitions the received sequences, rather than the descrip-

tion thereof, into non-overlapping bins and transmits the bin index (hash index) to
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the receiver to assist decoding. We note that similar to Wyner-Ziv binning, hashing

results in N -to-1 mapping. It has been shown in [31] and [45] that HF and conven-

tional CF are capacity achieving for a class of deterministic relay channels. In that

class, the relay received signal is a function of the source transmitted signal and the

received signal at the destination, and the relay-to-destination link is a noiseless link

with capacity R0. It can be shown that HF can also achieve the capacity of the net-

work considered herein. However, HF requires that the relay has the knowledge of its

all possible channel output sequences in order to construct random hashing (binning),

which makes it unsuitable in dealing with the jamming channel since the jammer’s

signal is not known.

So far, we have shown that the capacity of the channel described in Section 5.2

can be achieved when the eavesdropper sends a Gaussian description of the jammer’s

signal at a rate Re = max{C(γe,1), C(γe,2)}. Since this rate is higher than the capacity

of the link between the eavesdropper and the receiver with the higher noise, this

receiver will not be able to recover the eavesdropper message if it uses standard CF

decoding [62], but will be able to recover it if it uses the decoding procedure provided

in the proof of Thereom 5 which incorporates X .

5.4 Comparison with Other Eavesdropping Sig-

nalling Schemes

We now compare the rates that can be achieved in the absence of the friendly

eavesdropper, and when this eavesdropper uses either CF with standard decoding or

AF relaying.
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5.4.1 No Eavesdropper Case

In the absence of the eavesdropper, the channel capacity can be readily seen to be

CNo Eavesdropper = min
i=1,2

C(γi). (52)

Hence, using ∆ , |C(γ1)−C(γ2)|, the rate gain provided by the friendly eavesdropper

can be expressed as

min
{

∆+ C(γe,1), C(γe,2)
}

, γ1 ≥ γ2,

min
{

C(γe,1),∆+ C(γe,2)
}

, γ1 < γ2.

�

It is of interest to note that when the transmitter (the drone) is sufficiently far from

the receivers (ground troops), ∆ ≈ 0 and the advantage of having the eavesdropper is

approximately min
{

C(γe,1), C(γe,2)
}

. This is in contrast with the eavesdropper rate,

which is given by max
{

C(γe,1), C(γe,2)
}

.

5.4.2 CF With Standard Decoding Case

Using standard CF decoding [62] at both receivers to recover the eavesdropper’s

message without using Ŷe and X induces a constraint on the eavesdropper’s transmis-

sion rate, Re. In particular, Re ≤ mini=1,2 I(Xe; Ys,i). Using the standard approach,

it can be verified that CF with Gaussian codebooks and standard decoding achieves

the following rate:

RCF ≤ min
i=1,2

C(γi) + min
i=1,2

C(γe,i), (53)

which is generally less than capacity, cf. Section 5.5.
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5.4.3 Amplify-and-Forward Case

When the eavesdropper uses non-regenerative AF relaying, the optimal receivers’

strategy can be readily seen to be using the signal received from the eavesdropper to

partially cancel the jamming signal. The maximum rate that can be achieved by this

scheme is given by

RAF = min
i=1,2

{C
(

γi(1 + γe,i)
)

}. (54)

Proof. See details in Appendix D.2.

We observe that, although the eavesdropper receives a noiseless version of the

jamming signal, the rate achieved by this scheme is strictly below capacity.

5.5 Numerical Comparison

To illustrate the advantage of CF with the decoding procedure provided in the

proof of Thereom 5, in Figure 15 we compare the rates achieved by the schemes

outlined in Section 5.4 with the capacity expression provided in Theorem 7. In

particular, the capacity expression (49) is compared with: 1) the capacity of the

broadcast channel in the absence of the friendly eavesdropper, cf. (52); 2) the rate

achieved when the eavesdropper uses CF, but the receivers use standard decoders

to recover the eavesdropper message, cf. (53); and 3) the rate achieved when the

eavesdropper uses AF, cf. (54). We consider instances in which the SJR of receiver 1,

γ1, varies from 0 to 4.5 and the SJR of receiver 2 is γ2 = 4, and the SNRs of the

eavesdropper to the receivers channels are γe,1 = 3 and γe,2 = 2. From this figure, it

can be seen that the achievable rate of CF with standard decoding is strictly below

capacity in the high jamming regime, e.g., when γ1 < 4. When the jamming signal

power is relatively low, e.g., when γ1 ≥ 4, CF with standard decoding also achieves

capacity. In contrast, the rate achieved by AF is strictly below capacity. The gap
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between the rate achieved when the eavesdropper uses AF and when it uses CF with

the decoding procedure provided in the proof of Thereom 5 (capacity) is reduced as γ1

increases from 0 to 3. For γ1 ≥ 3, this gap is constant and strictly greater than zero.

Without the friendly eavesdropper, the capacity is strictly below the rate achieved

when the eavesdropper uses CF with either standard decoding or the one provided in

the proof of Thereom 5.
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Figure 15: Comparison between capacity (Theorem 7) and the rates achievable
using the schemes in Section 5.4, for γ2 = 4, γe,1 = 3, γe,2 = 2.

5.6 Conclusion

We considered a two-receiver broadcast channel with a Gaussian jammer and

a friendly eavesdropper. The friendly eavesdropper ‘hears’ the jamming signal and

sends a description thereof to the receivers to help them to reduce the jammer’s

impact. We showed that the capacity of this channel can be achieved when the

eavesdropper uses CF relaying with Gaussian codebooks and the receivers use the

decoding procedure provided in the proof of Thereom 5to recover the eavesdropper’s
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message. Our results are confirmed by analytical and numerical comparisons.



Chapter 6

Conclusions and Future Work

6.1 Conclusions and Contributions

The work described in this thesis has been concerned with the signaling structures

and procedures of various relaying schemes to achieve higher rate in relay channels

and relay networks. In this final chapter, we will conclude by describing the progress

made towards this goal. We will also suggest some future research directions that

could provide next steps along the path to achieve higher rate in the relay channels.

The conclusions and contributions of this thesis can be summarized as follows:

• We showed that when γ0(1+ γ2) < γ1, generalized DF-CF with Gaussian code-

books reduces to the underlying DF; when γ1 ≤ γ0, generalized DF-CF reduces

to the underlying CF.

• We proved that there exist SNR regions in which the generalized DF-CF scheme

is guaranteed to yield higher achievable rates than the underlying DF and CF

schemes; however, the rate advantage of generalized DF-CF is within 0.5 bpcu.

• In light of the generalization of DF and CF, we showed that switching between

DF and CF is able to achieve higher rates than both fixed DF and CF.

84
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• We proposed a new decoding procedure for CF and showed that using this

procedure, the rate constraint on the bin indices can be relaxed, and it is able

to achieve the same rate as NNC and SNNC in the multimessage network.

• We demonstrated the rate advantage of the proposed decoding procedure in

a broadcast relay chain network and a partial cooperative network when side

information is available to only a subset of the receiving nodes in the networks.

• We introduced a “friendly” eavesdropper in the military communication net-

work in the presence of a malicious jammer and studied the maximum reliable

communication rate of this network. We provided the cut-set bound of this net-

work and showed that it can be achieved using CF with the proposed decoding

procedure.

6.2 Future Work

The results presented in this thesis have demonstrated the rate advantage of several

CF related relaying schemes, namely, the generalization of DF and CF [2, Theorem 7],

and the proposed decoding procedure for CF. The investigation of the CF related

relaying schemes can be extended in a number of ways:

• In the multimessage network considered in Chapter 3, the proofs of the achiev-

ability of Theorems 5 and 6 adopt a network coding philosophy whereby each

node encodes its own message and the description of its received signal, which

mirrors the one used in [9]. However, for the case that all codebooks, including

the description codebooks of all the nodes, are exposed to each node in the

network, certain improvement would merit further investigation.

It can be shown that the recovery of other nodes’ description codewords of the

received signals does not induce rate loss at the decoding node. Using this
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observation, the decoding node can provide auxiliary information of the other

nodes’ description and send it into the network. We conjecture that there may

exit conditions under which some other destinations will be able to benefit from

such auxiliary information.

• In Chapter 5, we introduced a “friendly eavesdropper” to a communication

network in the presence of a malicious jammer. There is a plethora of possible

areas in which the schemes to achieve higher rate is of great interest for further

investigation. Two immediate cases are provided below.

– Case 1: A “friendly” eavesdropper in the vicinity of the source is able

to decode the source message and provide a description of the jammer’s

signal to the receiver. In this case, it might be beneficial to explore such

a cooperative strategy that the eavesdropper cooperates with the source

using DF and describes the jammer’s signal using CF. The eavesdropper

may superimpose the CF codeword on the DF codeword. Hence, the eaves-

dropper is able to both assist and facilitate the decoding at the receivers.

The codebook structure and the procedure are, to some extent, similar to

the generalized DF-CF in [2, Theorem 7], which is analyzed in Chapter 2

in this thesis. In contrast to that generalization, here the signal from the

source and the signal from the jammer are not superimposed. We ex-

pect that a decoding procedure at the receivers that on one hand exploits

the assistance of the DF strategy provided by the eavesdropper and on

the other hand alleviates the impact of the jammer’s signal using the CF

strategy provided by the eavesdropper will be able to take advantage of

the presence of the eavesdropper.

– Case 2: A “friendly” eavesdropper, in the vicinity of the jammer, picks

the jammer’s signal and embeds the bin index of the description of the
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jammer’s signal in a host content and transmits it. This resembles, to some

extent, watermarking. The use of such watermarking in the relay broadcast

channel can be used as a practical provision to provide information security

to the eavesdropper’s signal. To analyze the optimal signaling strategy for

the eavesdropper in this case, the host content can be modeled as non-

causal channel state information available at the encoder (eavesdropper).

In this case, integrating the decoding procedure proposed in Chapter 3

into the framework of relay on dirty-paper may be optimal under certain

conditions.

6.3 Thesis Summary

In this thesis, we investigated generalized DF-CF in the standard three-node relay

channel in Gaussian settings in Chapter 2. We showed that in various SNR regions,

this generalization reduces to its underlying individual DF and CF. It was proved that

there exists SNR regions in which this generalization is guaranteed to yield higher rate

than both DF and CF. However, such gain is within 0.5 bpcu. In our investigation

of the CF-based relaying schemes in Chapter 3, we proposed a decoding procedure

that uses N -to-1 mapping instead of 1-to-1 mapping and showed that it allows CF

to relax the rate constraint on the bin indices. The rate advantage of exploiting the

N -to-1 mapping is shown in two network examples in Chapter 4. In Chapter 5, we

introduced a “friendly” eavesdropper in a broadcast relay channel in the presence of

a Gaussian jammer. We showed that the proposed procedure is capacity achieving

for that channel. We believe that the work done in this thesis can be extended in

various ways.
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A.1 Proof of Proposition 1

To prove the proposition, we use the standard definitions for entropy and mutual

information (cf. [18]) and use (1) and (5).

Note that the left hand side of (3b) yields

I(Ŷ1; Y1|Y,X2, U)

= h(Ŷ1|Y,X2, U)− h(Ŷ1|Y1, Y,X2, U)

= h(Y1 + Z1 + Z ′|X1 + bX2 + Z,X2, U)− h(Y1 + Z1 + Z ′|X1 + bX2 + Z,X2, U, Y1)

= h(aX12 + Z1 + Z ′|X12 + Z)− h(Z ′)

=
1

2
log2

(

α2a
2PX1 +N +N ′ − α2

2a
2P 2

X1

α2PX1 +N

)

− 1

2
log2N

′

=
1

2
log2

(

1 +
1

γ′ +
α2γ1

γ′(1 + α2γ0)

)

. (55)

The right hand side of (3b) yields

I(X2; Y |V )

= h(Y |V )− h(Y |X2, V )

= h(X1 + bX2 + Z|V )− h(X1 + bX2 + Z|X2, V )

= h(X11 +X12 + bβ1X21 + Z)− h(X11 +X12 + Z)

=
1

2
log2

(α1 + α2)PX1 + β1b
2PX2 +N

(α1 + α2)PX1 +N

=
1

2
log2

(

1 +
β1γ2

1 + (α1 + α2)γ0

)

. (56)

Substituting (55) and (56) into (3b),we have

1

γ′ +
α2γ1

γ′(1 + α2γ0)
≤ β1γ2

1 + (α1 + α2)γ0
,



90

which, after simplification, yields (6b).

From the first term inside the minimization of(3a) we have

R1 = I(X1; Y, Ŷ1|X2, U) + I(U ; Y1|X2, V )

= h(Y, Ŷ1|X2, U)− h(Y, Ŷ1|Y,X2, U)

= h(X1 + bX2 + Z, aX1 + Z1 + Z ′|X2, U)

− h(X1 + bX2 + Z, aX1 + Z1 + Z ′|X1, X2, U)

+ h(aX1 + Z1|X2, V )− h(aX1 + Z1|X2, U, V )

= h(X12 + Z, aX12 + Z1 + Z ′)− h(Z,Z1 + Z ′)

+ h(a(X11 +X12) + Z1)− h(aX12 + Z1)

=
1

2
log2

((α2P
2
X1

+N)(a2α2P
2
X1

+N +N ′)− a2α2
2P

4
X1

N(N +N ′)

· a
2(α1 + α2)P

2
X1

+N

a2α2P
2
X1

+N

)

=
1

2
log2

(

(

1 +
α2P

2
X1

N
+

a2α2P
2
X1

N +N ′

)(

1 +
a2α1P

2
X1

a2α2P
2
X1

+N

)

)

=
1

2
log2

(

(

1 + α2γ0 +
α2γ1
1 + γ′

)(

1 +
α1γ0

1 + α2γ0

)

)

,

which yields (6c).
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From the second term inside the minimization of(3a) we have

R1 = I(X1, X2; Y )− I(Ŷ1; Y1|X2, X1, U, Y )

= h(Y )− h(Y |X1, X2)− h(Ŷ1|X2, X1, U, Y ) + h(Ŷ1|Y1, X2, X1, U, Y )

= h(X1 + bX2 + Z)− h(Z)

− h(aX1 + Z1 + Z ′|X1, X2, U, Y ) + h(aX1 + Z1 + Z ′|X1, X2, U, Y, Y1)

= h(X1 + bX2 + Z)− h(Z)− h(Z1 + Z ′) + h(Z ′)

=
1

2
log2

(a2PX1 + b2PX2 + 2
√

b2α0PX1β0PX2 +N

N

)

− 1

2
log2

(N +N ′

N ′

)

=
1

2
log2(1 + γ0 + γ2 + 2

√

α0β0γ0γ2)−
1

2
log2

(

1 +
1

γ′

)

,

which yields (6d).

Constraint (6e) and (6f) follow from the definition of αi and βj for i = 0, 1, 2 and

j = 0, 1, respectively.

A.2 Proof of the achievable rate expressions of DF

and CF in the Gaussian channel

The achievable of the DF relaying scheme (cf. [2, Theorem 1]) by

RDF ≤ sup{min{I(X1; Y1|X2), I(X1, X2; Y )}}.
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Using (1), (2) and
√
ρ0 = E{X1X2}, ρ0 + ρ1 = 1, we have

I(X1; Y1|X2) = h(Y1|X2)− h(Y1|X1, X2)

= h(a
√
ρ1X1 + Z1)− h(Z1)

=
1

2
log2(1 + ρ1γ1)

= C(ρ1γ1). (57)

I(X1, X2; Y ) = h(Y )− h(Y |X1, X2)

= h(X1 + bX2 + Z)− h(Z)

=
1

2
log2(1 + γ0 + γ2 + 2

√
ρ0γ0γ2)

= C(γ0 + γ2 + 2
√
ρ0γ0γ2). (58)

Using (57) and (58), we have

RDF ≤ max
ρ1

min{C(ρ1γ1), C(γ0 + γ2 + 2
√
ρ0γ0γ2)}

This completes the proof for DF.

The achievable rate expression of the CF scheme in [41] is given by

RCF ≤ supmin{I(X1; Ŷ1, Y |X2), I(X1, X2; Y )− I(Ŷ1; Y1|X1, X2, Y )}.
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Using (1), (2), Ŷ1 = Y1 +X2 + Z1 + Z ′, where Z ′ ∼ N (0, N ′), and γ′ = N ′

N
, we have

I(X1; Ŷ1, Y |X2)

= h(Ŷ1, Y |X2)− h(Ŷ1, Y |X1, X2)

= h(aX1 + Z1 + Z ′, X1 + bX2 + Z)− h(Z1 + Z ′, Z)

=
1

2
log2(1 + γ0 +

γ1
1 + γ′ )

= C
(

γ0 +
γ1

1 + γ′

)

. (59)

I(X1, X2; Y |)− I(I(Ŷ1; Y1|X1, X2, Y )

= h(Y )− h(Y |X1, X2)− h(I(Ŷ1|X1, X2, Y ) + h((I(Ŷ1; Y1|Y1, X1, X2, Y ))

=
1

2
log2(1 + γ0 + γ2)−

1

2
log2(1 + 1/γ′)

= C(γ0 + γ2)− C(1/γ′). (60)

Using (59) and (60), we have

RCF ≤ max
γ′

min{C(γ0 +
γ1

1 + γ′ ), C(γ0 + γ2)− C(1/γ′)}

Since the two terms inside the minimization are monotonically increasing and de-

creasing, respectively, over γ′, equalizing the two terms yields that the optimal value

of γ′ is given by

γ′∗
CF =

1 + γ0 + γ1
γ2

and

R′∗
CF = C

(

γ0 +
γ1γ2

1 + γ0 + γ1 + γ2

)

.

This completes the proof for CF.
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A.3 Proof of Theorem 1

To prove Theorem 1, we consider the equality in (8c). It can be seen from Lemma 1

that, because γ1 > γ0(1 + γ2), the coefficient of λ1 in this equality and the coefficient

of λ3 are strictly positive. There are two distinct possibilities, namely, λ1 = 0 and

λ1 > 0.

Case 1 (λ1 = 0). In this case, invoking (8a) yields λ2 = 1. Substituting λ1 = 0 and

λ2 = 1 in (8e) yields

1 + γ0 + γ2 + 2
√
α0β0γ0γ2

(1 + γ′)2
= −λ3

γ2(1− β0)

1 + γ0(1− α0)
. (61)

This equality is satisfied if and only if both sides of this equation are zero. Hence, γ′

must be infinite and λ3 = 0 or β0 = 1.

We will show that λ6 > 0. To do so, we consider (8b) and use γ′ = ∞, λ1 = 0

and λ2 = 1 to write

√
γ0γ2

√

β0

α0
+ λ3

γ0γ2γ
′(1− β0

)

(

1 + (1− α0)γ0
)2 + λ5 = λ6. (62)

For any non-negative λ3, if 0 < β0 ≤ 1, the left hand side of (62) is strictly

positive, which implies that λ6 > 0. It remains to consider the case of β0 = 0. In

this case the first term on the left hand side of (62) vanishes and we are left with two

possibilities: either λ3γ
′ > 0, which yields λ6 > 0, or λ3γ

′ = 0. In the latter case, we

consider (8d), from which we have

√
γ0γ2

√

α0

β0
+ λ8 = λ7. (63)

Since β0 = 0, we have from the last equality in (8f) with i = 7 that λ7 = 0. Using
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this observation and the fact that β0 = 0 implies that
√

α0

β0
→ ∞ in (63) yields a

contradiction1, i.e., the KKT system cannot be satisfied with λ1 = 0, β0 = 0 and

λ3γ
′ = 0.

Hence, for the KKT system in (8) to be satisfied with λ1 = 0 when γ1 > γ0(1+γ2),

we must have λ6 > 0. Using this in (8c) yields λ4 > 0, which using (8f) yields the

following optimal power partitions: α0 = 1, α1 = 0, α2 = 0. Using these partitions

together with γ′ → ∞, yields R1 = 0 in (6c). Hence, the solution of the KKT system

with λ1 = 0 does not correspond to the maximum rate of the generalized DF-CF

scheme.

Case 2 (λ1 > 0). Using Lemma 1, it can be seen that the first term in (8c) is strictly

positive, which implies that λ4 > 0 and thus α2 = 0. Substituting in (6c) yields

R1 = C
(

α1γ1
)

, (64)

which does not depend on β0 and γ′. Hence, choosing β0 to maximize R2 in (6d)

does not reduce R1. From (6d) it can be seen that R2 is monotonically increasing

in both β0 and γ′. However, from (6b), γ′ is bounded by a monotonically increasing

function of β0. Hence, maximizing β0 directly maximizes the positive term of R2 and

minimizes the negative term by maximizing the lower bound on γ′. In particular, R2

is maximized by setting β0 = 1, which yields

R2 = C
(

γ0 + γ2 + 2
√
α0γ0γ2

)

. (65)

Hence, we have shown that the optimal solution of (7) corresponds to Case 2 in

which α2 = 0 and β1 = 1 − β0 = 0. Using these settings in Proposition 1 yields the

statement of the theorem.

1Here we assume that
√

β0

α0

= 0. Otherwise, λ6 would be strictly positive as claimed.
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A.4 Proof of Lemma 2

From the complementarity slackness conditions in (8f), it can be seen that if λ3

were strictly positive, the constraint on γ′ must be active and the lemma is automat-

ically proved. Hence, to complete the proof of this lemma, it remains to consider the

case of λ3 = 0, which is what we do in the forthcoming analysis.

Case 1 [α2 = 0 and γ′ ≥ 0 ] In this case, substituting in (6c) and (6d) yields

R1 = C(α1γ1), and

R2 =
1

2
log2

(

(1 + γ0 + γ2 + 2
√

α0β0γ0γ2)
γ′

1 + γ′

)

.

Following an argument analogous to the one used in Case 2 in the proof of The-

orem 1, it can be seen that in this case, the generalized DF-CF reduces to DF and

γ′ → ∞ which satisfies the constraint in (6b) with equality.

Case 2 [α2 > 0 and γ′ < ∞] Using λ3 = 0 and that γ′ is finite in (8e) and (8d)

yields

λ1

α2γ1
(

1 + (1− α0)γ1
)

1 + α2γ1
= λ2

(

1 + γ0 + γ2 + 2
√

α0β0γ0γ2
)

, (66)

and

λ2

√

α0γ0γ2
β0

γ′

1 + γ′ + λ8 = λ7. (67)

Now, since, from (8a), λ1 + λ2 = 1, it follows from (66) that, in this case, λ1 > 0

and λ2 > 0.

For γ2 < ∞, it can be seen from (6b) that γ′ > 0. Using this observation in (67),

we identify two possible cases:
√

α0

β0
> 0 and

√

α0

β0
= 0.

We will show that the first case yields a contradiction. In particular, suppose
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that
√

α0

β0
> 0. In this case, it is immediate that the left hand side of (67) is strictly

positive and that λ7 > 0. This implies that β1 = 0 (cf. (8f)). Using this in (6b) yields

γ′ ≥ ∞, which contradicts the condition γ′ < ∞.

For the second case, we have
√

α0

β0
= 0. Substituting for λ3 = 0 in (8b) yields

λ1

(

1 +
α2γ1
1 + γ′ + α2γ0

) γ1
1 + α2γ1

+ λ6 = λ2

√

β0

α0

√
γ0γ2

γ′

1 + γ′ + λ5. (68)

Since 0 < λi, γj, γ
′ < ∞, i = 1, 2, j = 0, 1, 2, it can be seen that, because

√

α0

β0
= 0, the right hand side of (68) is positive and infinite. Hence, it can be seen

that λ6 = ∞. This implies that α0 + α2 = 1. Invoking the fact that in this case

α0 = 0, we have α2 = 1. Using this in (6c) and (6d) yields R1 = C
(

γ0 +
γ1

1+γ′

)

, and

R2 = C
(

γ0 + γ2

)

− C
(

1
γ′

)

. Optimizing min{R1, R2} over γ′ satisfying (6b), yields

β1 = 1 and the constraint holds with equality.

Case 3 [α2 > 0 and γ′ → ∞] In this case, we consider the SNR regions: γ0 < γ1

and γ0 ≥ γ1.

a) The case of γ0 < γ1: Using λ3 = 0 and γ′ → ∞ in (8c) yields

λ1

(

1 + (1− α0)γ1
)

(γ1 − γ0)

(1 + α2γ1)2
− λ4 + λ6 = 0.

When γ0 < γ1, the coefficient of λ1 is strictly positive. Following the proof of

Theorem 1 it can be shown that the optimization leads to α2 = 0, which contradicts

the condition α2 > 0.

b) The case of γ0 ≥ γ1: In this case, we rewrite the rate expressions in Proposition 1
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as

R1 =
(1 + α2γ0)(1 + (α1 + α2)γ1)

1 + α2γ1
, and

R2 = C
(

1 + γ0 + γ2 + 2
√

α0β0γ0γ2

)

. (69)

Since γ0 ≥ γ1, it can be seen from (69) that R1 is maximized when α2 = 1. How-

ever, in this case R1 = C(γ0) < C
(

γ0+
γ1γ2

1+γ0+γ1+γ2

)

= R∗
CF, where the last equality

follows from (10). This implies that the generalized DF-CF scheme achieves a

rate that is strictly less than the rate achieved by the CF scheme. This contra-

dicts R∗
CF ≤ R∗

G, which follows from that the CF scheme is a special case of the

generalized DF-CF.

Hence, when γi < ∞, i = 0, 1, 2, setting α2 > 0 and γ′ → ∞ does not allow the

generalized DF-CF to attain its maximum rate.

Finally, gathering our results from cases 1, 2 and 3 and the case of λ3 > 0, it

can be seen that for all relevant instances of α2 and γ′, the maximum rate that

the generalized DF-CF scheme achieves using Gaussian signals is attained when the

constraint in (6b) is satisfied with equality.

We note that another proof that uses a different approach has been obtained

independently in Lemma 2 and Remark 5 of [39].

A.5 Proof of Theorem 2

To proceed with the proof of Theorem 2, we invoke the construction in Section 2.3.2

into (15) to show that when γ1 ≤ γ0, ∆ ≤ 0; i.e., in that region, R1 is the constraining

rate.
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Invoking the construction in Section 2.3.2, it is straightforward to show that

I(X2, U ; Y ) =
1

2
log2

(1+γ0+γ2+2
√
α0β0γ0γ2

1+α2γ0

)

, (70a)

I(X2, Y |V ) =
1

2
log2

(1 + (α1 + α2)γ0 + β1γ2
1 + (α1 + α2)γ0

)

, (70b)

I(U, Y1|X2, V ) =
1

2
log2

(1 + (α1 + α2)γ1
1 + α2γ1

)

. (70c)

Substituting these expressions into the expression of ∆ in Lemma 3 yields

∆ =
1

2
log2

(

(1 + (α1 + α2)γ1
1 + (α1 + α2)γ0

)(1 + α2γ0
1 + α2γ1

)( 1 + (α1 + α2)γ0 + β1γ2

1 + γ0 + γ2 + 2
√
α0β0γ0γ2

)

)

. (71)

Noting that α1 + α2 ≤ 1 and β1 ≤ 1, it is immediate that 1+(α1+α2)γ0+β1γ2
1+γ0+γ2+2

√
α0β0γ0γ2

≤
1. Furthermore, it can be shown that, for γ1 ≤ γ0,

(

1+(α1+α2)γ1
1+(α1+α2)γ0

)(

1+α2γ0
1+α2γ1

)

≤ 1,

which implies that ∆ ≤ 0. Using this in (15), we have that, when γ1 ≤ γ0, R1 is

the constraining rate and to maximize it we substitute for R2 from (6d) and for ∆

from (71) into (15), which yields

R1 =
1

2
log2

(

(1 + (α1 + α2)γ1
1 + (α1 + α2)γ0

)(1 + α2γ0
1 + α2γ1

)

(

1+γ0(α1+α2)+γ2β1

)

( γ′

1 + γ′

)

)

. (72)

Invoking Lemma 2 and substituting for γ′ from (6b) in (A.5) yields

R1 =
1

2
log2

(

(1 + (α1 + α2)γ1
1 + (α1 + α2)γ0

)(1 + α2γ0
1 + α2γ1

)

)

+
1

2
log2

(

(

1 + α2(γ0 + γ1)
)(

1 + (α1 + α2)γ0
)

)

+
1

2
log2

(

(

1 + (α1 + α2)γ0
)

+ β1γ2

β1γ2(1 + α2γ0) +
(

1 + α2(γ0 + γ1)
)(

1 + (α1 + α2)γ0
)

)

.

The first two terms are independent of {βj}1j=0, and the last term can be shown to

be monotonically increasing in β1. Hence, the optimal value of β1 in this SNR range
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is 1. Using this result, we rewrite R1 as

R1 =
1

2
log2

(

(1 + (α1 + α2)γ1
1 + (α1 + α2)γ0

)(1 + α2γ0
1 + α2γ1

)

)

+
1

2
log2

(

(

1 + (α1 + α2)γ0 + γ2
)

)

+
1

2
log2

( 1 + α2(γ0 + γ1)
γ2(1+α2γ0)
1+(α1+α2)γ0

+
(

1 + α2(γ0 + γ1)
)

)

.

Since γ1 ≤ γ0, it can be shown that the first term is upper bounded by 1 and the

bound is reached when α1 = 0. The second term is maximized when α1 + α2 = 1.

For the last term, the denominator is minimized when α1 + α2 = 1. The resulting

expression is monotonically increasing in α2 and is maximized when α2 = 1. Hence,

the rate maximizing power partitions for γ1 ≤ γ0 are α2 = 1 and β1 = 1. From

Proposition 1, such power partitions reduce the generalized DF-CF scheme to the CF

scheme, which completes the proof of Theorem 2.

A.6 Proof of Theorem 4

To prove Theorem 4, let ∆G = R∗
G − max{R∗

DF, R
∗
CF} and consider the cases of

γ1 ≤ γ0 and γ1 > γ0.

From Theorem 2, we have that when γ1 ≤ γ0, R
∗
G = R∗

CF ≥ R∗
DF, and hence in

that region, ∆G = 0.

We now consider the SNR region γ1 > γ0. From the definition of ∆G, we can write

∆G ≤ R∗
G −R∗

DF

= max
S

min{R1, R2} −R∗
DF

≤ max
S

R1 −R∗
DF, (73)

where S is the feasible set of the problem in (6), and R1 and R2 are defined in (6c)

and (6d), respectively. Using (9) and the fact that ρ∗i ∈ [0, 1], i = 0, 1, and ρ∗0+ρ∗1 = 1,
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we have

R∗
DF = C(γ0 + γ2 + 2

√

ρ∗0γ0γ2) = C(ρ∗1γ1). (74)

Using the monotonicity of the expression of R2 in (6d) in γ′, we can write

R2 ≤ C(γ0 + γ2 + 2
√

α0β0γ0γ2). (75)

Since R∗
G ≥ R∗

DF , a comparison of (74) and (75) reveals that α0β0 ≥ ρ∗0. But, since

β0 ∈ [0, 1], we must have α0 ≥ ρ∗0. Hence, invoking
∑2

i=0 αi =
∑1

i=0 ρ
∗
i = 1 yields

α1 + α2 ≤ ρ∗1. (76)

We will use (76) to obtain a bound on the ∆G. In particular, from (73) and (74),

we can write

∆G ≤ max
α1,α2∈[0,1]

{1

2
log2

((1+α2(γ0+γ1))(1+(α1+α2)γ1)

(1+α2γ1)(1+ρ∗1γ1)

)}

≤ max
α2∈[0,1]

{1

2
log2

(

1 +
α2γ0

1 + α2γ1

)}

(77)

≤ 1

2
log2

(

1 +
γ0

1 + γ1

)

(78)

< 0.5 bpcu,

where (77) follows from invoking (76), (78) follows from the monotonicity of the

rational expression in α2, and the last inequality follows from using the fact that

γ1 > γ0.
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B.1 Proof of Theorem 5

Codebook Generation For node dk, generate 2n(Rk+Řk) independent identically

distributed (i.i.d.) xk(mk, sk), each according to distribution p(xk) =
∏n

i=1 p(xki),

mk ∈ [1 : 2nRk ], sk ∈ [1 : 2nŘk ]; for each xk(mk, sk), generate 2nR̂k i.i.d. ŷk(zk|mk, sk),

each according to distribution p(ŷk|xk) =
∏n

i=1 p(ŷki|xki), zk ∈ [1 : 2nR̂k ].

Random Binning For node dk, randomly partition the set {1, . . . , 2nR̂k} into 2nŘk

bins. Let sk = Bk(zk) denote the N -to-1 mapping corresponding to random binning

at dk.

Encoding Let b be the current block. At the end of block b, node dk

• finds zk such that (ŷk(zk|mk,b, sk,b),xk(mk,b, sk,b), ydk(b)) are jointly ε-typical.

By the covering lemma in Section 3.2 (cf. [41]), such zk exists zk as n → ∞ if

R̂k ≥ I(Ŷk; Ydk |Xk). (79)

If more than one such zk exist, choose the smallest zk and let zk,b = zk;

• determines sk = Bk(zkb) and lets sk,b+1 = sk;

Codewords xk(mk,b, sk,b) are sent in block b from all dk ∈ N .

Decoding Procedure We provide a layered forward decoding procedure for dk.

Let i, j denote the decoding layer and the block number of the received signal

used at layer i, respectively. Let `dk be the layer at which the decoding at dk ends.

We have

j = b− `dk + i. (80)
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Using this relationship, we drop the block number j from the expressions in the

analysis of the decoding procedure when it is clear. Furthermore, in the analysis of

the decoding at dk, node identity dk is omitted from the subscript in `dk (` , `dk)

and various sets of nodes when it is clear.

Let L be the maximum number of the decoding layers in the network,i.e., L ,

maxdk∈N `dk . At any dk ∈ N ,

1 ≤ i ≤ ` ≤ L ≤ N − 1. (81)

Consider the receiver at dk. Assuming that in block b ≥ `, sN ,b−` has been uniquely

recovered, the receiver at dk

• constructs the following jointly typical set:

(xAm,i
, ŷAz(J),i

,ydk(b− `+ i)). (82)

(The sets of nodes Am,i and Az(J),i for i ≤ ` will be made clear below.)

• forms the set Am,i+1: for each node dl in this set, there exists a unique xdl(m̂dl)

in the jointly ε-typical set in (82), and dl ∈ Am,i.

• forms the set Az(Jc),i+1: which contains the node dl, dl ∈ Am,i+1∩Ac
z(J),j , for all

j < i; (The set Ac
z(J),j is defined below.)

• forms the set Ac
z(J),i+1: for each node dl in this set, there exit multiple

ŷdl(ẑdl |m̂dl) in the jointly ε-typical set in (82), and dl ∈ Am,i+1 \ Az(Jc),i+1;

• forms the set Az(J),i+1: for each node dl in this set, there exits a unique

ŷdl(ẑdl |m̂dl) in the jointly ε-typical set in (82), and dl ∈ Am,i+1 \ Az(Jc),i+1;

• proceeds to layer i+ 1 if Ac
z(J),i+1 6= ∅;
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• ends at layer i when Ac
z(J),i+1 = ∅.

Using the jointly ε-typical sets in ` layers jointly, the receiver at dk declares

that mSdk
= m̂Sdk

was sent in block b− `; and that sN = ŝN was sent in block

b− `+ 1.

Let A`m , Am,`+1 = Az(J),`+1 ∪ Az(Jc),`+1 and A`z , Az(J),`+1. Furthermore, let

Am,1 , N , Az(J),1 , N , Ac
z(J),1 , ∅ and Az(Jc),1 , ∅. In Lemmas 5 and 6, we provide

useful properties of the above sets.

Lemma 5. By definition, the sets formed by dk in the decoding procedure have the

following properties, for i ≤ `,

1. Ac
m,i+1 = Am,i \ Am,i+1;

2. Az(J),i, Ac
z(J),i and Az(Jc),i are disjoint, Az(J),i ∪Ac

z(J),i ∪ Az(Jc),i = Am,i;

3. A`m ⊆ Am,i ⊆ Am,j, for i > j;

4. (Az(J),i ∪ Ac
z(J),i) = Az(J),i−1 ⊆ Az(J),j, for i > j;

5. Az(J),i ∩ Az(Jc),i+1 = ∅;

6. A`z ⊆ Az(J),i+1 ⊆ Az(J),i;

7. For the receiver at ∀dk, dk ∈ DSdk
and dk ∈ Am,i, dk ∈ Az(J),i. Hence, dk ∈

A`m , dk ∈ A`z .

8. Ac
z(J),`+1 = ∅.

Lemma 6. For the sets formed by the receiver, define Az(J),i\i+1 , ((Ac
m,i+1\Ac

z(J),i)\
Az(Jc),i) ∪Ac

z(J),i+1. The following equality holds:

Az(J),i\i+1 = Az(J),i \ Az(J),i+1. (83)
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Proof. To prove the lemma, consider

Az(J),i\i+1

=(Ac
m,i+1 \ Ac

z(J),i \ Az(Jc),i) ∪Ac
z(J),i+1

(a)
=(Ac

m,i+1 \ (Ac
z(J),i ∪ Az(Jc),i)) ∪ Ac

z(J),i+1

=(Ac
m,i+1 \ (Am,i \ Az(J),i)) ∪Ac

z(J),i+1

(b)
=(Ac

m,i+1 ∩ Az(J),i) ∪ (Ac
m,i+1 \ Am,i) ∪Ac

z(J),i+1

=(Ac
m,i+1 ∩ Az(J),i) ∪Ac

z(J),i+1

(c)
=(Ac

m,i+1 ∪ Ac
z(J),i+1) ∩ (Az(J),i ∪ Ac

z(J),i+1)

(d)
=(Ac

m,i+1 ∪ Ac
z(J),i+1) ∩Az(J),i

(e)
=((Am,i \ Am,i+1) ∪ Ac

z(J),i+1) ∩ Az(J),i

=(Am,i \ (Az(Jc),i+1 ∪ Az(J),i+1)) ∩ Az(J),i

(f)
=(Az(J),i ∩ Am,i) \ (Az(Jc),i+1 ∪ Az(J),i+1))

=Az(J),i \ (Az(Jc),i+1 ∪ Az(J),i+1)

=Az(J),i \ Az(Jc),i+1 \ Az(J),i+1

(g)
=Az(J),i \ Az(J),i+1.

The proof uses the properties in Lemma 5. In particular, (a) follows from Property 2;

(b) follows Property 1 such that Ac
m,i+1 \ Am,i = ∅; (c) follows from Property 4;

(d) follows from Property 1; (e) follows from Property 2 and 3; (f) follows from

Property 2; (g) follows from Property 5.

Analysis of the Probability of Error Without loss of generality, assume that

for any node dk ∈ N , ml = 1, sl = 1 were transmitted and zl = 1 was selected in

block b− `, b− `+ 1, . . . , b.

We begin the analysis of the probability of error by providing the following lemma,
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which applies to any decoding layer i at any given decoding node d.

Lemma 7. Let U and V be all the nodes whose codewords XU and ŶV are considered

at a given layer of the decoding procedure. Let the codewords of M ⊆ U and Z ⊆ V
be XM ⊆ XU and ŶZ ⊆ ŶV , respectively, where for each node in M and each node

in Z there are multiple codewords that lie in the jointly typicality set at the considered

layer. For any sets G ⊆ M and F ⊆ Z,

P ((XG((m, s) 6= (1, 1)), ŶF(z 6= 1),XM\G,ŶZ\F ,xU\M, ŷV\Z ,Yd) ∈ A(n)
ε )

≤ 2n(RM+ŘM+R̂Z−I0);

(84)

and

P ((xG(1, 1), ŷF(1),XM\G, ŶZ\F ,xU\M, ŷV\Z ,Yd) ∈ A(n)
ε ) ≤ 2n(RM+ŘM+R̂Z−I0),

(85)

where

I0 = I(XM;XU\M, ŶV\Z , Yd) +
∑

i∈Z
I(Ŷi;XU , ŶV\Z , ŶKi

, Yd|Xi), (86)

where ŶKi
, Ŷ{di′∈Z:i′<i,}, for i ∈ Z.

Proof. Using joint typicality lemma in Section 3.2 (cf. [41, Sect. 2.5.1]), the first

statement in the lemma can be readily obtained.

To prove the second the statement in the lemma, consider that the probability

P (XG((m, s) 6= (1, 1)), ŶF(z 6=1),xU\M,ŷV\Z ,Yd)∈A(n)
ε ) can be upper bounded by

2n(RG+ŘG+R̂F−I′), where (87a)

I ′ = I(XG ;XU\M, ŶV\Z , Yd) +
∑

i∈F
I(Ŷi;XU\M∪G, ŶV\Z , ŶKi

, Yd|Xi). (87b)

Note that if RG + ŘG + R̂F ≤ I ′, the probability P (XG((m, s) 6= (1, 1)), ŶF(z 6=
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1),xU\M, ŷV\Z ,Yd)∈A(n)
ε ) vanishes as n → 0, which contradicts the definition of G

and F . Hence (87a) and (87b) provide

RG + ŘG + R̂F > I ′. (88)

Now, the probability P ((xG((1, 1)), ŷF (1),XM\G, ŶZ\F , xU\M, ŷV\Z ,Yd) ∈ A(n)
ε )

can be upper bounded by

P ((xG((1, 1)),ŷF(1),XM\G,ŶZ\F ,xU\M,ŷV\Z ,Yd)∈A(n)
ε ) ≤ 2n(RM\G+ŘM\G+R̂Z\F−I1),

(89)

where

I1 = I(XM\G ;XU\M∪G, ŶV\Z∪F , Yd) +
∑

i∈Z\F
I(Ŷi;XU , ŶV\Z∪F , ŶKi

, Yd|Xi)

= I(XM;XU\M, ŶV\Z, Yd)− I(XG ; ŶV\Z, Yd|XU\M) + I(XM\G ; ŶF |XU\M∪G , ŶV\Z , Yd)

+
∑

i∈Z
I(Ŷi;XU , ŶV\Z , ŶKi

, Yd|Xi)−
∑

i∈F
I(Ŷi;XU , ŶV\Z , ŶKi

, Yd|Xi)

= I(XM;XU\M, ŶV\Z, Yd) +
∑

i∈Z
I(Ŷi;XU , ŶV\Z , ŶKi

, Yd|Xi)− I(XG ; ŶV\Z , Yd|XU\M)

+ I(XM\G ; ŶF |XU\M∪G , ŶV\Z , Yd)−
∑

i∈F
I(Ŷi;XU\M∪G , ŶV\Z , ŶKi

, Yd|Xi)

−
∑

i∈F
I(Ŷi;XM\G|XU\M∪G , ŶV\Z , ŶKi

, Yd)

= I(XM;XU\M, ŶV\Z, Yd) +
∑

i∈Z
I(Ŷi;XU , ŶV\Z , ŶKi

, Yd|Xi)

− I(XG; ŶV\Z , Yd|XU\M)−
∑

i∈F
I(Ŷi;XU\M∪G , ŶV\Z , ŶKi

, Yd|Xi)

= I0 − I ′ (90)

≥ I0 − RG − ŘG − RF , (91)



108

where (90) follows from (86) and (87b), and (91) follows from (88). Substituting (91)

in (89) yields the result of the second statement in the lemma. which completes the

proof of the lemma.

We note that by definition, the following relationship holds between the sets in

Lemma 7 and the sets defined in the decoding procedure:

U = Am,i, V = Am,i \ Az(Jc),i+1, (92a)

M = Ac
m,i+1, Z = Ac

z(J),i+1. (92b)

Using Properties 4 and 5 in Lemma 5, set Z can also be written as

Z = Az(J),i \ Az(J),i+1 \ Az(Jc),i+1. (93)

Furthermore, using Property 2 in Lemma 5, we have

V \ Z = (Am,i \ Az(Jc),i+1) \ Ac
z(J),i+1 = Az(J),i+1. (94)

Now we analyze the probability of error. Define the following events for layer i in

the decoding procedure:

Ei,1 = {(xAm,i
(1, 1), ŷz(J),i(1|1, 1),Ydk(b−`+i)) /∈A(n)

ε };

Ei,2 = {(XAc
m,i+1

(m̂, ŝ),xAm,i+1
(1, 1),

ŶAc
z(J)

,i+1(ẑ|1, 1), Ŷ(Ac
m,i+1\Ac

z(J),i
)\Az(Jc),i

(ẑ|m̂, ŝ), ŷAz(J),i+1
(1|1, 1),

Ydk(b−`+i)) ∈ A(n)
ε , for some m̂, ẑ, ŝ ∈ B(ẑ)}.

The receiver at dk makes an error if any event in E , (∪iEi,1)
⋃

(∩iEi,2) occurs

for some m̂ 6= 1, ŝ 6= 1. Using the union bound, the probability of error is given by
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P (E) = P ((∪iEi,1)
⋃

(∩iEi,2)) = P (∪iEi,1) + P (∩iEi,2) ≤ ∑

i P (Ei,1) + P (∩iEi,2). By

the conditional typicality lemma in Section 3.2 (cf. [41, Sect. 2.5]), P (Ei,1) → 0 as

n → ∞. Now we upper bound P (∩iEi,2). Consider the probability P (Ei,2) for the

case that (m̂, ŝ) 6= (1, 1) for xl(m̂, ŝ), dl ∈ Ac
m,i+1, which can be bounded by

P (Ei,2) ≤
∑

mAm,i
,sAm,i

,zAz,i

2−nβi, where (95a)

βi =
3
∑

j=1

βi,j, and (95b)

βi,1 = I(XAc
m,i+1

; ŶAz(J),i+1
, Ydk |XAm,i+1

),

βi,2 =
∑

i∈(Ac
m,i+1\Ac

z(J),i
)\Az(Jc),i

I(Ŷi;XAm,i
, ŶAz(J),i+1

, ŶKi
, Ydk |Xi),

βi,3 =
∑

i∈Ac
z(J),i+1

I(Ŷi;XAm,i
, Ŷ((Ac

m,i+1\Ac
z(J),i

)\Az(Jc),i)∪Az(J),i+1
, ŶKi

, Ydk |Xi).

Note that using chain rule and Lemma 6, we can rewrite βi in (95b) as

βi =I(XAc
m,i+1

; ŶAz(J),i+1
, Ydk |XAm,i+1

) +
∑

i∈Az(J),i\Az(J),i+1

I(Ŷi;XAm,i
, ŶAz(J),i+1

, ŶKi
, Ydk |Xi),

which can be shown, by substituting the sets using (92), (93) and (94), to have same

the form as (86) in Lemma 7.

For node dl ∈ G ⊆ M , Ac
m,i+1 and dk ∈ F ⊆ Z , Ac

z(J),i+1, multiple xl(m̂, ŝ)

and ŷk(ẑ|m̂, ŝ) are found in the joint typicality set, respectively, at layer i. For the

case (m̂, ŝ) 6= (1, 1) and ẑ 6= 1, the probability of the event is given by P (Ei,2), for
which an upper bounded is provided in (95). For the case (m̂, ŝ) = (1, 1) and the case

ẑ = 1, substituting sets in Lemma 7 using (92) provides that the probability of these

cases can also be upper bounded by (95).
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Hence, we can upper bound the probability P (∩iEi,2) as

P (
⋂̀

i=1

Ei,2)

≤
∏̀

i=1

∑

mAm,i
,sAm,i

,zAz,i

P (Ei,2)

≤
∏̀

i=1

∑

mAc
m,i+1

,sAc
m,i+1

,zAz(J),i\i+1

2−nβi

≤
`−1
∏

i=1

∏

l∈mAc
m,i+1

2nRl

∏

l∈Az(J),i\i+1

2nR̂l · 2−n
∑3

j=1 βi,j

∏

l∈mAc
`m

2nRl

∏

l∈A`m\A`z

2−nŘl

∏

l∈Az(J),`−1\`

2nR̂l · 2−n
∑3

j=1 βi,j

=2
nRAm,1\A`m · 2−nŘA`m

\A`z · 2n
∑`

i=1(R̂Az(J),i\Az(J),i+1
−∑3

j=1 βi,j). (96)

Using chain rule and the definition of A`z , we can expand βi,1 as

βi,1 =I(XAc
m,i+1

; ŶAz(J),`+1
, Ydk |XAm,i+1

) + I(XAc
m,i+1

; ŶAz(J),i+1\Az(J),`+1
|XAm,i+1

, ŶAz(J),`+1
)

=I(XAc
m,i+1

; ŶA`z
, Ydk |XAm,i+1

) + I(XAc
m,i+1

; ŶAz(J),i+1\A`z
|XAm,i+1

, ŶA`z
, Ydk). (97)

We define

βi,1,1 = I(XAc
m,i+1

; ŶA`z
, Ydk|XAm,i+1

),

βi,1,2 = I(XAc
m,i+1

; ŶAz(J),i+1\A`z
|XAm,i+1

, ŶA`z
, Ydk).

Now, consider the summation of βi,1,1 from two consecutive decoding layers ` and
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`− 1:

(XAm,`\Am,`+1
; ŶA`z

, Ydk |XAm,`+1
) + I(XAc

m,`
; ŶA`z

, Ydk |XAm,`\Am,`+1
, XAm,`+1

)

= I(XAm,`\Am,`+1
, XAc

m,`
; ŶA`z

, Ydk |XAm,`+1
)

= I(XAm,`−1\Am,`+1
; ŶA`z

, Ydk |XAm,`+1
)

where the first equality follows the chain rule and in the last equality we have used

(Am,` \ Am,`+1) ∪Ac
m,` = Am,`−1 \ Am,`+1

by Property 1 and 3 in Lemma 5.

Using the same technique iteratively, it can be shown that

∑̀

i=ĩ

βi,1,1 = I(XAm,̃i\Am,`+1
; ŶA`z

, Ydk |XAm,`+1
).

Hence,
∑`

i=1 βi,1,1 yields

∑̀

i=1

βi,1,1 = I(XAm,1\Am,`+1
; ŶA`z

, Ydk |XAm,`+1
)

= I(XAm,1\A`m
; ŶA`z

, Ydk |XA`m
). (98)

Next, consider the summation of βi,2 and βi,3 in (96) for all possible ẑ. We define
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βi,2∪3 − R̂Az(J),i\Az(J),i+1
, where

βi,2∪3 − R̂Az(J),i\Az(J),i+1

=
∑

i∈(Ac
m,i+1\Ac

z(J),i
)\Az(Jc),i

(I(Ŷi;XAm,i
, ŶAz,i+1

, ŶKi
, Ydk |Xi)− R̂i)

+
∑

i∈Ac
z,i+1

(−R̂i + I(Ŷi;XAm,i
, ŶKi

, Ydk), Ŷ((Ac
m,i+1\Ac

z,i)\Az(Jc),i)∪Az(J),i+1
|Xi)

≤
∑

i∈(Ac
m,i+1\Ac

z(J),i
)\Az(Jc),i

−I(Ŷi; Yi|XAm,i
, ŶAz(J),i+1

, ŶKi
, Ydk)

−
∑

i∈Ac
z,i+1

I(Ŷi; Yi|XAm,i
, ŶKi

, Ydk , Ŷ((Ac
m,i+1\Ac

z(J),i
)\Az(Jc),i)∪Az(J),i+1

)

=− I(Ŷ(Ac
m,i+1\Ac

z(J),i
)\Az(Jc),i

; Y(Ac
m,i+1\Ac

z(J),i
)\Az(Jc),i

|XAm,i
, ŶAz(J),i+1

, Ydk)

− I(ŶAc
z(J),i+1

; YAc
z(J),i+1

|XAm,i
, Ŷ((Ac

m,i+1\Ac
z(J),i

)\Az(Jc),i)∪Az(J),i+1
, Ydk)

=− I(Ŷ(Ac
m,i+1\Ac

z(J),i
)\Az(Jc),i

,ŶAc
z(J),i+1

; Y(Ac
m,i+1\Ac

z(J),i
)\Az(Jc),i

,YAc
z(J),i+1

|XAm,i
,ŶAz(J),i+1

,Ydk)

=− I(ŶAz(J),i\Az(J),i+1
; YAz(J),i\Az(J),i+1

|XAm,i
, ŶAz(J),i+1

, Ydk),

where in the first inequality we have used (79), the second and third equality follow

the chain rule, and in the last equality we have used (83) from Lemma 6.

By definition, Az(J),`+1 = A`z , hence Az(J),`+1 \ A`z = ∅ and β`,1,2 = 0. Now, for
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layer ` and `− 1, we calculate

β`,2∪3 − R̂Az(J),`\Az(J),`+1
+ β`−1,1,2 + β`−1,2∪3 − R̂Az(J),`−1\Az(J),`

≤− I(ŶAz(J),`\A`z
; YAz(J),`\A`z

|XAm,`
, ŶA`z

, Ydk) + I(XAc
m,`

; ŶAz(J),`\A`z
|XAm,`

, ŶA`z
, Ydk)

− I(ŶAz(J),`−1\Az(J),`
; YAz(J),`−1\Az(J),`

|XAm,`−1
, ŶAz(J),`

, Ydk)

=− I(ŶAz(J),`\A`z
; YAz(J),`\A`z

|XAm,`−1
, ŶA`z

, Ydk)

− I(ŶAz(J),`−1\Az(J),`
; YAz(J),`−1\Az(J),`

|XAm,`−1
, ŶAz(J),`

, Ydk)

=− I(Ŷ(Az(J),`−1\Az(J),`)∪(Az(J),`\A`z )
; Y(Az(J),`−1\Az(J),`)∪(Az(J),`\A`z )

|XAm,`−1
, ŶA`z

, Ydk)

=− I(ŶAz(J),`−1\A`z
; YAz(J),`−1\A`z

|XAm,`−1
,ŶA`z

,Ydk), (99)

where the first and second equality follow the chain rule, and in the last equality we

have used

(Az(J),i\Az(J),i+1) ∪ (Az(J),i+1\A`z) = Az(J),i\A`z (100)

for ∀i ≤ `, which is a direct consequence from Property 6 in Lemma 5.

Using this technique iteratively, we obtain

∑̀

i=ĩ

βi,1,2 + βi,2∪3 − R̂Az(J),i\Az(J),i+1
≤ −I(ŶA

z(J),̃i\A`z
; YA

z(J),̃i\A`z
|XAm,̃i

, ŶA`z
, Ydk).

Consider the summation over all ` layers, we have

∑̀

i=1

βi,1,2 + βi,2∪3 − R̂Az(J),i\Az(J),i+1
≤ −I(ŶAz(J),1\A`z

; YAz(J),1\A`z
|XAm,1 , ŶA`z

, Ydk).

(101)
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Using (98) and (101), the probability in (96) can be upper bounded by

P (∩iEi,2) ≤ 2
n(RAm,1\A`m

−ŘA`m
\A`z

) ·2−n(
∑`

i=1 βi,1,1+
∑`

i=1(βi,1,2+βi,2U3))

= 2
n(RAm,1\A`m

−I(A))
,

where I(A) is given by

I(XAm,1\A`m
; ŶA`z

, Ydk|XA`m
)− I(ŶAz(J),1\A`z

; YAz(J),1\A`z
|XAm,1, ŶA`z

, Ydk) + ŘA`m\A`z
.

Using Am,1 = Az(J),1 by definition, I(A) can be written as

I(XAm,1\A`m
; ŶA`z

, Ydk |XA`m
)− I(ŶAm,1\A`z

; YAm,1\A`z
|XAm,1 , ŶA`z

, Ydk) + ŘA`m\A`z
.

Let S , Am,1 \ A`m,Sc , A`m, hence Sc = N \ S. Let Š , A`m \ A`z , Šc , A`z ,

hence Šc = A`m \ Š. The above result yields that P (E) → 0 as n → ∞, if

RS ≤ I(XS ; ŶŠc, Ydk |XSc)− I(ŶN\Šc; YN\Šc|XN , ŶŠc, Ydk) + ŘŠ .

Using the technique similar to the one in [10], it can be shown that for S ∩ Sdk = ∅,
the constraints in the above inequality can be dropped and dk ∈ DS . By Property 7

in Lemma 5, dk ∈ A`m = Sc. Hence dk ∈ Sc ∩ DS . This completes the proof.

B.2 Proof of Remark 6

To prove the result in Remark 6, first we note that when

ŘŠ ≥ I(XSc\Šc ; ŶŠc, Ydk |XŠc)−RSc\Šc , (102)
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the probability of error tends to 0 as n → ∞ if the rate expression in (26) satisfies

RN\Šc ≤ I(XS∪(Sc\Šc); ŶŠc, Ydk |XŠc)− I(ŶN\Šc; YN\Šc|XN , ŶŠc, Ydk)

= I(XN\Šc; ŶŠc, Ydk |XŠc)− I(ŶN\Šc; YN\Šc|XN , ŶŠc, Ydk),

where we have used

S ∪ (Sc \ Šc) = N \ Šc

since Šc ⊆ Sc and Sc = N \ S. Redefine S , N \ Šc and Sc , Šc, we have

RS ≤ I(XS ; ŶSc, Ydk |XSc)− I(ŶS ; YS |XN , ŶSc, Ydk),

which is the simplified form of the rate expression (28).

Next, in general the rate expression in (26) can be modified to the following form:

RS ≤I(XS ; ŶSc, Ydk |XSc)− I(XS ; ŶSc\Šc|XSc, ŶŠc, Ydk)

− I(ŶN\Šc; YN\Šc|XN , ŶŠc, Ydk) + ŘŠ

=I(XS ; ŶSc, Ydk |XSc) + I(YSc\Šc ; ŶSc\Šc|XN , ŶŠc, Ydk)

− I(ŶN\Šc; YN\Šc|XN , ŶŠc, Ydk) + ŘŠ − I(ŶSc\Šc ; YSc\Šc|XSc, ŶŠc, Ydk)

=I(XS ; ŶSc, Ydk |XSc)− (ŶS ; YS |XN , ŶSc, Ydk) + ŘŠ − I(ŶŠ ; YŠ |XSc, ŶŠc, Ydk).

(103)

where the first two steps follow the chain rule; in the last equality we have also used

chain rule and Sc \ Šc = Š and (N \ Šc) \ (Sc \ Šc) = S, all by definition.

It can be seen that if

ŘŠ ≥ I(ŶŠ ; YŠ |XSc, ŶŠc, Ydk), (104)
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the rate expression in (103) reduces to its simplified form (28).

B.3 Proof of Theorem 6

Codebook Generation For node dk, generate 2nŘk i.i.d. uk(sk), each according

to distribution p(uk) =
∏n

i=1 p(uki), sk ∈ [1 : 2nŘk ]; for each uk(sk), generate 2nRk

i.i.d. xk(mk|sk), each according to distribution p(xk|uki) =
∏n

i=1 p(xki|ski), mk = [1 :

2nRk ]; for each uk(sk), generate 2nR̂k i.i.d. ŷk(zk|sk), each according to distribution

p(ŷk|uk) =
∏n

i=1 p(ŷki|ski), zk ∈ [1 : 2nR̂k ].

Random Binning For node dk, randomly partition the set {1, . . . , 2nR̂k} into 2nŘk

bins. Let sk = Bk(zk) denote the N -to-1 mapping at dk as the result of binning.

Encoding Let b be the current block. At the end of block b, node dk

• finds an index zk such that (ŷk(zk|sk,b),uk(sk,b),ydk(b)) are jointly typical. By

the covering lemma in Section 3.2 (cf. [41]), such a zk exists as n → ∞ if

R̂k ≥ I(Ŷk; Ydk|Uk). (105)

If more than one such zk exist, choose the lowest zk and let zk,b = zk;

• determines sk = Bk(zkb) and lets sk,b+1 = sk;

Codewords xk(mk,b|sk,b) are sent in block b from all dk∈N .

Decoding Procedure Similar to the procedure provided in the proof of Theo-

rem 5, the procedure herein employs the layered forward decoding strategy and the

relationships in (80) and (81) hold. The main difference between the two procedures

lies in the sets formed at the receiver at each decoding layer.
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Consider the receiver at dk. Assuming that in block b, sN ,b−` has been uniquely

recovered, where ` , `dk , the receiver at dk

• constructs the following jointly ε-typical set:

(xAm,i
,uAs,i

, ŷAz(J),i
,ydk(b− `+ i)). (106)

(The definition of the sets of nodes Am,i, As,i and Az(J),i for i ≤ ` is given

below.)

• forms the set As,i+1: for each node dl in this set, there exists a unique udl(ŝdl)

in the jointly ε-typical set in (106), and dl ∈ As,i;

• forms the set Am,i+1: for each node dl in this set, there exists a unique

xdl(m̂dl |ŝdl) in the jointly ε-typical set in (106), and dl ∈ Am,i ∩As,i+1;

• forms set Az(Jc),i+1, which contains the node dl ∈ As,i+1∩ ∈ Ac
z(J),j, for all j < i;

(The set Ac
z(J),j is defined below.)

• forms the set Ac
z(J),i+1: for each node dl in this set, there exist multiple

ŷdl(ẑdl |ŝdl) in the jointly ε-typical set in (106), and dl ∈ As,i+1 \ Az(Jc),i+1;

• forms the set Az(J),i+1: for each node dl in this set, there exists a unique

ŷdl(ẑdl |ŝdl) in the jointly ε-typical set in (106), and dl ∈ As,i+1 \ Az(Jc),i+1;

• proceeds to layer i+ 1 if Ac
z(J),i+1 6= ∅.

• ends at layer i when Az(J),i+1 = ∅.

Using the jointly ε-typical sets in ` layers jointly, the receiver at dk declares that

mSdk
= m̂Sdk

were sent in block b − `; and that sN = ŝN were sent in block

b− `+ 1.
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Let A`m , Am,`+1, A`s , As,`+1 = Az(J),`+1 ∪ Az(Jc),`+1 and A`z , Az(J),`+1.

Furthermore, let Am,1 , Sdk , As,1 , N , Az(J),1 , N , Ac
z(J),1 , ∅ and Az(Jc),1 , ∅.

In Lemmas 8 and 9 we provide the counterparts of Lemmas 5 and 6 for the decoding

procedure of Theorem 6.

Lemma 8. The sets formed by the receiver at dk∈N in the decoding procedure have

the following properties, for i ≤ `,

1. Ac
m,i+1 = Am,i \ Am,i+1, Ac

s,i+1 = As,i \ As,i+1;

2. Az(J),i,Ac
z(J),i and Az(Jc),i are disjoint, Az(J),i ∪Ac

z(J),i ∪Az(Jc),i = As,i;

3. A`m ⊆ Am,i ⊆ Am,j, A`s ⊆ As,i ⊆ As,j, for i > j;

4. (Az(J),i ∪ Ac
z(J),i) = Az(J),i−1 ⊆ Az(J),j, for i > j;

5. Az(J),i ∩ Az(Jc),i+1 = ∅;

6. A`z ⊆ Az(J),i+1 ⊆ Az(J),i;

7. For the receiver at ∀dk, dk ∈ DSdk
and dk ∈ Am,i, dk ∈ Az(J),i. Hence, dk ∈

A`m , dk ∈ A`z .

8. Ac
z(J),`+1 = ∅;

9. Az(J),i ⊆ As,i, Am,i ⊆ As,i.

Lemma 9. For the sets formed by the receiver, define Az(J),i\i+1 , ((Ac
s,i+1\Ac

z(J),i)\
Az(Jc),i) ∪Ac

z(J),i+1. The following equality holds:

Az(J),i\i+1 = Az(J),i \ Az(J),i+1. (107)

Proof. Replacing Ac
m,i+1 and Am,i by Ac

s,i+1 and As,i, respectively, the lemma can be

proved using a technique similar to the one in the proof of Lemma 6. Details are

omitted.
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Analysis of the Probability of Error Without loss of generality, assume that

for any node dk ∈ N , ml = 1, sl = 1 were transmitted and zl = 1 was selected in

block b− `, b− `+ 1, . . . , b.

We begin the analysis of the probability of error by providing the following lemma,

which is a counterpart of Lemma 7 and applies to any decoding layer at any decoding

node d.

Lemma 10. Let U ,W and V be all the nodes whose codewords XU ,UW and ŶV are

considered at a given layer of the decoding procedure. Let the codewords of M ⊆
U ,J ⊆ W and Z ⊆ V be XM ⊆ XU ,UJ ⊆ UW and ŶZ ⊆ ŶV , respectively,

where for each node in M, each node in W and each node in Z there are multiple

codewords that lie in the jointly typicality set at the considered layer. For any sets

G ⊆ M,H ⊆ J and F ⊆ Z,

P ((XG(m 6=1),UH(s 6=1),ŶF(z 6=1),XM\G,UJ\H,ŶZ\F ,xU\M,uW\J ,ŷV\Z ,Yd)∈A(n)
ε )

≤ 2n(RM+ŘJ+R̂Z−I0); (108)

and

P ((xG(1),uH(1),ŷF(1),XM\G,UJ \H,ŶZ\F ,xU\M,uW\J ,ŷV\Z ,Yd) ∈ A(n)
ε )

≤ 2n(RM+ŘJ+R̂Z−I0), (109)

where

I0 = I(XM, UJ ; ŶV\Z , Yd|XU\M, UW\J ) +
∑

i∈Z
I(Ŷi;XU , UW , ŶV\Z , ŶKi

, Yd|Ui), (110)

Proof. Using the following substitution in Lemma 7,

(XM, UJ ) , XM and (XU , UW) , XU ,

the result in Lemma 10 can be readily obtained.
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We note that by definition, the following relationship holds between the sets in

Lemma 10 and the sets defined in the decoding procedure for Theorem 6:

U = Am,i, W = As,i, V = As,i \ Az(Jc),i+1, (111a)

M = Ac
m,i+1, J = Ac

s,i+1, Z = Ac
z(J),i+1. (111b)

Using Properties 4 and 5 in Lemma 5, set Z can also be written as

Z = Az(J),i \ Az(J),i+1 \ Az(Jc),i+1. (112)

Furthermore, using Property 2 in Lemma 5, we have

V \ Z = (As,i \ Az(Jc),i+1) \ Ac
z(J),i+1 = Az(J),i+1. (113)

Now we analyze the probability of error. Define the following events for layer i in

the decoding procedure:

Ei,1 = {(xAm,i
(1|1),uAs,i

(1), ŷz(J),i(1|1),Ydk(b−`+i)) /∈ A(n)
ε };

Ei,2 = {(UAc
s,i+1

(ŝ),uAs,i+1
(1),

XAc
m,i+1

(m̂|ŝ),XAc
m,i+1

(m̂|1),xAm,i+1
(1|1),

ŶAc
z(J)

,i+1(ẑ|1), Ŷ(Ac
s,i+1\Ac

z(J),i
)\Az(Jc),i

(ẑ|ŝ), ŷAz(J),i+1
(1|1),

Ydk(b−`+i)) ∈ A(n)
ε ,

for some m̂, ẑ and ŝ ∈ B(ẑ)}.

The receiver at dk makes an error if any event in E , (∪iEi,1)
⋃

(∩iEi,2) for some

m̂ 6= 1, ŝ 6= 1 occurs. Using the union bound, the probability of error is given by

P (E) = P ((∪iEi,1)
⋃

(∩iEi,2)) = P (∪iEi,1) + P (∩iEi,2) ≤ ∑

i P (Ei,1) + P (∩iEi,2). By
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the conditional typicality lemma in Section 3.2 (cf. [41, Sect. 2.5]), P (Ei,1) → 0 as

n → ∞. Now we upper bound P (∩iEi,2). Consider the probability P (Ei,2) for the

case that m̂ 6= 1 for xl(m̂|ŝ), dl ∈ Ac
m,i+1 and ŝ 6= 1 for ul(ŝ), dl ∈ Ac

s,i+1, which can

be bounded by

P (Ei,2) ≤
∑

mAm,i
,sAs,i

,zAz,i

2−nβi, where (114a)

βi =
3
∑

j=1

βi,j, and (114b)

βi,1 = I(XAc
m,i+1

, UAc
s,i+1

; ŶAz(J),i+1
, Ydk |XAm,i+1

, UAs,i+1
),

βi,2 =
∑

i∈(Ac
s,i+1\Ac

z(J),i
)\Az(Jc),i

I(Ŷi;XAm,i
, UAs,i

, ŶAz(J),i+1
, ŶKi

, Ydk |Ui),

βi,3 =
∑

i∈Ac
z(J),i+1

I(Ŷi;XAm,i
, UAs,i

, Ŷ((Ac
s,i+1\Ac

z(J),i
)\Az(Jc),i)∪Az(J),i+1

, ŶKi
, Ydk |Ui).

Note that using chain rule and Lemma 6, we can rewrite βi in (114b) as

βi =I(XAc
m,i+1

, UAc
s,i+1

; ŶAz(J),i+1
, Ydk |XAm,i+1

, UAs,i+1
)

+
∑

i∈Az(J),i\Az(J),i+1

I(Ŷi;XAm,i
,UAs,i

,ŶAz(J),i+1
,ŶKi

,Ydk |Xi),

which can be shown, by substituting the sets using (111), (112) and (113), to have

same the form as (110) in Lemma 10.

For node dl ∈ G ⊆ M , Ac
m,i+1, dh ∈ H ⊆ J , Ac

s,i+1 and dk ∈ F ⊆ Z ,

Ac
z(J),i+1, multiple xl(m̂|ŝ),u(ŝ) and ŷk(ẑ|ŝ) are found in the joint typicality set,

respectively, at layer i. For the case m̂ 6= 1, ŝ 6= 1 and ẑ 6= 1, the probability of

the event is given by P (Ei,2), for which an upper bounded is provided in (114). For

the case m̂ = 1, the case ŝ) = 1 and the case ẑ = 1, substituting sets in Lemma 10

using (111) provides that the probability of these cases can also be upper bounded
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by (95).

Now consider the probability of event Ei,2 over the ` layers:

P (
⋂̀

i=1

Ei,2)

≤
∏̀

i=1

∑

mAm,i
,sAs,i

,zAz,i

P (Ei,2)

≤
∏̀

i=1

∑

mAc
m,i+1

,sAc
s,i+1

,zAz(J),i\i+1

2−nβi

≤
`−1
∏

i=1

∏

l∈mAc
m,i+1

2nRl

∏

l∈Az(J),i\i+1

2nR̂l · 2−n
∑3

j=1 βi,j

∏

l∈mAc
`m

2nRl

∏

l∈A`s\A`z

2−nŘl

∏

l∈Az(J),`−1\`

2nR̂l · 2−n
∑3

j=1 βi,j

=2
nRAm,1\A`m · 2−nŘA`s

\A`z

· 2n
∑`

i=1(R̂Az(J),i\Az(J),i+1
−∑3

j=1 βi,j). (115)

Using chain rule and the definition of A`z , we can expand βi,1 as

βi,1

=I(XAc
m,i+1

, UAc
s,i+1

; ŶAz(J),`+1
, Ydk |XAm,i+1

, UAs,i+1
)

+ I(XAc
m,i+1

, UAc
s,i+1

; ŶAz(J),i+1\Az(J),`+1
|XAm,i+1

, UAs,i+1
, ŶAz(J),`+1

)

=I(XAc
m,i+1

, UAc
s,i+1

; ŶA`z
, Ydk |XAm,i+1

, UAs,i+1
)

+ I(XAc
m,i+1

, UAc
s,i+1

; ŶAz(J),i+1\A`z
|XAm,i+1

, UAs,i+1
, ŶA`z

, Ydk). (116)
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We define

βi,1,1 = I(XAc
m,i+1

, UAc
s,i+1

; ŶA`z
, Ydk|XAm,i+1

, UAs,i+1
)

βi,1,2 = I(XAc
m,i+1

, UAc
s,i+1

; ŶAz(J),i+1\A`z
|XAm,i+1

, UAs,i+1
, ŶA`z

, Ydk).

Now, consider the summation of βi,1,1 from two consecutive decoding layers ` and

`− 1:

(XAm,`\Am,`+1
, UAs,`\As,`+1

; ŶA`z
, Ydk |XAm,`+1

, UAs,`+1
)

+ I(XAc
m,`

, UAc
s,`
; ŶA`z

, Ydk |XAm,`\Am,`+1
, XAm,`+1

, UAs,`\As,`+1
, UAs,`+1

)

= I(XAm,`\Am,`+1
, XAc

m,`
, UAs,`\As,`+1

, UAc
s,`
; ŶA`z

, Ydk |XAm,`+1
, UAs,`+1

)

= I(XAm,`−1\Am,`+1
, UAs,`−1\As,`+1

; ŶA`z
, Ydk |XAm,`+1

, UAs,`+1
)

where the first equality follows the chain rule and in the last equality we have used

(Am,` \ Am,`+1) ∪ Ac
m,` = Am,`−1 \ Am,`+1,

(As,` \ As,`+1) ∪Ac
s,` = As,`−1 \ As,`+1

by Property 1 and 3 in Lemma 8.

Using this technique iteratively, we obtain

∑̀

i=ĩ

βi,1,1 = I(XAm,̃i\A`m
, UAs,̃i\A`s

; ŶA`z
, Ydk |XA`m

, UA`s
).

Consider the summation over all ` layers, we have

∑̀

i=1

βi,1,1 = I(XAm,1\A`m
, UAs,1\A`s

; ŶA`z
, Ydk |XA`m

, UA`s
). (117)
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Next, consider the summation of βi,2 and βi,3 in (115) for all possible ẑ. We define

βi,2∪3 − R̂Az(J),i\Az(J),i+1
,

where

βi,2∪3 − R̂Az(J),i\Az(J),i+1

=
∑

i∈(Ac
s,i+1\Ac

z(J),i
)\Az(Jc),i

I(Ŷi;XAm,i
,UAs,i

,ŶAz,i+1
,ŶKi

,Ydk |Ui)− R̂i

+
∑

i∈Ac
z,i+1

−R̂i + I(Ŷi;XAm,i
, UAs,i

, ŶKi
, Ydk , Ŷ((Ac

s,i+1\Ac
z,i)\Az(Jc),i)∪Az(J),i+1

|Ui)

≤
∑

i∈(Ac
s,i+1\Ac

z(J),i
)\Az(Jc),i

−I(Ŷi; Yi|XAm,i
,UAs,i

,ŶAz(J),i+1
,ŶKi

,Ydk)

−
∑

i∈Ac
z,i+1

I(Ŷi; Yi|XAm,i
, UAs,i

, ŶKi
, Ydk , Ŷ((Ac

s,i+1\Ac
z(J),i

)\Az(Jc),i)∪Az(J),i+1
)

=−I(Ŷ(Ac
s,i+1\Ac

z(J),i
)\Az(Jc),i

; Y(Ac
s,i+1\Ac

z(J),i
)\Az(Jc),i

|XAm,i
, UAs,i

, ŶAz(J),i+1
, Ydk)

−I(ŶAc
z(J),i+1

; YAc
z(J),i+1

|XAm,i
, UAs,i

, Ŷ((Ac
s,i+1\Ac

z(J),i
)\Az(Jc),i)∪Az(J),i+1

, Ydk)

=−I(Ŷ(Ac
s,i+1\Ac

z(J),i
)\Az(Jc),i

,ŶAc
z(J),i+1

; Y(Ac
s,i+1\Ac

z(J),i
)\Az(Jc),i

,YAc
z(J),i+1

|XAm,i
,UAs,i

,ŶAz(J),i+1
,Ydk)

=−I(ŶAz(J),i\Az(J),i+1
; YAz(J),i\Az(J),i+1

|XAm,i
, UAs,i

, ŶAz(J),i+1
, Ydk),

where in the first inequality we have used (105), the second and third equality follow

the chain rule, and in the last equality we have used (107) from Lemma 9.

By definition, Az(J),`+1 = A`z , hence Az(J),`+1 \ A`z = ∅ and β`,1,2 = 0. Now, for
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layer ` and `− 1, we calculate

β`,2∪3 − R̂Az(J),`\Az(J),`+1
+ β`−1,1,2 + β`−1,2∪3 − R̂Az(J),`−1\Az(J),`

≤− I(ŶAz(J),`\A`z
; YAz(J),`\A`z

|XAm,`
, UAs,`

, ŶA`z
, Ydk)

+ I(XAc
m,`

, UAc
s,`
; ŶAz(J),`\A`z

|XAm,`
, UAs,`

, ŶA`z
, Ydk)

− I(ŶAz(J),`−1\Az(J),`
; YAz(J),`−1\Az(J),`

|XAm,`−1
, UAs,`−1

, ŶAz(J),`
, Ydk)

=− I(ŶAz(J),`\A`z
; YAz(J),`\A`z

|XAm,`−1
, UAs,`−1

, ŶA`z
, Ydk)

− I(ŶAz(J),`−1\Az(J),`
; YAz(J),`−1\Az(J),`

|XAm,`−1
, UAs,`−1

, ŶAz(J),`
, Ydk)

=− I(Ŷ(Az(J),`−1\Az(J),`)∪(Az(J), \̀A`z )
; Y(Az(J),`−1\Az(J),`)∪(Az(J), \̀A`z )

|XAm,`−1
,UAs,`−1

,ŶA`z
,Ydk)

=− I(ŶAz(J),`−1\A`z
; YAz(J),`−1\A`z

|XAm,`−1
, UAs,`−1

,ŶA`z
, Ydk), (118)

where the first and second equality follow the chain rule, and in the last equality we

have used a property similar to (100), which is a direct consequence of Property 6 of

Lemma 8.

Using this technique iteratively, we obtain

∑̀

i=ĩ

βi,1,2 + βi,2∪3 − R̂Az(J),i\Az(J),i+1
≤ −I(ŶA

z(J),̃i\A`z
; YA

z(J),̃i\A`z
|XAm,̃i

,UAs,̃i
,ŶA`z

,Ydk).

Consider the summation over all ` layers, we have

∑̀

i=1

βi,1,2 + βi,2∪3 − R̂Az(J),i\Az(J),i+1
= −I(ŶAz(J),1\A`z

; YAz(J),1\A`z
|XAm,1,UAs,1,ŶA`z

,Ydk).

(119)

Using (117) and (119), the probability in (115) can be upper bounded by

P (∩iEi,2) ≤ 2
n(RAm,1\A`m

−ŘA`s
\A`,z

) ·2−n(
∑`

i=1 βi,1,1+
∑`

i=1(βi,1,2+βi,2U3))=2
n(RAm,1\A`m

−I(A))
,
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where I(A) is given by

I(XAm,1\A`m
, UAs,1\A`s

; ŶA`z
, Ydk |XA`m

, UA`s
)

− I(ŶAz(J),1\A`z
; YAz(J),1\A`z

|XAm,1 , UAs,1 , ŶA`z
, Ydk) + ŘA`s\A`,z

.

Using As,1 = Az(J),1 by definition, I(A) can be written as

I(XAm,1\A`m
, UAs,1\A`s

; ŶA`z
, Ydk |XA`m

, UA`s
)

− I(ŶAs,1\A`z
; YAs,1\A`z

|XAm,1, UAs,1, ŶA`z
, Ydk) + ŘA`s\A`,z

.

Let T , Am,1 \ A`m, T c , A`m. Let S , As,1 \ A`s,Sc , A`s, hence Sc = N \ S.
Let Š , A`s \ A`z , Šc , A`z , hence Šc = A`s \ Š. The above result yields that

P (E) → 0 as n → ∞, if

RT ≤I(XT , US ; ŶŠc, Ydk |XT c , USc)− I(ŶN\Šc; YN\Šc|XSdk
, UN , ŶŠc, Ydk) + ŘŠ .

Assume that the constraint is violated for T = ∅, we have

I(ŶN\Šc; YN\Šc|XSdk
, UN , ŶŠc, Ydk) > I(US ; ŶŠc, Ydk |XSdk

, USc) + ŘŠ . (120)

In this case, the constraint on RT can be bounded by:

RT ≤ I(XT , US ; ŶŠc, Ydk |XT c , USc)− I(ŶN\Šc ; YN\Šc|XSdk
, UN , ŶŠc, Ydk) + ŘŠ

= I(XT ; ŶŠc, Ydk |XT c , USc) + I(US ; ŶŠc, Ydk |XSdk
, USc)

− I(ŶN\Šc; YN\Šc|XSdk
, UN , ŶŠc, Ydk) + ŘŠ

< I(XT ; ŶŠc, Ydk |XT c , USc),

where the last inequality follows from (120). This implies that the receiver can treat
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the signal from the nodes in S \ T as noise. Hence, the constraint for the case T = ∅
can be dropped. This completes the proof.

B.4 Proof of Remark 9

To prove the result in Remark 9, first we note that when

ŘŠ ≥I(USc\Šc ; ŶSc, Ydk |XŤ c , UŠc), (121)

the rate expression in (30) yields

RT ≤I(XT , US∪Sc\Šc ; ŶŠc, Ydk |XT c , UŠc)− I(ŶN\Šc ; YN\Šc|XSdk
, UN , ŶŠc, Ydk)

=I(XT , UN\Šc ; ŶŠc, Ydk|XT c , UŠc)− I(ŶN\Šc; YN\Šc|XSdk
, UN , ŶŠc, Ydk),

where we have used Šc ⊆ Sc and Sc = N \ S. Redefine S , N \ Šc and Sc , Šc

yields the simplified form of the rate expression (31).

Next, in general, the rate expression in (30) can be modified to the following form:

RT ≤I(XT , US ; ŶSc, Ydk |XT c , USc)− I(XT , US ; ŶSc\Šc|XT c , USc , ŶŠc, Ydk)

− I(ŶN\Šc; YN\Šc|XSdk
, UN , ŶŠc, Ydk) + ŘŠ

=I(XT , US ; ŶSc, Ydk |XT c , USc) + I(YSc\Šc ; ŶSc\Šc|XSdk
, UN , ŶŠc, Ydk)

− I(ŶN\Šc; YN\Šc|XSdk
, UN , ŶŠc, Ydk) + ŘŠ

− I(ŶSc\Šc ; YSc\Šc|XT c , USc , ŶŠc, Ydk)

=I(XT , US ; ŶSc, Ydk |XSc)− (ŶS ; YS |XSdk
, UN , ŶSc, Ydk)

+ ŘŠ − I(ŶŠ ; YŠ |XT c , USc , ŶŠc, Ydk),

where in the last equality we have used Šc = Sc \ Š and (N \ Šc) \ (Sc \ Šc) = S due
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to Šc ⊆ Sc ⊆ N and Sc = N \ S. It can be seen that if

ŘŠ ≥ I(ŶŠ ; YŠ |XT c , USc, ŶŠc, Ydk), (122)

the rate expression reduces to its simplified form (28).

Conditions (121) and (122) together provide the desired result.
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C.1 Proof of Corollary 2

Codebook generation and the encoding procedure incorporates those in Theo-

rem 5 and the standard DF [2]. The detailed procedures are provided herein for

completeness.

Codebook Generation

• Generate 2nR1 i.i.d x1(m1), each according to distribution p(x1) =
∏n

i=1 p(x1i), m1 ∈ [1 : 2nR1 ].

• Generate 2nŘ3 i.i.d x3(s3), each according to distribution p(x3) =
∏n

i=1 p(x3i), s3 ∈ [1 : 2nŘ3].

• For each x3(s3), generate 2nŘ2 i.i.d x2(s2), each according to distribution

p(x2|x3)=
∏n

i=1p(x2i|x3i), s2 ∈ [1 : 2nŘ2 ].

• For each (x2(s2),x3(s3)) pair, generate 2nR̂2 i.i.d ŷ2(z2), each according to dis-

tribution p(ŷ2|x2,x3)=
∏n

i=1p(ŷ2i|x2i, x3i), z2 ∈ [1 : 2nR̂2 ].

Random Binning

• Randomly partition the set {1, 2, . . . , 2nR̂2} into 2nŘ2 bins. Let s2 = B2(z2)

denote the N -to-1 mapping as the results of binning.

• Randomly partition the set {1, 2, . . . , 2nŘ2} into 2nŘ3 bins. Let s3 = B2(s2)

denote the N -to-1 mapping as the results of binning.

Encoding In block j,

• source S encodes x1(s1,j+1);
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• relay R1 finds an index z such that (x2(sj),x3(sj), ŷ2(z|s2,j, s3,j),y2(j)) are

jointly typical. Such a z exists as n → ∞ if

R̂2 ≥ I(Ŷ2; Y2|X2, X3). (123)

If there exist more than one such z, choose the smallest one and lets z2,j = z;

• relay R1 finds the bin index s2,j+1 = B2(z2,j) and s3,j+2 = B2(s2,j+1).

• relay R2 finds a unique index s2 such that (x2(s2),x3(s3,j),y3(j)) are jointly

ε-typical. The probability of error tends to 0 as n → ∞ if

Ř2 ≤ I(X2; Y3|X3), (124)

and obtains s3,j+1 = B2(s2);

• codewords x1(m1,j),x2(s2,j) and x3(s3,j) are sent into the channel.

Decoding and Probability of Error Now, we upper bound the probability

of erroneous decoding at the destinations and analyze the constraints on the

rate of bin indices Ř2 and Ř3.

– Using Strategy 1, the decoding procedure at the destinations Di, i = 1, 2,

partially follows the one in Theorem 5. In addition, at each decoding layer,

the codeword transmitted by the relay R2 that represents the bin index of

s2, i.e., x3(s3) where s3 = B2(s2) for each s2, must be jointly typical with

the received signal at the next layer. Hence, using Theorem 5 and (123),

when the following constraints are satisfied, the probability of error tends
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to 0 as n → ∞.

R1 ≤I(X1; Ŷ2, YDi
|X2, X3), (125a)

R1 ≤I(X1;YDi
|X2,X3)−I(Ŷ2; Y2|X1,X2,X3,YDi

) + Ř2, (125b)

R1 ≤I(X1;YDi
|X2,X3)−I(Ŷ2; Y2|X1,X2,X3,YDi

) + I(X2; YDi
|X3) + Ř3,

(125c)

R1 ≤I(X1;YDi
|X2,X3)−I(Ŷ2; Y2|X1,X2,X3,YDi

) + I(X2, X3; YDi
). (125d)

Now we simplify these constraints. First, it can be seen that when

Ř3 ≥ Ř2 − min
i=1,2

I(X2; YDi
|X3), (126)

the constraint (125c) is more relaxed than (125b). We note that ran-

dom binning imposes Ř3 ≤ Ř2, which is satisfied under condition (126).

Hence (125c) can be dropped without inducing additional constraint.

Next, we consider the constraint (125b) in two cases.

∗ case 1: I(Ŷ2; Y2|X2, X3, YDi
) ≤ I(X2; Y3|X3). In this case, choos-

ing I(Ŷ2; Y2|X2, X3, YDi
) ≤ Ř2 ≤ I(X2; Y3|X3) renders the con-

straint (125b) to be more relaxed than (125a).

∗ case 2: I(Ŷ2; Y2|X2, X3, YDi
) > I(X2; Y3|X3). In this case, choos-

ing Ř2 ≤ I(X2; Y3|X3) < I(Ŷ2; Y2|X2, X3, YDi
) renders the con-

straint (125b) to be more relaxed than

R1 ≤ I(X1; YDi
|X2, X3)− I(Ŷ2; Y2|X1, X2, X3, YDi

) + I(X2; Y3|X3).

(127)
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Constraint (125d) and (127) provide

R1 ≤I(X1; YDi
|X2, X3)− I(Ŷ2; Y2|X1, X2, X3, YDi

)

+ min{I(X2; Y3|X3), I(X2, X3; YDi
)}. (128)

In both cases, constraint (124) and the condition Ř2 ≤ R̂2 which is im-

posed by random binning are satisfied. Therefore, constraint (125b) can

be dropped, and (125a) and (128) yields (33) in the corollary.

– Using Strategy 2, the 1-to-1 mapping implies R̂2 = Ř2, and hence (123)

and (124) impose the following constraint:

I(Ŷ2; Y2|X2, X3) ≤ R̂2 = Ř2 ≤ I(X2; Y3|X3). (129)

However, for the case Ř2 = R̂2, constraint (125b) is more relaxed

than (125a). Furthermore, constraint (125c) can be dropped when se-

lecting

Ř3 ≥max
i=1,2

min{I(X3; YDi
), Ř2−I(Y̌2;YDi

|X2,X3,YDi
)−I(X2;YDi

|X3)}.

(130)

Constraints (125a), (125d) and (129) yield (34).

– Using Strategy 3, the recovery of s2 at the destination Di implies that

Ř2 ≤ min
i=1,2

{I(X2;YDi
|X3) + min{Ř3, I(X3; YDi

)}}, (131)

in which the rate Ř3 can be chosen as

Ř3 ≥ I(X3; YDi
), (132)
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such that the right hand side of (131) is maximized, and we obtain

Ř2 ≤ min
i=1,2

I(X2, X3; YDi
). (133)

If (124) is not binding, it can be seen from (132) and (133) that Ř3 ≤ Ř2

can be satisfied. On the other hand, if (124) is binding, we can choose

Ř3 ≤= Ř2 = I(X2; Y3|X3). In both cases, the constraint Ř3 ≤ Ř2 imposed

by random binning can be satisfied and we have

Ř2 ≤ min{I(X2; Y3|X3),min
i=1,2

{I(X2, X3; YDi
)}} (134)

Next, the destinations use s2 to recover m1. The probability of erroneous

decoding tends to 0 as n → ∞ if

R1 ≤ I(X1; Ŷ2, YDi
|X2, X3) (135)

R1 ≤ I(X1; YDi
|X2, X3)− I(Ŷ2; Y2|X1, X2, X3, YDi

) + Ř2. (136)

Hence, when choosing

Ř2 = min{I((Ŷ2; Y2|X2, X3, YDi
),min{I(X2; Y3|X3),min

i=1,2
{I(X2, X3; YDi

)}}},

which satisfies the constraint Ř2 ≤ R̂2 imposed by random binning. The

constraints (135) and (136) yield (35).

This completes the proof of the corollary.
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D.1 Analysis of Probability of Error for Theorem 7

Throughout the proof we will assume, without loss of generality, that N1 ≤ N2.

Codebook Generation Generate 2nR i.i.d. x(m) following p(x) =
∏n

i=1 p(xi),

m ∈ [1, 2nR]. Generate 2nI(Xe;Ys,1) i.i.d. xe(s) following p(xe) =
∏n

i=1 p(xei), and

s ∈ [1, 2nI(Xe;Ys,1)]. For each xe(s), generate 2nR̂e i.i.d. ŷe(z|s) following p(ŷe|xe) =
∏n

i=1 p(ŷei|xei), z ∈ [1, 2nR̂e].

Random Binning The set {1, . . . , 2nR̂e} is randomly binned in 2nI(Xe;Ys,1) cells. Denote

the mapping by s = B(z).

Encoding In block b, the eavesdropper finds an index zb such that (xe(sb), ŷe(zb|sb),
ye(b)) ∈ A(n)

ε . From the covering lemma in Section 3.2 (cf. [41]), such zb exists if n is

sufficiently large and

R̂e ≥ I(Ŷe; Ye|Xe). (137)

If more than one z is found, choose the smallest z and let sb+1 = B(zb). Index mb

and sb are transmitted by the transmitter and the eavesdropper, respectively.

Decoding Assume that at the end of block b, receiver 1 and receiver 2 have correctly

decoded mb−1 and sb−1.

1. Decoding sb: Receiver i, i = 1, 2, does two steps:

(a) The receiver determines two sets, S(b−1)
z and S(b)

s :

• The set S(b−1)
z contains the indices ẑ for which (x(mb−1),xe(sb−1),

ŷe(ẑ|sb−1),ys,i(b− 1),yi(b− 1)) ∈ A(n)
ε .

• The receiver determines the set S(b)
s which contains the indices ŝ =

B(ẑ) for each ẑ ∈ S(b−1)
z .
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(b) The receiver declares that sb = ŝ was sent in block b if there exists a unique

index ŝ ∈ S(b)
s such that

(

x(m̂),xe(ŝ),ys,i(b),yi(b)
)

∈ A(n)
ε for some m̂.

2. Recovering mb: Using the index sb obtained in Step 1, receiver i con-

structs a set S ′(b)
z,i = {ẑ|

(

xe(sb), ŷe(ẑ|sb), ys,i(b),yi(b)
)

∈ A(n)
ε ,
(

xe(ŝ),ys,i(b +

1),yi(b + 1)
)

∈ A(n)
ε , ŝ = B(ẑ)}. The receiver declares that mb = m̂

was sent in block b if, for some ẑ ∈ S ′(b)
z,i , there is a unique m̂ such that

(

x(m̂), ŷe(ẑ|sb),xe(sb),ys,i(b),yi(b)
)

∈ A(n)
ε .

Next we analyze the probability of error.

Without loss of generality, assume that the index pair (m, s) = (1, 1) is transmitted

in block b and block b+1. We define the following error events for the recovery of sb.

Es,i = {(x(1),xe(1), ŷe(1|1),ys,i(b− 1),yi(b− 1)) /∈ A(n)
ε

∪ (x(1),xe(1),ys,i(b),yi(b)) /∈ A(n)
ε , for some z 6= 1};

Es,2 = {(x(1),xe(1), ŷe(z|1),ys,i(b− 1),yi(b− 1)) ∈ A(n)
ε

∩ (x(1),xe(s),ys,i(b),yi(b)) ∈ A(n)
ε , for some z 6= 1, s = B(z) 6= 1};

Es,3 = {(x(1),xe(1), ŷe(z|1),ys,i(b− 1),yi(b− 1)) ∈ A(n)
ε

∩ (x(m),xe(s),ys,i(b),yi(b)) ∈ A(n)
ε , for some z 6= 1, s = B(z) 6= 1, m 6= 1}.

The receiver makes an error if any events in Es = ∪3
j=1Es,j occurs. Using the union

bound, we have P (Es) = P (∪3
j=1Es,j) ≤

∑3
j=1 P (Es,j).

Let Ŷe = J + Z ′, where Z ′ ∼ N (0, N ′). Define γ′ = N ′

PJ
. Using Ye = J and

Yi = aiX + biJ , we have

I(Ŷe; Ye|X,Xe, Yi, Ys,i) = h(Z ′)− h(Z ′) = 0. (138)

Since (138) holds for any value of γ′, it can be arbitrarily chosen.
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Now we upper bound P (Es,j), j = 1, 2, 3. By the conditional joint typicality

lemma Section 3.2 (cf. [41, Sect. 2.5]), P (Es,1) → 0 as n → ∞.

The probability of Es,2 can be upper bounded by

P (Es,2) ≤ 2n(R̂−I(Ŷe;X,Yi,Ys,i|Xe)−I(Xe;Yi,Ys,i|X)).

Because of (138), we have I(Xe; Yi, Ys,i|X) ≥ I(Ŷi; Ye|X,Xe, Yi, Ys,i). Hence us-

ing (137), P (Es,2) → 0 as n → ∞.

The probability of Es,3 can be upper bounded by

P (Es,3) ≤ 2n(R+R̂−I(Ŷe;X,Yi,Ys,i|Xe)−I(X,Xe;Yi,Ys,i)).

Using (137), we have P (Es,3) → 0 as n → ∞ if

R ≤ I(X,Xe; Yi, Ys,i)− I(Ŷe; Ye|X,Xe, Yi, Ys,i),

which using (138) yields

R ≤ I(X,Xe; Yi, Ys,i) = I(X ; Yi) + I(Xe; Ys,i). (139)

Thus, when (139) is satisfied, P (Es) tends to 0 as n → ∞.
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To analyze the probability of error for the recovery of mb, we define the following

error events for i = 1, 2, respectively:

Em,1 = {(x(1),xe(1), ŷe(1|1),ys,i(b),yi(b)) /∈ A(n)
ε

∪ (xe(1),ys,i(b+ 1),yi(b+ 1)) /∈ A(n)
ε };

Em,2 = {(x(m),xe(1), ŷe(1|1),ys,i(b),yi(b)) ∈ A(n)
ε };

Em,3 = {(x(m),xe(1), ŷe(z|1),ys,i(b),yi(b)) ∈ A(n)
ε

∩ (xe(1),ys,i(b+ 1),yi(b+ 1)) ∈ A(n)
ε , for m 6= 1, z 6= 1};

Em,4 = {(x(m),xe(1), ŷe(z|1),ys,i(b),yi(b)) ∈ A(n)
ε

∩ (xe(s),ys,i(b+ 1),yi(b+ 1)) ∈ A(n)
ε , for m 6= 1, z 6= 1, s = B(z) 6= 1}.

The receiver makes an error if any events in Em = ∪4
j=1Em,j occurs. Hence, P (Em) ≤

∑4
j=1 P (Em,j).

Now we bound P (Em,j), j = 1, 2, 3, 4. By the conditional joint typicality lemma

in Section 3.2 (cf. [41, Sect. 2.5]), P (Em,1) → 0 as n → ∞.

For Em,2, we have P (Em,2) ≤ 2n(R−I(X;Ŷe,Yi,Ys,i|Xe)). Hence, P (Em,2) → 0 as n → ∞
if for i = 1, 2,

R ≤ I(X ; Ŷe, Yi, Ys,i|Xe). (140)

The probability of Em,3 can be bounded by

P (Em,3) ≤ 2n(R+R̂e−I(X;Ys,1)−I(X;Ys,i,Yi|Xe)−I(Ŷe;X,Ys,i,Yi|Xe)).

Using (137), yields P (Em,3) → 0 as n → ∞ if

R ≤ I(X ; Ys,i, Yi|Xe)− I(Ŷe; Ye|X,Xe, Ys,i, Yi) + I(X ; Ys,1).
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Using (138), the latter condition is satisfied for i = 1, 2, when

R ≤ I(X ;Ys,i, Yi|Xe) + I(X ; Ys,1) = I(X ; Yi) + I(Xe; Ys,1). (141)

The probability of Em,4 can be bounded by

P (Em,4) ≤ 2n(R+R̂e−I(X;Ys,i,Yi|Xe)−I(Ŷe;X,Yi,Ys,i|Xe)−I(Xe;Yi,Ys,i)).

Using (137), we have P (Em,4) → 0 as n → ∞ if

R ≤ I(X,Xe; Yi, Ys,i)− I(Ŷe; Ye|X,Xe, Yi, Ys,i).

Using (138), the latter condition yields the same constraint as (139).

Now we analyze the constraints in (139) and (141). We note that I(Xe; Ys,1) ≥
I(Xe; Ys,2) since N1 ≤ N2. Hence, the constraint in (139) is tighter than that in (141)

for i = 2. Using this observation, the constraints in (141) can be dropped.

Using Gaussian codebooks (139) yields R ≤ C(γi) + C(γe,i).
Next, consider (140). We have

R ≤ I(X ; Ŷe, Yi, Ys,i|Xe) = C
(

γi(1 + 1/γ′)
)

. (142)

It can be shown that, when γ′ ≥ 0 such that

γ′ ≤ min
i=1,2

γi
(1 + γi)γe,i

is satisfied, the right hand side of (142) is larger than the smaller of the two arguments

of the minimization of (49). This choice of γ′ renders (142) redundant and completes

the proof.
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D.2 Proof of the Achievable Rate in Section 5.4.3

Let the signal transmitted by eavesdropper be denoted by cJ , where c is the gain

of the amplifier. Hence,

c2 = Pe/PJ . (143)

At receiver i, the received signal from the eavesdropper can be expressed as Ys,i =

cJ + Zi. Receiver i linearly combines the received signal Yi and Ys,i to recover the

message from the transmitter. The combined signal can be expressed as Yi + αYs,i =

aiX + biJ − α(cJ + Zi), where α is the combining weight to be optimized. The

maximum rate that can be achieved by AF is given by

RAF = min
i=1,2

max
α

C
( a2iP

PJ,Zi

)

, (144)

where PJ,Zi
= (bi − αC)2PJ + α2Ni is the jamming and noise power.

Optimizing α yields

P ∗
J,Zi

=
b2iPJNi

c2PJ +Ni

, i = 1, 2.

Using this result and (143) in (144) yields

RAF ≤ C
(a2iP (Pe +N)

b2iPJNi

)

= C
(

γi(1 + γe,i)
)

, i = 1, 2,

which completes the proof.
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