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Abstract

In wireless networks, link budget can be relaxed by delivering the data using inter-

mediate relay nodes. Although the immediate purpose of relaying is to obtain gain

against path loss, it can also create spatial diversity due to the broadcast nature of

the wireless medium. The objective of this work is to design and analyze relaying

protocols that induce e2e cooperative diversity for ad hoc and infrastructure based

networks.

One of the main limitations of digital multi-hop relaying is the occurrence of

detection errors at the relays. If the relaying is not done selectively, these errors

cause significant performance degradation at the destination, a problem usually called

error propagation. The first part of this thesis studies threshold digital relaying

techniques to reduce error propagation. A set of optimal thresholds are derived and

their performance for a single relay network is evaluated. It is shown that threshold

digital relaying achieves full – in this case dual - diversity. A good approximation to

the optimal threshold is also derived. For multiple relay scenarios, a relay selection

protocol based on threshold is proposed and threshold functions that achieve full

diversity are provided.

Most studies on cooperative diversity assume relays at favorable locations, which

cannot be justified in random topologies. These studies are not necessarily good in-

dicators of network-wide benefits of cooperative relaying. The second part of this



thesis analyzes the network-wide benefits of cooperative relaying in random topolo-

gies. Assuming that the relays are distributed according to Poisson point process, the

performance of cooperative relaying is derived as a function of relay density.

The relays can be user terminals serving for each other, as well as dedicated fixed

relays that are part of the infrastructure. Due to their less stringent space and cost

constraints, infrastructure-based relays can accommodate multiple-antennas. The

last part of this thesis is a preliminary study on an uplink scenario, where multiple

single-antenna users communicate with a common multi-antenna destination with

the help of a multi-antenna relay. It is shown that using multi-stream relaying and

practical Multiple Input Multiple Output (MIMO) receivers, e2e diversity benefits

can be achieved.
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(TÜBİTAK) was curial to start my graduate studies and made this journey possible.

Thanks to my parents, my brother, and my parents-in-law for their constant love

and support.

v



Table of Contents

Abstract ii

Acknowledgments v

Table of Contents vi

List of Figures xi

List of Symbols and Acronyms xvi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Error Propagation and Threshold Digital Relaying in Cooper-

ative Wireless Networks . . . . . . . . . . . . . . . . . . . . . 3

1.2.2 Cooperative Digital Relaying in Wireless Ad hoc Networks . . 5

1.2.3 Relay-Assisted Spatial Multiplexing in Wireless Fixed Relay

Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Background on Cooperative Communication and Cooperative Di-

versity Relaying 8

2.1 Preliminaries of Multihop Relaying . . . . . . . . . . . . . . . . . . . 10

vi



2.2 Multiple Antennas and Cooperative Communication . . . . . . . . . . 13

2.3 Cooperative Diversity . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3 SNR-based Threshold Digital Relaying 18

3.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.2 Analysis of Threshold Digital Relaying . . . . . . . . . . . . . . . . . 26

3.2.1 Probability of Cooperative Error . . . . . . . . . . . . . . . . 27

3.2.2 Approximate Expressions for the Probability of Error Propagation 28

3.2.3 Optimal Threshold Functions and Average e2e BER for Thresh-

old Digital Relaying . . . . . . . . . . . . . . . . . . . . . . . 33

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.1 Benchmark Schemes . . . . . . . . . . . . . . . . . . . . . . . 37

3.3.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 38

3.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4 Asymptotic BER Analysis of Threshold Digital Relaying 44

4.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

4.2 Asymptotic Performance of Optimal TDR . . . . . . . . . . . . . . . 47

4.2.1 Asymptotic Behavior of γ∗t , P{γsr ≤ γ∗t }, and P{Esr|γsr > γ∗t } . 48

4.2.2 Asymptotic e2e BER and Diversity Order of the Optimal TDR 49

4.3 An Approximation to the Optimal Threshold . . . . . . . . . . . . . . 50

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Threshold Based Relay Selection in Digital Diversity Relaying 58

5.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

5.2 End-to-end (e2e) BER of the TRS . . . . . . . . . . . . . . . . . . . . 62

5.3 Diversity Order of TRS . . . . . . . . . . . . . . . . . . . . . . . . . . 66

vii



5.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

5.4.1 Benchmark Protocols . . . . . . . . . . . . . . . . . . . . . . . 69

5.4.2 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . 70

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Cooperative Digital Relaying in Wireless Ad-hoc Networks 76

6.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.1.1 Node Location Model . . . . . . . . . . . . . . . . . . . . . . . 81

6.1.2 Propagation Model . . . . . . . . . . . . . . . . . . . . . . . . 81

6.2 Description of the Basic Relaying Protocol . . . . . . . . . . . . . . . 83

6.3 Outage Probability Analysis . . . . . . . . . . . . . . . . . . . . . . . 84

6.3.1 Outage Probability of the Direct Transmission . . . . . . . . . 84

6.3.2 Outage Probability of the Basic Relaying Protocol . . . . . . . 85

6.4 Enhancements to the Basic Relaying Protocol . . . . . . . . . . . . . 98

6.4.1 Relay-Assisted ARQ Protocol . . . . . . . . . . . . . . . . . . 99

6.4.2 Minimum Average SNR for Relay Transmission: gmin . . . . . 100

6.4.3 Outage Probability of Relay-Assisted ARQ . . . . . . . . . . . 103

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7 Cooperative Diversity and Distributed Spatial Multiplexing in

Wireless Fixed Relay Networks 114

7.1 System Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.1.1 Multi-stream Relaying Protocols . . . . . . . . . . . . . . . . . 121

7.2 Outage Analysis of Direct Transmission and Multistream Relaying Pro-

tocols . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.2.1 Outage Probability of Direct Transmission . . . . . . . . . . . 123

viii



7.2.2 Outage Probability of the Time-Division Direct Transmission

(TDDT) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.2.3 Outage Probability of Relaying Protocols . . . . . . . . . . . . 125

7.3 Combining Methods for Diversity Relaying Protocols . . . . . . . . . 126

7.3.1 Joint ZF-DF (JZF-DF) . . . . . . . . . . . . . . . . . . . . . . 126

7.3.2 Parallel ZF-DF (PZF-DF) . . . . . . . . . . . . . . . . . . . . 126

7.3.3 P s,r→d
o with JZF-DF and PZF-DF . . . . . . . . . . . . . . . . 127

7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

7.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

8 Conclusions and Future Work Directions 140

List of References 144

Appendix A Derivations for Chapter 3 153

A.1 Derivation of h(x, y) Given in (3.14) . . . . . . . . . . . . . . . . . . 153

A.2 Derivation of P{Esr|γsr > γt} . . . . . . . . . . . . . . . . . . . . . . . 154

A.3 Average BER Calculation for Models 2, 3, and 4 . . . . . . . . . . . . 154

A.4 The Threshold that Minimizes Symbol Error Rate for MPSK Modulation156

Appendix B Derivations for Chapter 4 159

B.1 Asymptotic Behavior of the Probability of Error Propagation . . . . . 159

B.2 Proof of Lemma 4.1 – Asymptotic Behavior of γ∗t . . . . . . . . . . . 163

B.3 Proof of Lemma 4.2 – Asymptotic Behavior of P{γsr ≤ γ∗t } . . . . . . 164

B.4 Proof of Lemma 4.3 – Asymptotic Behavior of P{Esr|γsr > γ∗t } . . . . 165

Appendix C Derivations for Chapter 5 166

C.1 Derivation of Eqn.s (5.8), (5.9), and (5.10) . . . . . . . . . . . . . . . 166

C.2 Proof of Lemma 5.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

ix



Appendix D Work Published, Submitted, and in Preparation 170

x



List of Figures

2.1 Multihop relaying and the corresponding time-division protocol. . . . 11

2.2 Cooperative diversity relaying with parallel relays and the correspond-

ing time-division protocol. . . . . . . . . . . . . . . . . . . . . . . . . 15

3.1 The system model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.2 Comparison of P{Eprop|I3} values obtained from the approximation in

(3.23) and from the numerical integration of (3.20) as a function of γsd

for different γ̄rd values. The exact values are plotted in solid lines and

the approximate values are plotted in dashed lines. . . . . . . . . . . 30

3.3 Comparison of P{Eprop|I2} values obtained from the approximation in

(3.24) and from the numerical integration of (3.21) as a function of γrd

for different γ̄sd values. The exact values are plotted in solid lines and

the approximate values are plotted in dashed lines. . . . . . . . . . . 31

3.4 Comparison of P{Eprop|I1} values obtained from the approximation in

(3.25) and from the numerical integration of (3.22) as a function of γ̄rd

for different γ̄sd values. The exact values are plotted in solid lines and

the approximate values are plotted in dashed lines. . . . . . . . . . . 32

3.5 The e2e BER for different relaying schemes as a function of γ̄sr for

γ̄rd = 15 dB, γ̄sd = 0 dB. . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.6 The e2e BER for different relaying schemes and the threshold for Model

1 (obtained from (3.29)) as a function of γ̄rd for γ̄sr = 15 dB, γ̄sd = 5 dB. 40

xi



3.7 The e2e BER for different relaying schemes and the threshold value for

Model 1 (obtained from (3.29)) as a function of γ̄rd for γ̄sr = 15 dB,

γ̄sd = 15 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.8 The e2e BER for different relaying schemes and the threshold value for

Model 1 (obtained from (3.29)) as a function of γ̄, where γ̄sr = γ̄rd = γ̄

dB and γ̄sd = γ̄ − 12 dB. . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1 The e2e BERs for different schemes as a function of SNR in a symmetric

network, where κsr = κrd = κsd = 0 dB. . . . . . . . . . . . . . . . . . 54

4.2 The threshold values and the e2e BERs for different schemes as a func-

tion of SNR in a nonsymmetric network, where κsr = κrd = 0 dB and

κsd = −12 dB. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.3 The threshold values as a function of SNR with κrd = κsd = 0 dB. . . 56

4.4 The threshold values as a function of SNR in a nonsymmetric network,

where κrd = 0 dB and κsd = −12 dB. . . . . . . . . . . . . . . . . . . 57

5.1 The parallel relay configuration with Mr relays. . . . . . . . . . . . . 61

5.2 The e2e BER for all relaying protocols for Mr = 1 relay as a function

of SNR in a symmetric network (κsr = κrd = κsd = 0 dB). The BER of

direct transmission and the BER in the absence of errors in the S−Ri

links are also shown as reference curves. . . . . . . . . . . . . . . . . 71

5.3 The e2e BER for all relaying protocols for Mr = 2 relays as a function

of SNR in a symmetric network (κsr = κrd = κsd = 0 dB). . . . . . . 72

5.4 The threshold values that minimize the e2e BER of TRS in symmetric

networks with different number of relays Mr. . . . . . . . . . . . . . . 73

5.5 The e2e BER for all the protocols with Mr = 1 and Mr = 2 in a linear

network, where κsr = κrd = 0 dB, κsd = −12 dB. Solid line: Mr = 1,

dashed line: Mr = 2. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

xii



5.6 The threshold values that minimize the e2e BER in a linear network

(κsr = κrd = 0 dB, κsd = −12 dB) as function of SNR with different

number of relays Mr. . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.1 The two phases of the relaying protocol for Mr = 2. In phase I, the

successful transmissions are shown by solid lines. The transmissions

that are combined by D are shown by dotted lines. . . . . . . . . . . 84

6.2 Illustration for the calculation of Fdrd|dsr(l|r) for |l − dsd| < r < |l + dsd| 88

6.3 The CDF of grd,a (Fgrd,a
(g)), the average normalized SNR of an arbi-

trary reliable relay to D. υ = 4, σ = 8, rNs = rNr (ζ = 1). Dotted

curves with markers are obtained from (6.19) and dashed curves are

obtained through Monte Carlo simulations. . . . . . . . . . . . . . . . 91

6.4 The CDF of grd(1) (Fgrd(1)
(g)), the average SNR of the best reliable

relay to D. υ = 4, σ = 8, d̃sd = 1, ζ = 1. Dotted curves with markers

are obtained from (6.19) and (6.23) and dashed curves are obtained

through Monte Carlo simulations. . . . . . . . . . . . . . . . . . . . . 94

6.5 G(gsd, grd,i): The waiting time before responding for reliable relay i

with grd,i ≥ gmin. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6.6 Minimum average SNR for relay transmission (gmin) as a function of

gsd. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6.7 Performance comparison of the basic relaying protocol with MRC and

SC using Mr = 1 and Mr = 2 relays at maximum, σ = 8, υ = 4,

λr2
Ns = 2 (µr = 8.51). Analytical results are obtained from (6.6) and

(6.35). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

xiii



6.8 Outage probability of the basic relaying protocol with MRC and Mr =

1 relay at maximum using different relay selection criteria (distance,

average SNR, and instantaneous SNR) as a function of d̃sd. σ = 8,

υ = 4. Two relay densities are considered: λr2
Ns = 1.0 (µr = 4.255)

and λr2
Ns = 2.0 (µr = 8.51). . . . . . . . . . . . . . . . . . . . . . . . 106

6.9 Outage probability of the basic relaying protocol with MRC and Mr =

1 relay at maximum as a function of µr. σ = 8, υ = 4. µr is varied by

varying λ. Two d̃sd values are considered: d̃sd = 0.5 and d̃sd = 1.0 . . 107

6.10 Outage probability of the basic relaying protocol with MRC and Mr =

1 relay at maximum as a function of σ. υ = 4 and λr2
Ns = 1.0. Two

d̃sd values are considered: d̃sd = 0.25 and d̃sd = 1.0 . . . . . . . . . . 109

6.11 Average number of reliable relays as a function of σ. υ = 4 and λr2
Ns =

1.0. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

6.12 Outage probability of the RARQ, ARQ, and the basic relaying protocol

(with MRC, Mr = 1) as a function of d̃sd. σ = 8, υ = 4. Two relay

densities are considered: λr2
Ns = 0.25 (µr = 1.064) and λr2

Ns = 1.0

(µr = 4.255). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.13 Average number of transmissions per packet for the RARQ and the

basic relaying protocol (with MRC, Mr = 1) as a function of d̃sd.

σ = 8, υ = 4. The average number of transmissions per packet of

ARQ is the same as that of RARQ and is not shown in the figure.

Two relay densities are considered: λr2
Ns = 0.25 (µr = 1.064) and

λr2
Ns = 1.0 (µr = 4.255). . . . . . . . . . . . . . . . . . . . . . . . . . 112

7.1 An Ms × Kr × Kd system: Ms single antenna source nodes, a relay

with Kr antennas and a destination with Kd antennas. . . . . . . . . 119

xiv



7.2 Illustration of case 1 and case 2. In case 1, γ̄i,d = γ̄sd for all

i = 1, 2, . . . , Ms. In case 2, in addition to this condition, γ̄rd = γ̄sd.

However, in both cases, the sources can have arbitrary distances to the

relay. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

7.3 System outage probability of 2 × 2 × 2 system in linear network case

as a function of the average link SNR. Markers show simulation results

and dashed lines show analytical results. . . . . . . . . . . . . . . . . 132

7.4 System outage probability of 2 × 3 × 2 system in linear network case

as a function of average link SNR. . . . . . . . . . . . . . . . . . . . . 133

7.5 System outage probability of 2 × 2 × 2 system in symmetric network

case as a function of average link SNR. . . . . . . . . . . . . . . . . . 134

7.6 System outage probability of 2 × 3 × 2 system in symmetric network

case as a function of average link SNR. . . . . . . . . . . . . . . . . . 135

7.7 System outage probability of 2 × 2 × 3 system in symmetric network

case as a function of average link SNR. . . . . . . . . . . . . . . . . . 136

7.8 System outage probability of 2 × 3 × 3 system in symmetric network

case as a function of average link SNR. . . . . . . . . . . . . . . . . . 137

xv



List of Symbols and Acronyms

List of Acronyms

Acronym Explanation

ACK Acknowledgement

AR Analog Relaying

ARQ Automatic Repeat reQuest

BER Bit Error Rate

BPSK Binary Phase Shift Keying

CDF Cumulative Distribution Function

CDR Conventional Digital Relaying

C-MRC Cooperative Maximal Ratio Combining

CRC Cyclic Redundancy Check

CSI Channel State Information

CTP-SN Cooperative Transmission Protocol for Sensor Networks

xvi



DF Decode-and-forward

DR Digital Relaying

e2e End-to-end

HARBINGER Hybrid ARq-Based Intra-cluster GEographically-informed Relaying

H-BLAST Horizontal Bell Laboratories Layered Space-Time architecture

i.i.d. Independent identically distributed

JZF-DF Joint Zero Forcing Decision Feedback Detection

LAR Link Adaptive Relaying

MAC Medium Access Control

MIMO Multiple-Input Multiple-Output

MISO Multiple-Input Single-Output

ML Maximum Likelihood

MPSK M-ary Phase Shift Keying

MRC Maximal Ratio Combining

NDR Non-Selective Digital Relaying

PMF Probability Mass Function

PDF Probability Density Function

xvii



PZF-DF Parallel Zero Forcing Decision Feedback Detection

R-ARQ Relay-assisted Automatic Repeat reQuest

RRM Radio Resource Management

RS Relay Selection

SC Selection Combining

SDR Selective Digital Relaying

SER Symbol Error Rate

SISO Single-Input Single-Output

SNR Signal-to-Noise Ratio

TDDT Time Division Direct Protocol

TDR Threshold Digital Relaying

TRS Threshold based Relay Selection

V-BLAST Vertical Bell Laboratories Layered Space-Time architecture

ZF-DF Zero Forcing Decision Feedback Detection

xviii



List of Symbols

Symbol Explanation

a A vector

A A matrix

AT Transpose of matrix A

AH Hermitian of matrix A

diag{a1, a2, . . . , an} n× n Diagonal matrix with given elements on its diagonal

In n× n Identity matrix

0m,n m× n Zero matrix

A(i, j) Element at row-i and column j of A

A(i1 : i2, j1 : j2) Submatrix of A composed of rows i = i1, i1 + 1, . . . , i2

and columns j = j1, j1 + 1, . . . , j2

P{A} Probability of event A

EX Expectation with respect to random variable X

S Source node

D Destination node

R Relay node

Mr (Maximum) number of (transmitting) relays

xix



SNR Reference SNR

Ktx Number of transmit antennas

Krx Number of receive antennas

C Capacity

d Diversity order

r Multiplexing gain

αij Fading coefficient for the link from node i to node j

Eb,i Energy per bit spent by node i

xi Symbol transmitted by node i

nij Noise component in the link from node i to node j

γ Instantaneous SNR

γ̄ Average SNR

pX(x) PDF of random variable X

Ii Set of parameters known at the relay in Model i

αm, βm Modulation dependent parameters for BER expressions

erf Error function

erfc Complementary error function

xx



Pb Bit error rate

P̄b Average bit error rate

BER
(i)
e2e End-to-end BER for Model i

Eij Error event in the link between node i and node j

Ecoop Cooperative error event

Eprop Error propagation event

π(Ij) Relaying policy based on information Ij

γt,i Threshold value for Model i

γ∗t,i Optimal threshold value for Model i

γ∗,approx
t Approximately optimal threshold

κij Relative SNR

Nr Number of reliable relays

As The event that the destination selects the signal received from the source

Ar,k The event that the destination selects the signal from relay k

λ Node/relay density

Kc Constant gains such as antenna gain, processing gain

υ Path loss exponent

xxi



PT , PN Transmit power and noise power

Ps, Pr Source and relay transmit power

rN Transmission range in the absence of fading

rNs, rNr Transmission range of the source and relay in the absence of fading

dij Distance between node i and node j

Xij Rayleigh fading coefficient between node i and node j

Zij Lognormal fading coefficient between node i and node j

σ Lognormal parameter

gij Normalized average SNR

µr Average number of reliable relays

Γ Gamma function

FX(x) CDF of random variable X

Γ(.) Gamma function

B(a, b; r) A disc with radius r centered at point (a, b)

C(a, b; r) A circle with radius r centered at point (a, b)

g(i) i-th largest average SNR

W (.) Lambert’s W function

xxii



gmin Minimum SNR required for relay transmission

Ms Number of source nodes

Kd Number of receive antennas at the destination

Kr Number of antennas at the relay

Hsd Source-destination channel matrix

Hsr Source-relay channel matrix

Hrd Relay-destination channel matrix

He Equivalent end-to-end channel matrix
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Chapter 1

Introduction

1.1 Motivation

As wireless communication becomes more prevalent, the demand for higher data rates

and uninterrupted connectivity is increasing. Future wireless systems are provisioned

to be highly heterogeneous and interconnected. On one side, wireless ad hoc networks

are emerging for a wide range of new applications, on the other side, infrastructure

based broadband wireless systems are expanding to provide increasing number of

services with ubiquitous coverage.

Ad hoc networks have a wide range of applications including peer-to-peer wireless

data exchange, home networks, and sensor networks. These networks operate in a new

paradigm wherein the network does not rely on any infrastructure. Self-organization

feature reduces the cost and effort for their configuration and maintenance. In most

applications the network consists of battery-powered nodes. Due to low transmit

power, these nodes have limited communication range. Thus, cooperative communi-

cation, in which nodes share their resources to facilitate each others’ communication,

is essential for these networks.

In wireless broadband networks cooperative communication emerged as an up-

grade to single hop cellular architecture. As evident from the current and upcoming

1
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standards, there is a growing consensus in wireless community on adding multihop

capability to these networks [1,2]. In infrastructure based wireless networks, enabling

multihop relaying brings many opportunities at different network layers. Replacing

long and weaker links with short and stronger links can mitigate the burden on the

link budget. Alternative routes between the users and the basestation provide ro-

bustness against shadowing and multi-path fading, and introduce new design options

for scheduling and routing.

In physical layer an important opportunity arises with cooperation; due to the

broadcast nature of wireless medium, as the data is transmitted to its destination in

multiple hops, many nodes in the vicinity can hear these transmissions. Transmissions

from different nodes are generally affected by different and statistically independent

fading. Hence, the final destination of the data can combine all the received signals

using traditional combining methods such as Maximal Ratio Combining (MRC) or

Selection Combining (SC) and obtain diversity against the harming effects of fading.

Diversity obtained through multihop transmissions is usually referred to as cooperative

diversity [3].

Diversity is a very powerful technique to increase robustness against channel fad-

ing. Cooperative diversity is a kind of spatial diversity that can be obtained without

multiple transmit or receive antennas. It is especially useful when time, frequency,

and spatial diversity through multiple antennas are not feasible. The first exam-

ples of practical cooperative diversity protocols were studied by Laneman et al. [4].

It was shown that diversity relaying has the potential to improve end-to-end (e2e)

performance in slow fading environments despite the penalty of relaying in terms of

bandwidth expansion. The main objective of this thesis is to design and analyze

protocols to induce e2e diversity through the cooperation of relay nodes with source

and destination.

Depending on the level of signal processing performed at the relay, cooperative
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relaying schemes can be classified as analog relaying or digital relaying. In analog

relaying, the relay terminal amplifies the received signal and retransmits it. In digital

relaying, the relay detects the received signal and retransmits regenerated version of

the detected signal. In this thesis, the applications of cooperative digital relaying in

several wireless scenarios are investigated. Most of the treatment is centered around

two-hop networks, as a two-hop network is the simplest but non-trivial case for the

physical layer cooperative diversity relaying problems studied in this thesis. The main

contributions are summarized below.

1.2 Contributions

1.2.1 Error Propagation and Threshold Digital Relaying in

Cooperative Wireless Networks

In digital relaying, if the relay detection is correct, the destination receives the signal

through multiple branches and thus obtains diversity by combining them. However,

if the relay makes any errors, post-combining SNR at the destination reduces signif-

icantly. This phenomenon is called error propagation. Error propagation limits the

e2e performance of the protocols in which the relay always retransmits. Selective

relaying can be used to reduce the probability of error propagation. The first part

of this thesis focuses on relaying schemes that do not rely on the error detection and

correction capabilities of the relays. These schemes are particularly useful for relaying

among sensor devices that performs detection, but may not afford decoding at every

hop due to stringent energy constraints.

A simple way of reducing error propagation is to make forwarding decisions based

on the link SNRs in the network. The relay can use a threshold to decide when

to retransmit, and retransmits only if the source-relay SNR is above this threshold.
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The choice of the threshold has considerable impact on the e2e performance of the

cooperative diversity schemes. In the first part of this thesis, we study threshold-based

relaying schemes to minimize the e2e Bit Error Rate (BER) in uncoded cooperative

digital relaying systems. In the literature, the threshold value has been determined

empirically from numerical results. In some asymmetric networks, where the SNRs

of the links are not statistically identical, this empirical threshold results in poor

performance.

Optimal threshold values that minimize the e2e BER are derived and the im-

portance of choosing the threshold optimally is illustrated. Studying the perfor-

mance under different models, it is shown that knowledge of the instantaneous source-

destination SNR at the relay can be exploited. When the average source-destination

SNR is large, there is a gain from the instantaneous source-destination SNR knowl-

edge at the relay. However, knowledge of the instantaneous relay-destination SNR at

the relay does not change the performance significantly.

The asymptotic e2e BER of threshold digital relaying is also studied. It is shown

that as the average link SNRs are increased simultaneously, directly proportional to

a reference value (SNR), the optimal threshold that minimizes the e2e BER increases

as log(SNR). The resulting e2e BER decreases as log(SNR)/SNR2. Moreover, any

threshold of the form log(c SNR), achieves the same order of e2e BER as the one

achieved by the optimal threshold and provides dual diversity. A value of c that

performs very close to the optimal threshold is also proposed.

Although multiple relays can offer higher diversity gains, large number of retrans-

missions is usually prohibitive due to limited radio resources. To this end, a threshold

based relay selection algorithm is introduced to limit the retransmissions to one. A

threshold function in the form of log(c SNRMr/αm), where Mr is the number of the

relays, αm is a modulation dependent parameter, and c is a positive constant, is pro-

posed. It is proven that this protocol achieves full diversity (Mr + 1 order) with the
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proposed threshold.

1.2.2 Cooperative Digital Relaying in Wireless Ad-hoc Net-

works

Most studies on cooperative relaying consider simple and optimistic scenarios, in

which, for example, all the relays are in the midpoint between the source and the

destination. In ad hoc networks, the topology will be random due to random node

deployment or node mobility. While for some source-destination pairs there might be

many relays at favorable locations, there might also exist pairs which can find no relays

at all. Although the studies conducted for deterministic topologies provide useful

initial understanding of cooperative diversity relaying, the performance obtained in

these scenarios is not a good indicator of the network-wide gain from cooperative

diversity in random relay deployments. The randomness in node positions is an

integral part that must be incorporated into the problem formulation.

In the second part of this thesis, two-hop cooperative diversity relaying in wire-

less ad hoc networks is studied. The problem is formulated recognizing that node

positions, as well as the fading states of the channels among the nodes, are random.

A simple protocol which requires minimal a priori knowledge of node positions and

channel fading states is proposed. This protocol assumes that each node in the vicin-

ity of the source knows its average link gain to the destination. The source transmits a

packet, and then chooses relays among the nodes that can decode the received packet

reliably. Assuming that the relay nodes are distributed according to a 2-dimensional

Poisson point process, the e2e outage probability of the protocol is studied analyt-

ically as a function of node density, fading parameters and node transmit powers.

Performances of other relay selection criteria such as instantaneous link gain and dis-

tance to the destination are also studied through simulations. Both maximal ratio
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combining and selection combining are considered at the destination.

1.2.3 Relay-Assisted Spatial Multiplexing in Wireless Fixed

Relay Networks

In infrastructure based networks a practical alternative to user cooperation is deploy-

ing fixed relays that are dedicated nodes for forwarding other nodes’ data. Fixed relays

can take the burden of cooperation from users. They are provisioned to have direct

access to the power line, hence their operation is not limited by battery lifetime [5].

While mounting multiple antennas at mobile user terminals might be impractical due

to space and cost constraints, these constraints are less stringent for fixed relays.

Therefore, they can easily accommodate multiple antennas.

The last part of this thesis in an initial study on the potential benefits of multi-

antenna relays. A system in which multiple users want to communicate with a com-

mon multi-antenna receiver, such as a basestation, is considered. Independent data of

the users are spatially multiplexed. In particular, end-to-end outage probability with

Zero Forcing Decision Feedback (ZF-DF) type receivers is studied. A novel method

to combine the signals from the source and the relay is proposed and its performance

is analyzed.

1.3 Organization

The rest of this thesis is organized as follows: Chapter 2 provides a background on

cooperative communication and cooperative diversity relaying. Chapters 3-5 focus

on threshold based digital relaying. In Chapter 3 the optimal threshold values that

minimize e2e BER are derived and their performances are evaluated. Chapter 4 inves-

tigates the diversity gain achievable through threshold digital relaying. In Chapter 5
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multiple relay case is considered and a threshold based relay selection protocol is stud-

ied. Chapter 6 studies the performance of cooperative relaying in random topologies.

In Chapter 7, cooperative diversity benefits obtained through a multiple antenna relay

in a distributed spatial multiplexing system is studied.

The main results in the literature in the general area of cooperative relaying are

summarized in Chapter 2. In the beginning of each chapter, the literature that is

particularly relevant to that chapter is reviewed. Wherever necessary, the references

that are relevant to multiple chapters are reviewed more than once, from each chap-

ter’s viewpoint. A list of the papers published, submitted, and in preparation are

also given as an appendix.



Chapter 2

Background on Cooperative

Communication and Cooperative

Diversity Relaying

Cooperative communication refers to the sharing of resources and the realization of

distributed protocols among multiple nodes in a network. It is a very active research

area with promising developments. Cooperation among peer nodes have been con-

sidered in the 1980’s under the title of packet radio networks [6–8]. Since the 1990’s,

proliferation of highly capable mobile devices brought the attention back into peer

cooperation and wireless ad hoc networks appeared as an active research area. The

main characteristics of ad hoc networks are self-configuration and autonomous opera-

tion without relying on any infrastructure. The promise of ad hoc networks has been

that – as the term “ad hoc” suggests – their self-organization feature will allow them

to adapt to a wide spectrum of applications and network conditions and will reduce

the cost for configuration and maintenance. One of the main focuses of research on

ad hoc networks has been mobility and dynamic topologies. Besides the uncertainty

of link qualities due to wireless fading, nodes can join and leave a network and the

topology of the network changes over time. Although the success of ad hoc networks

8
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in the commercial domain has been somewhat limited, some new classes of networks

emerged, such as community mesh networks and sensor networks, that share some

of the characteristics of ad hoc networks. Research on wireless sensor networks is

mainly driven by the advances in low-power RF and microelectronics, which enabled

large scale deployment of small-size and low-cost sensors. In addition to sensing units,

sensors are equipped with transceivers and they can form networks to transmit their

measurements. Wireless sensor networks are expected to find a wide range of ap-

plications such as security, habitat monitoring, and remote diagnostics and patient

care. Typically, a low-cost sensor is constrained to work and last with limited energy

resources. This limits the computation and communication capabilities of wireless

sensor nodes.

The idea of cooperation has found support also in infrastructure based broad-

band wireless networks. Conventionally, infrastructure based networks follow a single

hop cellular architecture, in which users and the basestations communicate directly.

The main challenge in today’s wireless broadband networks is to support high rate

data communication with continuous coverage at a reduced cost. Despite decades

of research in wireless communication, and significant advances in signal processing

and multi-antenna architectures, these demands are not fully met. The scarcity of

wireless spectrum encouraged the allocation of high frequency bands, where power

attenuation with distance is more severe. This factor significantly decreases the cov-

erage of a basestation. Fast decay of power with distance suggests that both the

capacity and the coverage of networks can be improved by increasing the density of

basestations. However, this trivial solution – sometimes called deploying microcells

– adds to the already high infrastructure and deployment costs. As a result, we face

a situation in which the wireless systems can achieve any two, but not all three, of

high capacity, high coverage and low cost [9]. Integrating cooperative communication

to cellular networks and forming hybrid networks emerged as a pragmatic solution to
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mitigate this problem. Although wireless relays use additional radio resources, they

have lower cost compared to basestations since they do not require a high capacity

wired connection to the backbone. In the final cost analysis, wireless relays can be a

more viable solution than microcells to increase the coverage and to distribute the ca-

pacity uniformly with the coverage of a basestation. Multihop relaying is already part

of the standards currently being developed for wireless broadband systems such as

802.16j and 802.16m, which is an indication of growing consensus on the effectiveness

of cooperative communication.

The conventional and simplest form of cooperation is multihop relaying, in which

data is delivered to its destination through relay nodes forming a multihop path.

Next, we provide the preliminaries of multihop relaying.

2.1 Preliminaries of Multihop Relaying

Relaying protocols can be classified into two according to the processing at the relay:

Analog Relaying (AR) or Digital Relaying (DR). AR can be implemented in a very

primitive way in which the relay functions as an active reflector. In DR, the relay

performs detection and regenerates a noise-free version of original signal based on its

detection. If the resource and performance constraints – such as relay energy and

latency – permit, digital relays can also decode and re-encode the received data. This

way, some of the errors occurring at the source-relay link can be corrected at the relay.

These protocols are also referred as decode-and-forward (DF) relaying protocols in

the literature.

AR and DR incur different limitations in practice. In DR, the relay is required to

first demodulate and detect the received signal, and then modulate and retransmit the

regenerated signal. These operations potentially require more processing and causes

more latency than simple AR. In its basic form, AR does not require any of these.
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Figure 2.1: Multihop relaying and the corresponding time-division protocol.

However, if implemented blindly, AR can generate constant interference to the rest

of the network. Using analog relays as regular network nodes controlled by certain

Medium Access Control (MAC) and Radio Resource Management (RRM) protocols

requires analog relaying to be implemented digitally. In this case, the relay is required

to store analog samples, possibly after quantization.

The relay nodes can operate in full-duplex or half-duplex modes. In full-duplex

mode the relay can transmit and receive at the same time on the same frequency

band. To implement full-duplex operation, in principle, the relay can cancel its self-

interference from the received signal. However, in practice using low cost radios this

approach may not be robust. Thus, in the near future relays are expected to operate

in half-duplex mode only.

The half-duplexity constraint requires the use of orthogonal channels for transmis-

sion and reception. For instance, the relay can use different time slots to receive and

transmit as shown in Fig. 2.1. In the first time slot the source node transmits and the

next relay node R1 receives. In the second time slot, R1 transmits the processed sig-

nal to the next relay. With this protocol, relaying can be easily integrated to wireless

networks using time-division multiple access. As the number of hops increases, the
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number of time slots allocated for delivering data from the source to the destination

increases. To increase the spectral efficiency, spatial reuse can be allowed among the

relay nodes.

BER performance of AR deteriorates at low SNR since analog relays amplify both

the noise and the information bearing parts of the received signal. In the presence of

distance dependent attenuation only, DR performs significantly better than AR [10,

pp. 313-315]. However, under Nakagami fading with different parameters, the BER

and outage performance of two-hop AR and DR are very close at high SNR values.

DR has a negligible gain over AR at low SNRs [11]. On the other hand, the end-to-end

performance gain of DR can become significant as the number of hops increases [12].

In the context of infrastructure based networks, multihop relaying through both

fixed relays and user cooperation are being considered [5]. The orthogonal channel

requirement mentioned above reduces the end-to-end capacity of multihop networks

significantly, which can be prohibitive for broadband networks. Optimal number

of hops in broadband networks is analyzed in [13] and it is argued that in cellular

networks, as a rule of thumb, the number of hops should be limited to that required

for coverage. Capacity of multihop networks with different number of relays and reuse

factors has been studied in [14].

In ad hoc networks literature, in addition to a significant research effort put on

MAC and network layer aspects of wireless multihop networks [15, 16], some prob-

lems closely coupled with physical layer of multihop relaying, such as power control,

scheduling [17], directional transmissions using beamforming [18] were also consid-

ered. The initial tendency to abstract wireless links as wired-line links with more

frequent failures, evolved to better understanding of the effects of physical layer on

the rest of the protocols [19]. Furthermore, cross-layer design appeared as a new

design philosophy.
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2.2 Multiple Antennas and Cooperative Commu-

nication

Multihop relaying imposes a chain structure in which each node listens one other

node in the chain. It can be seen as the simplest form of cooperative communication.

However, introducing relays into the picture brings many more possibilities. For

instance, consider the network in Fig. 2.1 with Mr = 2 relays and assume that the

link from S to R1 is error-free. Then, R1 can act as a second transmit antenna for S.

Similarly, if R2 and D has an error free link, R2 can serve as a receive antenna for D.

Multi-antenna techniques can improve the performance of wireless links in terms

of both capacity and reliability without additional bandwidth use. Multiple receive

antennas provide the classical spatial receive diversity, whereas multiple transmit

antennas can be leveraged through space-time coding to obtain diversity [20]. Avail-

ability of multiple antennas both at the transmitter and receiver sides creates a MIMO

link. In scattering rich environments, at high SNR, the information theoretic capacity

of a MIMO link grows linearly with the number of transmit and receive antennas.

In particular, the capacity C ≈ min{Ktx, Krx} log(SNR), where Ktx and Krx are the

number of transmit and receive antennas, as opposed to the capacity of a Single-Input

Single-Output (SISO) link C ≈ log(SNR). At asymptotically high SNRs these two

kinds of gains, namely multiplexing gain and diversity gain, can be quantified by

diversity order d and multiplexing gain r. A scheme attains diversity order d and

multiplexing gain r if its transmission rate scales as R = r log(SNR) and its error

rate scales as BER ≈ SNR−d [21, pp. 386]. Although these two kinds of gains can be

obtained simultaneously in MIMO links, they are coupled. An important result by

Zheng and Tse shows that there is a fundamental trade-off between the two gains [22]:

for MIMO links, simultaneously achievable diversity gain d and multiplexing gain r
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satisfy

d(r) = (Ktx − r)(Krx − r), 0 ≤ r ≤ min{Ktx, Krx}.

Similar to MIMO systems, through distributed protocols, cooperation can increase

the transmission rate (or enlarge the achievable rate region) or improve the reliability

for a given rate. Capacity in the presence of relay nodes is a classical problem in

information theory [23,24], which recently received much attention. Some important

results on the achievable rates in wireless networks include [25, 26]. As opposed

to the work on relay channel capacity, cooperative diversity aims to improve the

performance, typically in terms of the outage probability and the error rate, for a

given fixed transmission rate. The main focus of this thesis is on cooperative diversity

aspects of cooperative communication.

2.3 Cooperative Diversity

Cooperative diversity relies on two principles:

• Due to the broadcast nature of wireless medium, most transmissions can be

heard by multiple nodes in the network with no additional transmission power

and bandwidth.

• Different nodes have independent channel fading statistics to a given destina-

tion node and the destination can listen, store, and then combine signals from

different nodes.

One of the first studies that introduced the concept of cooperative diversity is [3]

by Sendonaris et al. In this paper, an uplink scenario is considered, in which two users

cooperate by relaying data for each other. After showing the potential of cooperation

in enlarging the achievable rate region of the two users, the authors demonstrated that

cooperation can improve other measures such as outage capacity, error probability
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Figure 2.2: Cooperative diversity relaying with parallel relays and the corresponding
time-division protocol.

and coverage. The first practical cooperative relaying protocols have been proposed

by Laneman et al. in [4]. In this seminal paper, the authors identified different

classes of cooperative diversity protocols such as fixed protocols, in which the relay

always retransmits, selective protocols, in which the relay retransmits only when it

decodes reliably, and incremental protocols, in which the relay retransmits only when

the direct transmission fails. Detection aspects and BER performance analysis for

cooperative diversity protocols have been conducted in [27–31]. It is observed that

while simple analog relaying achieves diversity gain, in order to achieve diversity

gain digital relaying requires either error detection mechanisms or more sophisticated

combiners. The next three chapters focus on this problem and investigate threshold

based relaying as an alternative to error detection at the relay.

In a network exploiting cooperative diversity, every node can potentially be con-

sidered to be “connected” to all the other nodes. However, hardware and resource

constraints do not allow all the links be used for delivering a given packet and certain
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“connectivity graphs” can be more viable than the others. Reference [32] derives the

maximum e2e diversity orders achievable for any given connectivity graph.

In the earlier decode-and-forward protocols, source and relays use a common code-

book, which is equivalent to repetition coding for destination. However, it is possible

to obtain coding gain if different nodes use non-identical codebooks [33, 34]. For in-

stance, in [34], source data is encoded in two partitions. In the first time slot, the

source transmits the first partition. Then, the relay decodes the data based on the

first partition. If its decoding is reliable, it obtains the second partition and transmits

it to destination in the second time slot. The destination decodes the data based on

both the first partition received from the source and the second partition received

from the relay, thereby obtains additional coding gain in addition to the diversity

gain.

Cooperative diversity protocols, due to retransmissions, can decrease the effective

rate while increasing the reliability. Hence, it is important to evaluate their perfor-

mance in terms of diversity-multiplexing trade-off. In [4] the outage capacity and

diversity-multiplexing trade-off achieved by various protocols are analyzed. When

multiple relays are used according to the time division protocol described in Fig. 2.2,

the multiplexing loss is especially high. One way of overcoming this loss is through

distributed space-time coding [35]. In distributed space-time protocols all the relays

that decode the source information transmit different columns of a space-time code

matrix simultaneously, i.e., the protocol takes place in two time slots instead of Mr+1.

These protocols can potentially achieve a better diversity-multiplexing trade-off than

repetition based protocols. In [36], the authors propose a distributed space time cod-

ing scheme that does not require decoding at relays. Relays implement distributed

linear dispersion codes, which requires only linear operations at each relay. A similar

scheme for the specific case of two relays implementing Alamouti coding is studied

in [37].
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Another method to reduce the multiplexing loss is relay selection. Instead of

retransmitting the data from all the relays, only a small number of relays can be

selected based on their channel quality to the source and the destination. Such

protocols are proposed in [38–40] and will be discussed in more detail in Chapters 5

and 6.

Recently, it has been shown that the multiplexing loss of relaying is mostly due

to the fixed time slots allocated for the source and relay transmissions rather than

the half-duplex constraint. More sophisticated protocols that reduce the multiplexing

loss by allowing dynamic time slots were proposed to improve diversity-multiplexing

trade-off [41–43].

Although cooperative diversity is a technique that can induce spatial diversity in

the absence of multiple antennas, its benefits can be combined with those of multiple

antennas. For instance, fixed relays used in infrastructure based networks can accom-

modate multiple antennas. Advantageous and performance limits of multi-antenna

relaying have been considered in [44, 45]. In Chapter 7 we propose and analyze

schemes that combine spatial multiplexing and cooperative diversity.



Chapter 3

SNR-based Threshold Digital Relaying

In this chapter we introduce the concept of SNR-based selective digital relaying. In

digital cooperative relaying, if the relay detection is correct, the destination receives

the signal through two branches (from the source and the relay) thereby achieving

diversity by combining them. However, if the relay has a detection error, the effective

SNR at the destination after combining is significantly reduced. This phenomenon

is called error propagation. The e2e performance of simple digital relaying, in which

the relay always retransmits, is limited by error propagation.

To reduce the probability of error propagation, the relays can forward the data

selectively. One measure that can be used for forwarding decisions is the link SNR.

If the received SNR at the relay is low, the data is likely to have errors and hence

the relay discards the data. In many wireless applications, relaying schemes might

incorporate channel coding techniques. In this case, other measures of reliability that

are extracted from the received signal at the relay can be used in conjunction with

SNR [46].

If the reliability information is extracted from the received data, the relay is re-

quired to perform channel estimation, demodulation, and then error detection for

each data block before making a forwarding decision. These operations cause addi-

tional delay and extra power consumption even if the relay eventually decides not

18
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to transmit. In cellular systems, the amount of power consumed by the terminals in

receive mode is less significant compared to that in transmit mode. However, these

two power levels are comparable in low power devices such as battery powered sensor

nodes [47]. In SNR-based selective relaying, the relaying decisions are simpler and

remain the same for a time duration in the scale of the channel coherence time in the

network. Thus, when the source-relay SNR is low, the relay can be put into sleep

mode. More importantly, sensor networks can adopt uncoded transmission or avoid

decoding at intermediate relay nodes due to resource constraints [48, 49]. Hence, in

networks that include nodes with a wide range of computation and communication

capabilities, SNR-based relaying can be desirable in order not to isolate the nodes

with scarce power and limited computational capability. SNR-based selective relaying

is especially suited for applications where either uncoded transmission is used, or the

relaying and channel coding are required to be transparent to each other, or the delay

and the power consumption incurred for extracting the reliability information from

the received data are significant.

In this chapter we address the design of SNR-based relaying policies for coopera-

tive two-hop networks employing uncoded signaling. These polices minimize the e2e

BER and lead to threshold rules for the source-relay link. If the source-relay SNR is

larger than a threshold, the probability of an error at the relay is small and hence

the relay retransmits the signal. Otherwise, the relay remains silent. These kind of

schemes are called Threshold Digital Relaying (TDR).

The choice of the threshold has considerable impact on the e2e performance of

TDR. For instance, consider a relay detection threshold value of zero. This protocol

is akin to simple digital relaying and its diversity order is equal to one [27]. On the

other hand, for a very high threshold setting, the system degenerates to one path

channel, which is the source-destination channel and dual diversity is not realized.

The trade-off between creating the required diversity branches to the destination
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and minimizing the risk of error propagation has motivated research on SNR-based

threshold relaying [4, 50–52]. Some studies considered a system with ideal coding,

where no error occurs at the relay as long as source-relay SNR is larger than a target

SNR which depends on a specified target rate [4,35]. This assumption implies that the

SNR threshold for relaying must be equal to the target SNR. Herhold et al. studied

SNR-based threshold relaying for an uncoded system [50]. In this work, the authors

formulate the power allocation and threshold selection jointly. They numerically

obtain power allocation fraction and threshold pairs that minimize the e2e BER for a

given modulation scheme used by the source and the relay. Based on these numerical

results, they also provide empirical rules to approximate the optimal parameters.

In [51], the performance of TDR in a multi-antenna multi-relay architecture is

studied. It is shown that threshold relaying is essential in uncoded systems when

the relay has a small number of receive antennas. In [50], the threshold – if used

jointly with the optimal power fraction – is a function of the average SNRs of the

source-relay, relay-destination and source-destination links while in [51] the threshold

depends on the average SNR of the source-relay link only. Our analytical formulation

shows that for arbitrary network configurations and given fixed transmit powers used

by the source and the relay, the optimal threshold is independent of the average

source-relay SNR.

In [52], the authors derive the BER of threshold-based relaying for an arbitrary

threshold value and obtain the optimal threshold and power allocation by minimizing

the BER numerically. However, their assumption that the channel coefficients are

real Gaussian random variables does not apply to practical wireless scenarios.

The idea of threshold relaying, or on-off relaying, can be generalized to the adap-

tation of relay transmit power. In [31] and [53], the authors considered a scheme

to control the relay power adaptively based on the link SNRs in order to mitigate

error propagation. They propose a scaling factor for relay power that is based on the
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source-relay and relay-destination SNRs.

An alternative approach to mitigate error propagation is to design the destination

receiver by taking error propagation into account. In [29], cooperative demodulation

techniques for a two-hop parallel relaying protocol are considered. In this protocol,

the relays always retransmit, which would result in a diversity order of 1 under simple

MRC at the destination. The authors propose maximum-likelihood (ML) combining

and demodulation at the destination assuming that the destination knows the average

bit error probability at each relay during the first hop. They derive ML receivers and

piecewise linear approximations to ML receivers for different relaying schemes.

Wang et al. [30] propose a novel combining scheme that can be employed at the

destination for digital parallel relaying. This scheme, which is called Cooperative-

MRC (C-MRC), exploits the instantaneous BER of source-relay links at the desti-

nation. The C-MRC can achieve full diversity in uncoded digital relaying systems.

However, it requires the relays to send their instantaneous BER values to the desti-

nation.

The models used by [29] and [30] both place the computing burden on the des-

tination while keeping the relays relatively simple. In our model, however, the relay

implicitly participates in combining the two branches; by remaining silent, the relay

effectively assigns weight zero to the relay-destination signal. Then, the destination

performs MRC. Avoiding transmissions from branches that make little contribution

to the post-processing SNR can reduce interference in the network. Furthermore, in

threshold relaying the instantaneous source-relay SNR is exploited at the relay while

C-MRC needs the instantaneous source-relay SNR at the destination, which requires

additional signaling.

We formulate the selection of the optimal threshold as a simple decision prob-

lem from the relay’s point of view. Four models that differ in the amount of SNR

information available at the relay are considered. In the first model, Model 1, the
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relay makes decisions based on the instantaneous source-relay SNR, the average relay-

destination SNR, and the average source-destination SNR. Model 2 assumes that the

instantaneous SNR of source-relay and relay-destination links are available to the

relay while Model 3 assumes that the instantaneous SNR of the source-relay and

source-destination links are available to the relay. Finally, Model 4 assumes that the

relay knows the instantaneous SNRs of all three links. Expressions for the optimal

threshold values and the minimum e2e BER are derived for Rayleigh fading.

This chapter is organized as follows: The system model is presented in Section 3.1

and the optimal threshold and the e2e BER for selective relaying schemes are analyzed

in Section 3.2. In Section 3.3, performance benchmarks are described and numerical

examples on the e2e BER performance are presented. The chapter concludes with a

summary of our findings.

3.1 System Model

The network model is shown in Fig. 3.1. It includes a source node S, a destination

node D, and a relay node R that assists the communication between S and D. For

clarity of exposition, it is assumed that all the links use Binary Phase Shift Keying

(BPSK) modulation. Appendix A.4 provides a sketch for the extension of some of the

analysis to M-ary Phase Shift Keying (MPSK). In accordance with the half-duplex

constraint, S and R work in time division mode as described in Chapter 2. This

constraint prohibits most practical relay terminals from transmitting and receiving

simultaneously on the same channel. The protocol has two phases: In phase I, S

transmits and R and D listen. In phase II, R detects the signal and either retransmits,

in which case S is silent, or declares that it will remain silent and S starts phase I

with the next data. If R retransmits in phase II, D combines the signals received

in phase I and phase II using MRC and performs detection based on the combined
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Figure 3.1: The system model.

signal.

Let the signal received at the destination from the source be denoted by ysd.

ysd = αsd

√
Eb,s xs + nsd, (3.1)

where xs ∈ {+1,−1}, Eb,s is the energy per bit spent by the source, αsd is the

fading coefficient and nsd is a complex Gaussian random variable with zero mean

and a variance of N0/2. Similarly, the signal received at the relay is equal to ysr =

αsr

√
Eb,s xs + nsr. If the relay transmits, the received signal at the destination as a

result of this transmission is given by

yrd = αrd

√
Eb,r xr + nrd, (3.2)

where xr ∈ {+1,−1} is the symbol sent by the relay based on its detection of xs and

Eb,r is the energy per bit spent by the relay. The noise components nsr, nrd, and nsd are

assumed to be i.i.d. random variables. The instantaneous link SNRs are equal to γsr =

|αsr|2Eb,s/N0, γrd = |αrd|2Eb,r/N0, and γsd = |αsd|2Eb,s/N0. All the links are assumed

to exhibit flat fading with Rayleigh envelope distribution. However, some of the
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analysis in this chapter is general and not limited to Rayleigh distribution. We assume

that both Eb,s and Eb,r are fixed, predetermined values. Hence, the instantaneous link

SNRs can be expressed as γij = γ̄ij X2
ij, where X2

ij is an exponential random variable

and γ̄ij is the average SNR. All X2
ij’s are independent and identically distributed

with unit mean. The PDF of γij is then given by pγij
(γij) = (1/γ̄ij) exp(−γij/γ̄ij) for

γij ≥ 0. The average SNR γ̄ij, incorporates the energy per bit spent by node i and

the path loss between node i and node j. Hence, the average SNR of S −R, R−D,

and S−D links, denoted by γ̄sr, γ̄rd, and γ̄sd, respectively, are known parameters that

are not necessarily identical but constant for at least the duration of the two phases.

The channel states remain constant during phase I and phase II. The two phases

constitute one block. We assume that the channel states are either independent from

block to block or their correlation is not exploited. We assume that the CSI is available

at the receiver side for all three links and the signal is demodulated coherently. We

consider various models with different levels of adaptation in relaying decisions. In

these models, the relay makes use of either the mean or the instantaneous SNR for

each link. In Model j, the relay uses the set of parameters denoted by Ij, where

j = 1, 2, 3, 4, to make relaying decisions. The following sets are considered:

I1 = {γsr, γ̄rd, γ̄sd}, I2 = {γsr, γrd, γ̄sd}, I3 = {γsr, γ̄rd, γsd}, (3.3)

and I4 = {γsr, γrd, γsd}.

How well a relaying configuration can adapt to varying channel conditions depends

on the information used by the relay. In general, the average SNR values change

much more slowly than the instantaneous values. Although a more adaptive scheme

is expected to perform better, a system using average channel characteristics is easier

to implement since it requires less frequent updates to resource allocations. Another

challenge is to acquire the necessary SNR information at the relay. Since the relay is

the receiver in the S−R link, it can estimate γsr and additional overhead of Model 1
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is minimal. Model 2 requires the relay to make decisions based on the instantaneous

SNR of its forward channel γrd. Thus, a feedback channel from D to R might be

necessary. Similarly, Model 3 requires γsd, which can be estimated in the first phase

at D and can be sent to R through the same feedback channel. Model 4 has the

highest complexity since it requires that both γrd and γsd are sent to R by D. The

analysis in this chapter focuses on the best possible performance under the different

models. Therefore, we assume that the SNR information required by each model is

available at the relay.

Notation

In the rest of this chapter and in Chapters 4 and 5, we use the following definitions

and notation. The error events in the S − R and S − D links are denoted by Esr

and Esd, respectively. The event that an error occurs after the destination combines

the source signal and the incorrectly regenerated relay signal is referred to as error

propagation and is denoted by Eprop. We use the term cooperative error for the event

that an error occurs after the destination combines the source signal and the correctly

regenerated relay signal. The cooperative error event is denoted by Ecoop.

The BER in point-to-point links conditioned on the instantaneous link SNR and

average link SNR are denoted by Pb(γij) and P̄b(γ̄ij), respectively. Consider a general

modulation scheme for which the bit error probability can be expressed as Pb(γ) ≈
βm erfc(

√
αmγ), where αm, βm > 0 and the error function (erf) and the complementary

error function (erfc) are defined as

erf(z) =
2√
π

∫ z

0

e−t2dt and erfc(z) = 1− erf(z).

We note that typically αm depends on the minimum distance in the constellation

and βm depends on the number of neighbors with minimum distance; the bit error

probability of most practical modulation schemes can be approximated by selecting
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(βm, αm). For instance, assuming Gray coding, the nearest neighbor approximation

for MPSK is equivalent to (βm, αm) = (1/ log2 M , log2 M sin2(π/M)). Based on

this general Pb expression, the average bit error probability under Rayleigh fading is

calculated as [54, pg. 185]:

P̄b(γ̄) = Eγ[βm erfc(
√

αm γ)] = βm

[
1−

√
αmγ̄

1 + αmγ̄

]
. (3.4)

For BPSK modulation, which is considered in this chapter, (βm, αm) = (0.5, 1) and

the expression is exact:

Pb(γij)=P(Eij|γij) =
1

2
erfc(

√
γij), (3.5)

P̄b(γ̄ij)=P(Eij|γ̄ij) =
1

2

(
1−

√
γ̄ij

1 + γ̄ij

)
. (3.6)

The optimal threshold for Model j is denoted by γ∗t,j; the policy used by the

relay to make forwarding decisions is denoted by π; and the e2e bit error probability

calculated at the relay based on the link SNR observations Ij when the relay follows

policy π is denoted by P{Ee2e|Ij, π(Ij)}. The average e2e BER of the optimal relaying

under Model j is denoted by BER
(j)
e2e.

3.2 Analysis of Threshold Digital Relaying

There are two actions that can be taken by the relay node: a0, which represents

remaining silent and a1, which represents detecting and retransmitting the source

signal. In this chapter, we focus on analyzing the potential of selective relaying to

prevent error propagation and to decrease e2e BER. The relay makes decisions to

minimize the expected e2e error probability with given SNR observations.1

1If the relay retransmits in phase II, the overall transmission uses more bandwidth and more
power compared to direct transmission. To keep the analysis tractable these factors are not taken
into account in relaying decisions. However, any selective relaying scheme compares favorably to
simple relaying in terms multiplexing loss and total average power.
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Then, the relaying policy that minimizes the e2e BER is given by

π∗(Ij) = arg min
ai∈{a0, a1}

P{Ee2e|Ij, ai},

which can be expressed as

P{Ee2e|Ij, a0}
a1

a0

≷P{Ee2e|Ij, a1}. (3.7)

If the relay does not forward the signal received in the first hop, the

e2e bit error probability for the block depends only on the S − D channel:

P{Ee2e|Ij, a0} = P{Esd|Ij}. If the relay does forward, we can express the e2e bit error

probability as

P{Ee2e|Ij, a1} = P{Esr|Ij}P{Eprop|Ij}+ (1− P{Esr|Ij})P{Ecoop|Ij}. (3.8)

By substituting (3.8) into (3.7), we obtain

P{Esr|Ij}
a0

a1

≷ P{Esd|Ij} − P{Ecoop|Ij}
P{Eprop|Ij} − P{Ecoop|Ij} . (3.9)

The derivation up to this point is not specific to Rayleigh channels and is valid under

any SNR distribution.

3.2.1 Probability of Cooperative Error

Since the destination employs MRC, the SNR after combining the two signals is the

sum of the SNRs of the S − D and the R − D channels. If the relay has I4 =

{γsr, γrd, γsd}, the probability of cooperative error calculated at the relay is equal to

P{Ecoop|I4} = P{Ecoop|γrd, γsd} = Pb(γrd + γsd) =
1

2
erfc

(√
γrd + γsd

)
. (3.10)

The cooperative error probability given I3 = {γsr, γ̄rd, γsd}, is equal to

P{Ecoop|I3}=P{Ecoop|γ̄rd, γsd} = Eγrd

[
1

2
erfc

(√
γsd + γrd

)]
(3.11)

=
1

2

∫ ∞

0

1

γ̄rd

e−γrd/γ̄rderfc
(√

γrd + γsd

)
dγrd (3.12)

=eγsd/γ̄rd

∫ ∞

γsd

1

2γ̄rd

e−t/γ̄rderfc
(√

t
)

dt = eγsd/γ̄rdh(γsd, γ̄rd), (3.13)
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where we use change of variables to obtain (3.13) from (3.12) and define h(., .) as

h(x, y) =
∫∞

x
1
2y

erfc(
√

t)e−t/ydt. This function can be calculated in terms of erfc func-

tion (See Appendix A.1 for the derivation.) :

h(x, y)=
1

2
e−x/yerfc(

√
x)− 1

2

√
y

1 + y
erfc

(√
x

(
1 +

1

y

))
. (3.14)

Similarly, the cooperative error for I2 = {γsr, γrd, γ̄sd} is equal to

P{Ecoop|I2} = Eγsd

[
1

2
erfc

(√
γsd + γrd

)]
.

Since this expression is the same as (3.11) with γrd and γsd exchanged, P{Ecoop|I2} is

given by

P{Ecoop|I2}=P{Ecoop|γrd, γ̄sd} = Eγsd

[
1

2
erfc

(√
γsd + γrd

)]

=eγrd/γ̄sd h(γrd, γ̄sd). (3.15)

If the relay utilizes only I1 = {γsr, γ̄rd, γ̄sd} to make decisions, then the probability of

cooperative error is equal to the BER of a 2-branch MRC receiver in Rayleigh fading,

which is given as [10, pp. 846-847]

P{Ecoop|I1}=P{Ecoop|γ̄rd, γ̄sd} = Eγsd,γrd

[
1

2
erfc

(√
γsd + γrd

)]
(3.16)

=





1
2

(
1−

√
γ̄rd

1+γ̄rd

)2 (
1 + 1

2

√
γ̄rd

1+γ̄rd

)
, γ̄rd = γ̄sd;

1
2

[
1− 1

γ̄sd−γ̄rd

(
γ̄sd

√
γ̄sd

1+γ̄sd
− γ̄rd

√
γ̄rd

1+γ̄rd

)]
, γ̄rd 6= γ̄sd.

(3.17)

3.2.2 Approximate Expressions for the Probability of Error

Propagation

Without loss of generality, we assume that the source sends the symbol xs = +1 and

the relay sends the symbol xr = −1. The error occurs if the destination decides that

−1 was sent by the source. The decision variable after the destination combines the
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received signals (given in (3.1) and (3.2)) using MRC is given by:

y=
α∗sd

√
Eb,s

N0

ysd +
α∗rd

√
Eb,r

N0

yrd

=

( |αsd|2Eb,s

N0

− |αrd|2Eb,r

N0

)
+

α∗sd
√

Eb,s

N0

nsd +
α∗rd

√
Eb,r

N0

nrd

=(γsd − γrd) + ñ, (3.18)

where ñ is the effective noise. The mean and the variance of ñ are equal to E[ñ] = 0

and E[|ñ|2] = 1
2
(γsd + γrd). The decision rule at the destination is to declare +1 if

y ≥ 0. Then, the probability of error propagation under I4 = {γsr, γrd, γsd} is equal

to

P{Eprop|I4}=P{Eprop|γrd, γsd} = P {y < 0|γrd, γsd} = P {ñ > (γsd − γrd)|γrd, γsd}

=
1

2
erfc

(
γsd − γrd√
γsd + γrd

)
. (3.19)

The probability of error propagation under I3 = {γsr, γ̄rd, γsd} can be found by aver-

aging (3.19) with respect to γrd

P{Eprop|I3}=P{Eprop|γ̄rd, γsd} = Eγrd
[P{Eprop|γsd, γrd}]

=

∫ ∞

0

erfc

(
γsd − γrd√
γsd + γrd

)
1

2γ̄rd

e−γrd/γ̄rddγrd. (3.20)

Similarly,

P{Eprop|I2}=P{Eprop|γrd, γ̄sd} =

∫ ∞

0

erfc

(
γsd − γrd√
γsd + γrd

)
1

2γ̄sd

e−γsd/γ̄sddγsd,

(3.21)

and

P{Eprop|I1}=P{Eprop|γ̄rd, γ̄sd}

=

∫ ∞

0

∫ ∞

0

erfc

(
γsd − γrd√
γsd + γrd

)
1

2γ̄sdγ̄rd

e−γsd/γ̄sde−γrd/γ̄rddγsddγrd. (3.22)
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Figure 3.2: Comparison of P{Eprop|I3} values obtained from the approximation in
(3.23) and from the numerical integration of (3.20) as a function of γsd for different
γ̄rd values. The exact values are plotted in solid lines and the approximate values are
plotted in dashed lines.

Due to the complexity of the exact expressions given in (3.20)-(3.22), we provide

approximate expressions for calculating the probability of error propagation for these

models. Equation (3.18) shows that, if relay forwards an incorrect signal, this has

a strong impact on the decision variable y. For instance, for γrd ≈ γsd, the post-

combining SNR is close to zero even if both γrd and γsd are large. Assuming that

the incorrect relay signal - not the noise term - is the dominant factor that causes

the decision variable y to be negative, we approximate the probability of error by the

probability of {γsd − γrd < 0}.
For I3, using the fact that γrd is an exponential random variable with mean γ̄rd,
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Figure 3.3: Comparison of P{Eprop|I2} values obtained from the approximation in
(3.24) and from the numerical integration of (3.21) as a function of γrd for different
γ̄sd values. The exact values are plotted in solid lines and the approximate values are
plotted in dashed lines.

we obtain the approximate probability of error as

P{Eprop|I3} ≈ P{γsd − γrd < 0|γ̄rd, γsd} =

∫ ∞

γsd

1

γ̄rd

e−γrd/γ̄rd dγrd = e−γsd/γ̄rd .

(3.23)

Similarly for I2

P{Eprop|I2} ≈ P{γsd − γrd < 0|γrd, γ̄sd} =

∫ γrd

0

1

γ̄sd

e−γsd/γ̄sd dγsd = 1− e−γrd/γ̄sd .

(3.24)
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Figure 3.4: Comparison of P{Eprop|I1} values obtained from the approximation in
(3.25) and from the numerical integration of (3.22) as a function of γ̄rd for different
γ̄sd values. The exact values are plotted in solid lines and the approximate values are
plotted in dashed lines.

For I1, since γsd and γrd are independent, we obtain

P{Eprop|I1} ≈ P{γsd − γrd < 0|γ̄rd, γ̄sd}=
∫ ∞

0

∫ γrd

0

1

γ̄sdγ̄rd

e−γsd/γ̄sde−γrd/γ̄rddγsd dγrd

=
γ̄rd

γ̄sd + γ̄rd

.

(3.25)

To check the accuracy of these approximations at practical SNR values, we com-

pare them with the exact values obtained through the numerical integration of (3.20)-

(3.22). Fig.s 3.2-3.4 show that all three approximations are reasonably accurate for

a large range of SNR values.
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3.2.3 Optimal Threshold Functions and Average e2e BER

for Threshold Digital Relaying

In this section, the optimal decision rule given in (3.9) is evaluated for all the models

using the probability of error propagation and cooperative error expressions derived

in Section 3.2.1 and Section 3.2.2. All the rules simplify to a threshold on the instan-

taneous SNR of the S −R link.

Relaying based on Model 1

From (3.9) we obtain the relaying policy for Model 1:

P{Esr|γsr}
a0

a1

≷δ1(γ̄rd, γ̄sd), (3.26)

where δ1 is defined as

δ1(γ̄rd, γ̄sd)=
P{Esd|I1} − P{Ecoop|I1}
P{Eprop|I1} − P{Ecoop|I1}

≈
1

γ̄sd−γ̄rd

(
γ̄sd

√
γ̄sd

1+γ̄sd
− γ̄rd

√
γ̄rd

1+γ̄rd

)
−

√
γ̄sd

1+γ̄sd

2γ̄rd

γ̄rd+γ̄sd
−

[
1− 1

γ̄sd−γ̄rd

(
γ̄sd

√
γ̄sd

1+γ̄sd
− γ̄rd

√
γ̄rd

1+γ̄rd

)] (3.27)

and (3.6), (3.17) and (3.25) have been used to arrive at (3.27). If δ1(γ̄rd, γ̄sd) > 1/2,

the relay should always transmit since P{Esr|γsr} is always less than 1/2. On the

other hand, if δ1(γ̄rd, γ̄sd) ≤ 1/2, the relaying policy can be further simplified to

γsr

a1

a0

≷γ∗t1(γ̄rd, γ̄sd), (3.28)

where

γ∗t1(γ̄rd, γ̄sd) =





(
erfc−1(2δ1(γ̄rd, γ̄sd))

)2
, δ1(γ̄rd, γ̄sd) ≤ 1/2;

0, otherwise,

(3.29)

and erfc−1(z) denotes the inverse of the erfc function, which is defined for 0 ≤ z ≤ 2.
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The average e2e BER of Model 1 for a given threshold γt1 can be expressed using

the law of total probability:

BER
(1)
e2e(γ̄sr, γ̄rd, γ̄sd)=P{γsr > γt1}

[
P{Esr|γsr > γt1}P{Eprop | γ̄sd, γ̄rd}

+(1− P{Esr|γsr > γt1})P{Ecoop | γ̄sd, γ̄rd}
]

+P{γsr ≤ γt1}P{Esd | γ̄sd}. (3.30)

Since γsr is an exponential random variable with mean γ̄sr, the probability that {γsr ≤
γt1} is equal to

P{γsr ≤ γt1} = 1− exp(−γt1/γ̄sr). (3.31)

If γsr > γt1, the probability of bit error at the S − R link decreases, but it remains

nonzero regardless of the value of γt1. The probability of bit error at the S − R link

given that γsr > γt1 is equal to

P{Esr|γsr > γt1} =
1

2

[
erfc(

√
γt1)− eγt1/γ̄sr

√
γ̄sr

1 + γ̄sr

erfc

(√
γt1

(
1 +

1

γ̄sr

) )]
.

(3.32)

The derivation of (3.32) is given in Appendix A.2. The average e2e BER for a given

threshold value can be calculated analytically by substituting (3.6), (3.17), (3.25),

(3.31), and (3.32) into equation (3.30).

Relaying based on Model 2

The optimal decision rule for the case of I2 is equal to

P{Esr|γsr}
a0

a1

≷δ2(γrd, γ̄sd), (3.33)

where δ2 is found as

δ2(γrd, γ̄sd)=
P{Esd|γ̄sd} − P{Ecoop|γrd, γ̄sd}

P{Eprop|γrd, γ̄sd} − P{Ecoop|γrd, γ̄sd}

≈
1
2

(
1−

√
γ̄sd

1+γ̄sd

)
− eγrd/γ̄sdh(γrd, γ̄sd)

1− e−γrd/γ̄sd − eγrd/γ̄sdh(γrd, γ̄sd)
(3.34)



35

by using (3.15) and (3.24). This rule can be expressed as

γsr

a1

a0

≷γ∗t2(γrd, γ̄sd), (3.35)

where

γ∗t2(γrd, γ̄sd) =





(
erfc−1(2δ2(γrd, γ̄sd))

)2
, δ2(γrd, γ̄sd) ≤ 1/2;

0, otherwise.

(3.36)

The average e2e BER for Model 2 is given by (A.11):

BER
(2)
e2e(γ̄sr, γ̄rd, γ̄sd)≈

∫ ∞

0

[
1

2

(
1−

√
γ̄sd

1 + γ̄sd

)
(1− exp(−γ∗t2(γrd, γ̄sd)/γ̄sr))

+
(
(1− e−γrd/γ̄sd)− eγrd/γ̄sdh(γrd, γ̄sd)

)
h(γ∗t2(γrd, γ̄sd), γ̄sr)

+(1− e−γrd/γ̄sd) exp(−γ∗t2(γrd, γ̄sd)/γ̄sr)

]
1

γ̄rd

eγrd/γ̄rddγrd.

(3.37)

See Appendix A.3 for the derivation of the average e2e BERs of Models 2, 3, and 4.

Since the integrals to calculate the average e2e BERs of these models are intractable

analytically, we use numerical integration to evaluate them in Section 3.3.

Relaying based on Model 3

For Model 3 the optimal decision rule is given by

P{Esr|γsr}
a0

a1

≷δ3(γ̄rd, γsd), (3.38)

where δ3 is given by

δ3(γ̄rd, γsd)=
P{Esd|γsd} − P{Ecoop|γ̄rd, γsd}

P{Eprop|γ̄rd, γsd} − P{Ecoop|γ̄rd, γsd}

≈
1
2
erfc(

√
γsd)− eγsd/γ̄rd h(γsd, γ̄rd)

e−γsd/γ̄rd − eγsd/γ̄rd h(γsd, γ̄rd)
. (3.39)

This rule is equivalent to

γsr

a1

a0

≷γ∗t3(γ̄rd, γsd) (3.40)
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where

γ∗t3(γ̄rd, γsd) =





(
erfc−1(2δ3(γ̄rd, γsd))

)2
, δ3(γ̄rd, γsd) ≤ 1/2;

0, otherwise.

(3.41)

The average e2e BER is given by (A.12):

BER
(3)
e2e(γ̄sr, γ̄rd, γ̄sd)≈

∫ ∞

0

[
1

2
erfc(

√
γsd)(1− exp(−γ∗t3(γ̄rd, γsd)/γ̄sr))

+
(
e−γsd/γ̄rd − eγsd/γ̄rdh(γsd, γ̄rd)

)
h(γ∗t3(γ̄rd, γsd), γ̄sr)

+eγsd/γ̄rdh(γsd, γ̄rd) exp(−γ∗t3(γ̄rd, γsd)/γ̄sr)

]
1

γ̄sd

e−γsd/γ̄sd dγsd. (3.42)

Relaying based on Model 4

The optimal decision rule in the case of Model 4 is

P{Esr|γsr}
a0

a1

≷δ4(γrd, γsd), (3.43)

where δ4 is equal to

δ4(γrd, γsd)=
P{Esd|γsd} − P{Ecoop|γrd, γsd}

P{Eprop|γrd, γsd} − P{Ecoop|γrd, γsd}
=

erfc(
√

γsd)− erfc (
√

γsd + γrd)

erfc
(

γsd−γrd√
γsd+γrd

)
− erfc (

√
γsd + γrd)

, (3.44)

and this rule can be expressed as γsr

a1

a0

≷γ∗t4(γrd, γsd), where

γ∗t4(γrd, γsd) =





(
erfc−1(2δ4(γrd, γsd))

)2
, δ4(γrd, γsd) ≤ 1/2;

0, otherwise.

(3.45)
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The average e2e BER is derived in (A.13) and is equal to:

BER
(4)
e2e(γ̄sr, γ̄rd, γ̄sd)=

1

γ̄sdγ̄rd

∫ ∞

0

∫ ∞

0

1

2

[
erfc(

√
γsd)(1− exp(−γ∗t4(γrd, γsd)/γ̄sr))

+

(
erfc

(
γsd − γrd√
(γsd + γrd)

)
− erfc(

√
γrd + γsd)

)
h(γ∗t4(γrd, γsd), γ̄sr)

+erfc(
√

γrd + γsd) exp(−γ∗t4(γrd, γsd)/γ̄sr)

]
e−γsd/γ̄sde−γrd/γ̄rddγrd dγsd.

(3.46)

3.3 Results

In this section, we first describe two benchmark schemes: simple digital relaying and

genie-aided digital relaying. We then present numerical examples comparing the e2e

BER of threshold digital relaying under the different models presented in this chapter

to these benchmark schemes. All the results are obtained from the analytical formulae

derived in this chapter. We resort to numerical integration where it is required.

3.3.1 Benchmark Schemes

The descriptions and e2e BERs of the benchmark schemes are given below.

Genie-aided digital relaying

Genie-aided digital relaying is a protocol designed under the hypothetical assumption

that the relay has perfect error detection for each symbol. In phase II, the relay

retransmits only those symbols received correctly in phase I. Since retransmitting

a correctly detected symbol decreases e2e BER while transmitting an incorrectly

detected symbol increases it, genie-aided protocol constitutes a performance upper

bound for any selective digital relaying scheme. The e2e BER of genie-aided digital
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relaying is equal to

BERgenie
e2e (γ̄sr, γ̄rd, γ̄sd) = P{Esr|γ̄sr}P{Esd|γ̄sd}+ (1− P{Esr|γ̄sr})P{Ecoop|γ̄rd, γ̄sd},

which can be calculated by using (3.6) and (3.15).

Simple digital relaying

In simple digital relaying, the relay always transmits in phase II. The e2e BER of

simple digital relaying is equal to:

BERsimple
e2e (γ̄sr, γ̄rd, γ̄sd) = P{Esr|γ̄sr}P{Eprop|γ̄rd, γ̄sd}+ (1− P{Esr|γ̄sr})P{Ecoop|γ̄rd, γ̄sd},

which can be calculated by using (3.6), (3.15), and (3.24).

3.3.2 Numerical Results

In Fig. 3.5, we fix γ̄rd = 15 dB and γ̄sd = 0 dB and plot the e2e BER as a function

of γ̄sr. In this case, γ∗t1 (the optimal threshold for Model 1) remains fixed as seen in

(3.29). The threshold is very low (γ∗t1 = 0.545), which can be attributed to the poor

quality of the direct link. We observe that when the S−R link is favorable, selective

relaying schemes have a small SNR gain (only 1 to 2 dB) compared to simple relaying.

Fig. 3.6(a) shows the BER performance at γ̄sr = 15 dB and γ̄sd = 5 dB as a

function of γ̄rd. For simple digital relaying as γ̄rd increases, on one hand the proba-

bility of error propagation increases, on the other hand the probability of cooperative

error decreases. In Fig. 3.6(a), the decrease in the probability of cooperative error

is the dominant factor. In Fig. 3.7(a), we plot the e2e BER at γ̄sr = 15 dB and

γ̄sd = 15 dB as a function of γ̄rd. We observe that in Fig. 3.7(a) the e2e BER of

simple digital relaying increases as the R − D channel becomes stronger. This is

because in this case the increase in error propagation dominates over the decrease in
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Figure 3.5: The e2e BER for different relaying schemes as a function of γ̄sr for
γ̄rd = 15 dB, γ̄sd = 0 dB.

the cooperative error. In Fig.s 3.6(a) and 3.7(a) for large γ̄rd, P{Eprop|γ̄rd, γ̄sd} ≈ 1

and P{Ecoop|γ̄rd, γ̄sd} ≈ 0. Thus, the performance of simple digital relaying is limited

by the S − R link and can be approximated as BER
(simple)
e2e ≈ P̄b(γ̄sr) for large γ̄rd.

Similarly, BER
(genie)
e2e ≈ P̄b(γ̄sr)× P̄b(γ̄sd) for large γ̄rd.

Model 1 has a significant performance gain over simple digital relaying in both

Fig. 3.6(a) and Fig. 3.7(a), since, as shown in Fig. 3.6(b) and Fig. 3.7(b), it adaptively

increases threshold γ∗t1 as γ̄rd increases.

Finally, we study a scenario where all the average link SNRs are varied simulta-

neously. In this scenario, the S − R and R − D links have the same average SNR,

while the S − D link has a lower average SNR, which is a typical scenario when R

is located around the midpoint of S and D. Specifically, we assume γ̄sr = γ̄rd = γ̄
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Figure 3.6: The e2e BER for different relaying schemes and the threshold for Model
1 (obtained from (3.29)) as a function of γ̄rd for γ̄sr = 15 dB, γ̄sd = 5 dB.

dB, γ̄sd = γ̄ − 12 dB. In Fig. 3.8(a), we plot e2e BER as a function of γ̄. It is ob-

served that simple digital relaying and direct transmission (i.e., no relay) have the

same slope that is equal to 1, while the rest of relaying schemes have a common slope

larger than 1, indicating cooperative diversity gains. The asymptotic diversity gains

achieved by SNR-based selective relaying is studied in Chapter 4. Fig. 3.8(b) depicts

the behavior of the optimal threshold for Model 1. It is observed that the threshold

must be increased as the link SNRs increases.

In all the numerical results, we observe that the performance of SNR-based se-

lective relaying under Model 2 is very close to Model 1 and the performance under

Model 4 is very close to Model 3. These observations show that the benefit from

exploiting γrd at the relay is marginal. However, there is a gain both from Model 1 to
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Figure 3.7: The e2e BER for different relaying schemes and the threshold value for
Model 1 (obtained from (3.29)) as a function of γ̄rd for γ̄sr = 15 dB, γ̄sd = 15 dB.

Model 3 and from Model 2 to Model 4. Hence, it is useful to consider γsd in relaying

decisions. The gain from adapting according to γsd increases as the average SNR γ̄sd

increases.

Although SNR-based selection relaying improves the e2e BER compared to simple

digital relaying, it still has a significant performance gap compared to genie-aided

digital relaying. Therefore, there might be room for improvement through hybrid

methods combining SNR-based selection relaying with other methods proposed in

the literature such as power control at the relay and better detection methods at the

destination [29,30].
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Figure 3.8: The e2e BER for different relaying schemes and the threshold value
for Model 1 (obtained from (3.29)) as a function of γ̄, where γ̄sr = γ̄rd = γ̄ dB and
γ̄sd = γ̄ − 12 dB.

3.4 Conclusions

In this chapter, we proposed and analyzed SNR-based selective relaying schemes to

minimize the end-to-end bit error rate in digital diversity relaying systems. These

schemes resulted in threshold rules for the source-relay link SNR. We considered var-

ious models for the knowledge of the relay on the link SNRs in the network. For

all the models considered, although the e2e BERs depend on the average SNR of all

three links, the optimal threshold values that minimize the e2e BER are functions

of the relay-destination and source-destination link SNRs only. For all the models,

it has been shown that using the derived threshold values results in significant im-

provement of the e2e BER compared to simple digital relaying. By analyzing the
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performance under four different models, we observed that having the instantaneous

source-destination SNR information for relaying decisions reduces the e2e BER. The

gain from this information is higher when the source-destination link is stronger. How-

ever, the gain from instantaneous relay-destination SNR is negligible in most cases.

We realized that threshold digital relaying using the optimal threshold value can also

provide diversity gain under all models. In Chapter 4, we will formally analyze the

diversity order achieved with threshold digital relaying under Model 1, which has the

lowest complexity and overhead.



Chapter 4

Asymptotic BER Analysis of Threshold

Digital Relaying

In Chapter 3, we showed that threshold digital relaying is an effective technique to

achieve cooperative diversity in uncoded cooperative wireless networks, which suffer

from error propagation due to detection errors at the relays. We analytically de-

rived the optimal threshold functions that minimize e2e BER of TDR. In the present

chapter, we study the asymptotic e2e BER of the TDR in relation to the optimal

threshold. In particular, we consider TDR under Model 1 of Chapter 3, which re-

quires the minimum SNR information at the relay.

We analyze asymptotic BER of TDR when all average link SNRs are changed

simultaneously, as the scaled versions of a reference SNR value, which is denoted

by SNR. We first show that as this reference value SNR is increased, the optimal

threshold that minimizes the e2e BER increases as log(SNR). The resulting e2e BER

decreases as log(SNR)/SNR2 and hence the optimal TDR achieves dual diversity. We

also prove that, any threshold of the form log(c SNR), where c is a positive constant,

achieves the same order of e2e BER as the one achieved by the optimal threshold

and provides dual diversity. Based on this result, we derive an approximate threshold

that is asymptotically optimal and that results in a BER very close to the BER of

44
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the optimal threshold.

Next, we review the relevant work in the literature on the asymptotic BER per-

formance of digital diversity relaying schemes. Some of the references mentioned

in Chapter 3 considered the diversity order of their schemes as well. For instance,

in [31] Wang et al. analyze the diversity order of their Link Adaptive Relaying (LAR)

scheme. They show that the continuous version of LAR achieves full diversity while

the on-off version of LAR has no diversity gain. In this chapter we prove that this

result is not due to the limitation of on-off power adaptation, but due to the spe-

cific threshold used in [31]. An optimal choice of threshold still achieves diversity

order 2. In [29] Chen and Laneman also analyze the asymptotic performance of the

ML receiver they propose. They show that the diversity of order achieved by this

ML receiver is bounded by Mr/2 + 1 ≤ d ≤ Mr/2 + 3/2 for Mr odd and is equal

to d = (Mr + 2)/2 for Mr even, where Mr is the number of relays. They prove

that for a single relay network (Mr = 1), the e2e BER of their system decreases

as log(SNR)/SNR2 and hence achieves full diversity. The C-MRC of [30], however,

is shown to achieve full diversity for any number of relays. In [55] Ponnaluri and

Wilson consider only the asymptotic performance of threshold relaying. They study

a system with two parallel relays and equal gain combining at the destination. They

show that a threshold of the form cSNRε/2 achieves diversity order of d = 3− ε. With

this threshold, despite the asymptotic diversity gain, the e2e BER performance does

not improve significantly in the practical ranges of link SNRs, especially for low ε

values.

The rest of this chapter is organized as follows: We describe the system model in

Section 4.1. Section 4.2 is dedicated to the analysis of the asymptotic BER of the

optimal TDR in the high SNR regime. In this section we prove that the e2e BER

of the optimal TDR decreases as log(SNR)/SNR2. Hence, the diversity order of the

optimal TDR is 2. Then, in Section 4.3, we show that any threshold that is in the
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form of γt = log(c SNR) can also achieve the same asymptotic performance as the

optimal TDR. We also propose a value of c that results in a BER very close to the

BER of the optimal threshold. In Section 4.4, we verify our results and compare the

performance of the optimal TDR to several similar schemes proposed in the literature.

Finally, Section 4.5 summarizes the findings of this chapter.

4.1 System Model

The system model described in Chapter 3 is assumed. We only consider Model 1

of Chapter 3, where the relay has I1 = {γsr, γ̄rd, γ̄sd} available in order to make

relaying decisions. Thus, we drop the model index. The threshold is denoted by γt

and the optimal threshold that minimizes e2e BER is denoted by γ∗t . We refer to

the TDR using γ∗t as the optimal TDR. We note that the analysis in this chapter

can be extended to the other models (I2, I3, and I4), where the relay can have the

instantaneous R −D and S −D SNRs, γrd, γsd. The additional instantaneous SNR

information can improve e2e BER as shown in Chapter 3. However, the diversity

order cannot be improved any further as TDR achieves full diversity under Model 1.

As in Chapter 3, for simplicity, we assume that all the links use BPSK modulation.

All the links experience independent Rayleigh fading. The instantaneous received

SNR per bit for a link from node i to node j is denoted by γij and is given by

γij = X2
ij γ̄ij,

where X2
ij is an exponential random variable with unit mean and γ̄ij is the average

SNR. Link SNRs vary in time following independent block fading: γij is assumed to

be constant for two blocks, precluding retransmit diversity. The scalars Xij, and thus

γij, are independent from link to link.
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Notation and Definitions

We represent the average SNR as

γ̄ij = κij SNR,

where SNR is a reference signal-to-noise ratio, and κij is a scaling factor with respect to

the reference SNR representing non-identical distance dependent loss and shadowing

for different links. We adopt the same notation as in Chapter 3 for different error

events, e.g. Eij, Eprop, and Ecoop, but we drop Ii from the notation.

In order to study the high SNR behavior of BER, following an approach similar to

the one in [22], we fix the parameters κsr, κrd, and κsd, and analyze the e2e BER as

SNR →∞. Diversity order is a useful measure in quantifying the diversity benefit of

any scheme in high SNR regime [22]. Throughout this thesis we adopt the following

definition of diversity order given in [22]1:

d = − lim
SNR→∞

(log(BER)/ log(SNR)) . (4.1)

Definition 4.1. Let f and g be two positive functions defined on the real numbers.

We say f = O(g), if lim supx→∞
f(x)
g(x)

< ∞.

Definition 4.2. Two functions f and g are called asymptotically equivalent, written

f ∼ g, if limx→∞
f(x)
g(x)

= 1.

4.2 Asymptotic Performance of Optimal TDR

In Chapter 3 the average e2e BER of TDR for a given threshold value has been

derived as

BERTDR
e2e (γt)=P{γsr > γt}

[
P{Esr|γsr > γt}P{Eprop}+ (1− P{Esr|γsr > γt})P{Ecoop}

]

+P{γsr ≤ γt}P{Esd}. (4.2)

1All the logarithms are in the natural base unless indicated otherwise.
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and the threshold value that minimizes this BER has been found as

γ∗t =





(
erfc−1(2δ)

)2
, δ < 0.5;

0, otherwise,

(4.3)

where δ is equal to

δ =
P{Esd} − P{Ecoop}
P{Eprop} − P{Ecoop} . (4.4)

In the rest of this section, we first show that the optimal threshold function γ∗t

given in (4.3) increases logarithmically with SNR (Lemma 4.1). Then, using this

result, we prove that if the relay sets its threshold to γ∗t , the probability that it remains

silent decreases as log(SNR)/SNR and the probability that the relay has a detection

error decreases at least as fast as 1/SNR2 (Lemmas 4.2 and 4.3). Finally, we use all

these results to show that the asymptotic e2e BER of the optimal TDR decreases as

log(SNR)/SNR2 and the optimal TDR achieves diversity order 2 (Proposition 4.1).

We note that the BER of TDR is greater by a factor of log(SNR) than the BER of

a traditional diversity system, where BER decreases as 1/SNR2 at large SNR. Since

the diversity order represents the relation of the BER and SNR up to an exponential

factor, the diversity order of TDR is still 2. Hence, we conclude that it is possible to

achieve maximum diversity order in a single relay network using threshold relaying

with the optimal threshold selection.

4.2.1 Asymptotic Behavior of γ∗t , P{γsr ≤ γ∗t }, and P{Esr|γsr >

γ∗t }

The results on the asymptotic behavior of γ∗t , P{γsr ≤ γ∗t }, and P{Esr|γsr > γ∗t } are

given in Lemmas 4.1, 4.2, and 4.3, respectively. See Appendix B for the proofs.
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Lemma 4.1 (Asymptotic behavior of γ∗t ). The optimal threshold γ∗t , given in (4.3),

is upper and lower-bounded by two log functions for sufficiently large SNR. That is,

there exist c1, c2 > 0 such that

c1 log(SNR) < γ∗t (SNR) < c2 log(SNR), as SNR →∞. (4.5)

Lemma 4.2 (Asymptotic behavior of P{γsr ≤ γ∗t }). For sufficiently large SNR,

P{γsr ≤ γ∗t } can be upper and lower bounded as follows. There exists c′1, c
′
2 > 0

such that

c′1
log(SNR)

SNR
< P{γsr < γ∗t } < c′2

log(SNR)

SNR
, as SNR →∞. (4.6)

Lemma 4.3 (Asymptotic behavior of P{Esr|γsr > γ∗t }). If the relay uses the optimal

threshold γ∗t , then P{Esr|γsr > γ∗t } can be upper bounded as follows. There exists a

c > 0 such that

P{Esr|γsr > γ∗t } < c
1

SNR2 , as SNR →∞. (4.7)

4.2.2 Asymptotic e2e BER and Diversity Order of the Opti-

mal TDR

Proposition 4.1. The e2e BER of TDR, given in (4.2), using the threshold γ∗t ,

given in (4.3), satisfies BERTDR
e2e (γ∗t ) = O(log(SNR)/SNR2) and hence achieves the

maximum diversity order of 2.

Proof. Let us denote the first term of (3.30) as Pr and the second term as Pnr. Note

that Pr is equal to the probability of error when the relay transmits and Pnr is equal

to the probability of error when the relay does not transmit.

Pr=P{γsr > γ∗t }
[
P{Esr|γsr > γ∗t }P{Eprop}+ P{Ecoop} − P{Esr|γsr > γ∗t }P{Ecoop}

]

Pnr=P{γsr ≤ γ∗t }P{Esd}.
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In Pr, the term P{γsr > γ∗t } = exp(−γt/(κsrSNR)) goes to 1 as SNR → ∞. Since

P{Eprop} ∼ κrd

κsd+κrd
(see Appendix B.1 for the proof) and P{Ecoop} ∼ 3

16κrdκsd

1
SNR2 , the

decay rate of Pr is equal to the minimum of the rates of P{Esr|γsr > γ∗t } and P{Ecoop}.
From Lemma 4.3, P{Esr|γsr > γ∗t } = O(1/SNR2). Hence, Pr = O(1/SNR2).

Since P{Esd} ∼ 1
4κsd

1
SNR

and P{γsr ≤ γ∗t } = O(log(SNR)/SNR) (from Lemma 4.2),

Pnr = O(log(SNR)/SNR2). The e2e BER of the optimal TDR satisfies

BERTDR
e2e (γ∗t ) = Pr + Pnr = O(1/SNR2) + O(log(SNR)/SNR2) = O(log(SNR)/SNR2).

Thus, BERTDR
e2e (γ∗t ) is limited by the second term Pnr, which corresponds to the event

that the SNR of the S −R link is below threshold.

The diversity order of the optimal TDR is equal to

dTDR=− lim
SNR→∞

log(log(SNR)/SNR2)

log(SNR)

=− lim
SNR→∞

log(log(SNR))

log(SNR2)
+ lim

SNR→∞
log(SNR2)

log(SNR)
= 2,

since the term log(log(SNR))
log(SNR)

→ 0 as SNR →∞.

We note that the non-selective cooperative relaying protocol of [29] also achieves

BER of log(SNR)/SNR2 using a piece-wise linear detector at the destination and

assuming non-coherent demodulation at the relay and the destination.

4.3 An Approximation to the Optimal Threshold

The result given in Lemma 4.1 suggests that the threshold must increase loga-

rithmically with SNR. In this section, we first prove that thresholds of the form

γt = log(c SNR), achieves full diversity. Then, we propose a value for the constant c

based on the derivations in Section 4.2.
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Proposition 4.2. The e2e BER of TDR, given in (3.30), using a threshold γt =

log(cSNR) satisfies BERTDR
e2e (γt) = O(log(SNR)/SNR2) and achieves the maximum

diversity order of 2 for any real constant c > 0.

Proof. Substituting γt = c log(SNR) and γ̄sr = κsrSNR in (3.31), we obtain

P{γsr ≤ γt}=1− exp(−(log(cSNR))/κsrSNR) = 1−
(

1

cSNR

) 1
κsr SNR

∼ 1

κsr

log(SNR)

SNR
, (4.8)

where (4.8) is obtained from (B.22) given in Appendix B.3. Hence, the second term

in (3.30), Pnr = P{γsr ≤ γt}P{Esd} = O(log(SNR)/SNR2). As in the proof of Propo-

sition 1, the order of the first term Pr is determined by the term P{Esr|γsr > γt}, i.e.

O(Pr) = O(P{Esr|γsr > γt}). From (B.26) in the Appendix B.4, for any threshold we

have

P{Esr|γsr > γt}< 1

2κsrSNR
erfc(

√
γt) <

1

2κsrSNR
e−γt , (4.9)

where the last inequality follows from the following well-known upper bound for

erfc [56]2:

erfc(z) < e−z2

. (4.10)

By substituting γt = log(cSNR), we obtain

P{Esr|γsr > γt} <
1

2κsrc

1

SNR2 . (4.11)

Hence, P{Esr|γsr > γt} = O(1/SNR2) and Pr = O(1/SNR2). Then,

BERTDR
e2e (log(cSNR)) = Pr + Pnr = O(log(SNR)/SNR2) and the diversity order of

TDR with γt = log(c SNR) is equal to 2.

2There are tighter upper bounds for erfc, but this bound is sufficient for our purpose.



52

In order to obtain an approximation for γ∗t , which is denoted by γ∗,approx
t , we use

the upper bound given in (4.10) and the asymptotic expression given in (B.17) in

Appendix B.2 as approximations for erfc and δ, respectively:

erfc(z) ≈ e−z2

and δ ≈ 1

4

1

SNR

κrdκsd

κrd + κsd

=
1

4

γ̄rdγ̄sd

γ̄rd + γ̄sd

.

Then, γ∗,approx
t is given by

γ∗,approx
t =





− log
(

1
2

(
1

γ̄rd
+ 1

γ̄sd

))
, 1

2

(
1

γ̄rd
+ 1

γ̄sd

)
< 1;

0, otherwise.

(4.12)

We note that for sufficiently large SNR, the condition 1
2

(
1

γ̄rd
+ 1

γ̄sd

)
< 1 is satisfied

and γ∗,approx
t is equal to

γ∗,approx
t = − log

(
1

2

(
1

γ̄rd

+
1

γ̄sd

))
= log

(
2

(
1

κrd

+
1

κsd

)−1

SNR

)
. (4.13)

We observe that γ∗,approx
t = log(c SNR), where c = 2

(
1

κrd
+ 1

κsd

)−1

is greater than zero.

Hence, invoking Proposition 2, we conclude that with γ∗,approx
t , BERTDR

e2e (γ∗,approx
t ) =

O(log(SNR)/SNR2) and the diversity order is equal to 2. In (4.13), we note that

γ∗,approx
t is equal to the logarithm of the harmonic mean of γ̄sd and γ̄rd.

4.4 Results

In this section, we compare the average BER of the optimal TDR to several schemes.

These include the benchmark schemes introduced in Section 3.3.1 of Chapter 3 (sim-

ple digital relaying, genie-aided relaying) and the Link Adaptive Relaying (LAR)

introduced in [31].

As the two schemes that are simpler than TDR, we consider direct transmission

and simple digital relaying. From the average e2e BER expression for this scheme,

BERsimple
e2e = P{Esr}︸ ︷︷ ︸

O(1/SNR)

P{Eprop}︸ ︷︷ ︸
O(1)

+ (1− P{Esr})︸ ︷︷ ︸
O(1)

P{Ecoop}︸ ︷︷ ︸
O(1/SNR2)

, (4.14)



53

we observe that the e2e BER performance is limited by the first term and the e2e

BER decays as 1/SNR. Hence, the diversity order of simple digital relaying is 1.

Genie-aided digital relaying and receive diversity schemes are also considered as

performance upper bounds. In the genie-aided relaying, which assumes perfect error

detection for each symbol, the relay transmits only those symbols received correctly

in the first phase. The e2e BER of the genie-aided digital relaying is equal to

BERgenie
e2e = P{Esr}︸ ︷︷ ︸

O(1/SNR)

P{Esd}︸ ︷︷ ︸
O(1/SNR)

+ (1− P{Esr})︸ ︷︷ ︸
O(1)

P{Ecoop}︸ ︷︷ ︸
O(1/SNR2)

, (4.15)

As seen from the orders of its terms, genie-aided digital relaying achieves diversity

order of 2. The second upper bound, receive diversity, is obtained by assuming that

the S−R link is error-free, i.e., BERRx2
e2e = P{Ecoop}, where P{Ecoop} is given in (3.17).

The Link Adaptive Relaying (LAR) aims to reduce error propagation by adapting

the relay transmit power to the link SNRs rather than transmitting with full power

Pfull all the time. If the relay is able to adapt its transmit power continuously, [31]

proposes a scheme where the relay transmits with power α× Pfull, where the scaling

factor is equal to α = min(γsr,γ̄rd)
γ̄rd

. We call this scheme as LAR-cont. If the relay can

perform only on-off power adaptation, then it can be seen that LAR simplifies to

TDR with threshold function γt,LAR = γ̄rd. We call this scheme as LAR-on/off. For

all threshold based relaying schemes, the e2e BER can be calculated analytically by

plugging in the appropriate threshold value as γt in (3.30). We resort to Monte Carlo

simulations to obtain the e2e BER of LAR-cont only.

In Fig. 4.1 we plot the average BER as a function of SNR in a symmetric network

where κsr = κsd = κrd = 0 dB. The on-off version of LAR has poor performance;

its BER is larger than even the BER of the simple relaying. Since γt,LAR increases

linearly with SNR, from (B.21) we observe that P{γsr ≤ γt,LAR} will be a constant

independent of SNR. Then, in the e2e BER expression given in (3.30) the second

term, P{γsr ≤ γt,LAR}×P{Esd}, decreases only as fast as the BER of the S −D link.
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Figure 4.1: The e2e BERs for different schemes as a function of SNR in a symmetric
network, where κsr = κrd = κsd = 0 dB.

Hence, the diversity order of on-off LAR is 1, which has also been reported in [31].

This argument applies to any TDR scheme that uses a threshold increasing linearly

with the SNR. The continuous version of LAR, which is shown to achieve full diversity

in [31], performs better than all TDR schemes including the optimal TDR. However,

the gap with the optimal TDR is very small. Fig. 4.2 shows the BER of all the

schemes for an asymmetric network, where the direct link is weaker than the S − R

and R −D links, a typical scenario where R is located on the line segment between

S and D. Relative link SNRs are selected as κsr = κrd = 0 dB and κsd = −12 dB.

Unlike the symmetric case, here the optimal TDR outperforms continuous LAR by a

very small margin. We note that the α value used in [31] for the continuous LAR is

not optimized. Otherwise, it would always outperform the optimal TDR.
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Figure 4.2: The threshold values and the e2e BERs for different schemes as a func-
tion of SNR in a nonsymmetric network, where κsr = κrd = 0 dB and κsd = −12 dB.

Fig. 4.3 and Fig. 4.4 show the variation of the optimal threshold and its approxi-

mation as a function of SNR, for the two sets of κ values used in Fig. 4.1 and Fig. 4.2.

Although there is an offset between the optimal threshold and the approximation, the

two curves are almost parallel to each other. As seen in Fig. 4.1 and Fig. 4.2, the

BER of the approximate threshold γ∗,approx
t is very close to the BER of the optimal

threshold.

4.5 Conclusions

In this chapter, we studied the asymptotic BER of threshold based digital diversity

relaying. We showed that in a network with a single relay and independent Rayleigh
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Figure 4.3: The threshold values as a function of SNR with κrd = κsd = 0 dB.

fading links, in order to minimize e2e BER, the threshold used by the relay should

increase logarithmically with the average link SNR. We proved that this optimal

threshold achieves dual diversity. We also showed that any threshold of the form

log(c SNR), where c > 0 is a constant, achieves the same diversity order. Moreover,

we derived a value for c that results in a BER very close to the BER of the optimal

TDR.

In Chapter 5, we propose a threshold based multi-relay protocol to achieve di-

versity orders higher than 2. In order to limit the bandwidth loss due to multiple

relay transmissions, we consider a relay selection protocol, in which at most one relay

transmits.
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Chapter 5

Threshold Based Relay Selection in

Digital Diversity Relaying

In Chapters 3 and 4, we focused on inducing spatial diversity using a single relay.

We studied threshold relaying as a method to mitigate error propagation in digital

diversity relaying and we showed that optimal threshold relaying can achieve diversity

order of 2 in a single relay network. In this chapter, we consider multiple relays to

achieve higher orders of diversity at the destination.

Consider a multiple parallel relay configuration as shown in Fig. 5.1. With Mr

parallel relays there is a potential to achieve Mr + 1 orders of diversity by combining

signals from the source and the relays. For instance, following the source transmis-

sion, the relays can retransmit one-by-one, spanning Mr + 1 time slots. Then, the

destination can combine (Mr + 1) signals using the C-MRC scheme of [30]. Alterna-

tively, the relays can use the LAR protocol of [31] and the destination can combine the

signals using MRC. Either of these protocols can achieve diversity order of (Mr + 1).

However, retransmission of the data by all Mr relays causes a large increase in radio

resources, especially for large Mr.

As a remedy to this problem, Laneman and Wornell proposed distributed space-

time coding for decode-and-forward relays [35]. In [57], it has been shown that

58
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diversity-multiplexing trade-off of distributed space-time coding can be achieved by a

relay selection protocol. In this protocol a single, “best” relay is selected to serve for

each source-destination pair. Among the relays that receive the data from the source

without any errors, the one with the highest instantaneous SNR to the destination

is selected as the “best” relay. Both [35] and [57] assume ideal channel coding, in

which error propagation does not occur as long as the received SNR at the relays is

higher than a rate dependent target SNR value. In this chapter, our goal is to achieve

similar diversity orders without relying on channel coding.

We propose Threshold based Relay Selection (TRS) protocol, which generalizes

threshold digital relaying to multiple relays. In this protocol only the relays whose

received SNRs are larger than a threshold, which we call reliable relays, are allowed to

retransmit. Our protocol employs selection combining at the destination based only

on the relay-destination and source-destination link SNRs. In bandwidth limited

scenarios, with channel estimation of these links and feedback from the destination,

selection can be done prior to the relay transmissions as performed in [57] and [38].

Then, only the selected relay, the one with the largest SNR to the destination, retrans-

mits, thereby reducing the bandwidth expansion. In the absence of such feedback,

all the reliable relays can retransmit sequentially and the same BER performance is

achieved.

We note that in C-MRC of [30] the destination needs the exact source-relay SNR

for every relay, whereas in the LAR protocol of [31] the power scaling factor used by

each relay, which depends on the instantaneous first hop SNR, has to be conveyed to

the destination. In the ML detector of [29], the destination requires the knowledge

of the average SNRs of every source-relay link. Conveying the average link SNRs is

less costly than conveying the exact SNR. However, this protocol cannot achieve full

diversity for more than one relay. The TRS protocol proposed in this chapter requires

minimal information on the first hop and still achieves full diversity.
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A related protocol has been proposed in [58]. In this protocol, the relay selection

is performed based on the equivalent e2e BER of each relay channel. This protocol

can be viewed as a selection version of C-MRC of [30]. As in C-MRC, it requires the

destination to obtain the channel coefficients of the first and second hops, or their

product in the case of a simpler scheme, to perform relay selection. However, in TRS,

the information passed from the relay to the destination regarding the first hop is

limited to whether the relays is a reliable relay or not, which can be represented by

a single bit.

The rest of this chapter is organized as follows. In Section 5.1, we describe the

system model and the TRS protocol. In Section 5.2, we derive the e2e BER for

multiple relays and the optimal threshold for a single relay. In Section 5.3 we show

that the protocol achieves full diversity for any number of relays using a threshold

function we propose. We present some numerical results in Section 5.4 and conclude

with a summary of our findings.

5.1 System Model

A network as shown in Fig. 5.1 is considered in which a source node S communicates

with a destination node D with the assistance of Mr relays denoted by R1, R2, . . . RMr .

The SNRs of the S −D, S −Ri and Ri −D links are denoted by γsd, γsr,i, and γrd,i,

respectively. To simplify the analysis, we assume that all the relays have the same

average SNRs to the source and to the destination, i.e., γ̄sr,i = γ̄sr and γ̄rd,i = γ̄rd for

i = 1, 2, . . . , Mr. Hence, the link SNRs are characterized by γ̄sd, γ̄sr, and γ̄rd. All links

experience independent Rayleigh fading. We assume a general modulation scheme for

which the bit error probability can be expressed as Pb(γ) ≈ βm erfc(
√

αm γ), where

αm, βm > 0. We recall that typically αm depends on the minimum distance in the

constellation and βm depends on the number of neighbors with minimum distance;
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Figure 5.1: The parallel relay configuration with Mr relays.

the bit error probability of most practical modulation schemes can be approximated

by selecting (βm, αm). The average bit error probability under Rayleigh fading based

on this general Pb expression is given in (3.4) as

P̄b(γ̄) = Eγ[βm erfc(
√

αm γ)] = βm

[
1−

√
αmγ̄

1 + αmγ̄

]
. (5.1)

Some of our derivations are even more general; they are given in terms of Pb and P̄b,

and can be evaluated for any modulation scheme.

We consider a two-phase protocol. In the first phase the source transmits while

all the relays and the destination listen. Then each relay Ri decides independently

whether its detection is sufficiently reliable by comparing its received SNR γsr,i to

a threshold value. The SNR information available at the relays is as in I1 case of

Chapter 3; the relays have access to the average link SNRs of the relay-destination

and source-destination links but they do not know the instantaneous SNRs of these

links.

Those relays whose received SNRs are larger than the threshold are called reliable

relays. Each reliable relay informs the destination by sending a short message. Let
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Nr denote the number of reliable relays. The destination, then, makes a decision

based on the SNRs of the reliable relays and the source to the destination1, i.e.,

γsd and γrd,1, . . . , γrd,Nr . Among Nr + 1 branches D selects the one with the largest

SNR. If the branch from the source is selected, the relays do not transmit and the

source transmits the next data. Otherwise, the selected reliable relay transmits and

D performs detection based on the selected branch only. We call this protocol the

Threshold based Relay Selection (TRS) protocol.

In this protocol the information passed from the relay to the destination regarding

the first hop is limited to whether the relay is a reliable relay or not, which can be

represented by a single bit. We assume that each reliable relay sends a short packet

while the other relays remain silent. The destination can also estimate the values of

γrd,i for all the reliable relays from these transmissions.

5.2 End-to-end (e2e) BER of the TRS

In this section, we derive the e2e BER of the TRS protocol. Since all the relays are

assumed to be identical in their average SNR to the relay and to the destination, the

optimal value of their thresholds must be the same. Hence, we derive the e2e BER

of the system for a given common threshold γt for all relays. Then the e2e BER is

given by

BERe2e =
Mr∑
i=0

P{Nr = i}P{Ee2e|Nr = i}, (5.2)

where

P{Nr = i}=
(

Mr

i

) (
e−γt/γ̄sr

)i (
1− e−γt/γ̄sr

)Mr−i
.

For Nr = 0, the destination detects based on the direct link only and, thus,

P{Ee2e|Nr = 0} = P̄b(γ̄sd). For Nr ≥ 1, let As denote the event that the destination

1We re-index the reliable relays to simplify the notation.
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selects the signal received from the source and Ar,k denote the event that the desti-

nation selects the signal from the k-th reliable relay (k ∈ {1, . . . , Nr}), respectively:

As={γsd > γrd,j, ∀j ∈ {1, . . . , Nr}}, and

Ar,k={γrd,k > γsd, γrd,k > γrd,j, ∀j ∈ {1, . . . , Nr}, j 6= k}.

Then, the e2e BER conditioned on the number of reliable relays is equal to

P{Ee2e|Nr = i}=P{Ee2e|As, Nr = i}P{As|Nr = i}

+
i∑

k=1

P{Ee2e|Ar,k, Nr = i}P{Ar,k|Nr = i}. (5.3)

Since all relays are assumed to be identical in their average SNRs to the source and

to the destination, the terms included in Ar,k are the same for all k and the index

k can be dropped. When the destination selects the source signal, its bit error rate

only depends on the S −D link. However, if the destination selects reliable relay j,

it will have a bit error if either the S −Rj link or the Rj −D link has a bit error:

P{Ee2e|As, Nr = i} = P{Esd|As, Nr = i} (5.4)

and

P{Ee2e|Ar, Nr = i}=P{Erd|Ar, Nr = i}(1− P{Esr|γsr > γt})

+(1− P{Erd|Ar, Nr = i})P{Esr|γsr > γt}. (5.5)

Substituting (5.4) and (5.5) into (5.3), we obtain the e2e BER conditioned on Nr as

P{Ee2e|Nr = i}=P{Esd,As|Nr = i}+ i

(
P{Erd,Ar|Nr = i}

+P{Erd,Ar|Nr = i}(1− 2P{Esr|γsr > γt})

+P{Ar|Nr = i}P{Esr|γsr > γt}
)

. (5.6)

The probability of bit error at a reliable relay is derived in Appendix A.2 and is equal
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to

P{Esr|γsr > γt}=βm

[
erfc(

√
αmγt)− eγt/γ̄sr

√
αmγ̄sr

1 + αmγ̄sr

×erfc

(√
γt

(
αm +

1

γ̄sr

))]
. (5.7)

The probability that a particular reliable relay is selected by the destination is equal

to

P{Ar|Nr = i}=1

i

(
1−

i∑
j=0

(
i

j

)
(−1)j 1

1 + j(γ̄sd/γ̄rd)

)
.

(5.8)

The terms P{Esd,As|Nr = i} and P{Erd,Ar|Nr = i} are given by

P{Esd,As|Nr = i} =
i∑

j=0

{(
i

j

)
(−1)j γ̄rd

jγ̄sd + γ̄rd

P̄b

(
γ̄sdγ̄rd

jγ̄sd + γ̄rd

)}
, (5.9)

and

P{Erd,Ar|Nr = i}=
i−1∑
j=0

{(
i− 1

j

)
(−1)j

[
1

j + 1
P̄b

(
γ̄rd

j + 1

)

− γ̄sd

γ̄sd(j + 1) + γ̄rd

P̄b

(
γ̄sdγ̄rd

γ̄sd(j + 1) + γ̄rd

)]}
. (5.10)

See Appendix C.1 for the derivations of (5.8)-(5.10). By substituting (5.7)-(5.10) into

(5.6), and then substituting (5.3), (5.6) into (5.2), we obtain an exact expression for

the e2e BER of the threshold based relay selection protocol described in Section 5.1.

Optimal Threshold of TRS for Mr = 1

For networks with a single relay, we can derive the threshold that minimizes e2e BER

by formulating a simple decision problem as we did in Section 3.2.3 of Chapter 3.

Proposition 5.1. The threshold that minimizes the e2e BER of the system described

in Section 5.1 with a single relay, under Rayleigh fading and a modulation scheme
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that has a bit error probability of Pb(γ) and an average bit error probability of P̄b(γ̄),

is given by

γ∗t = P−1
b (δ(γ̄sd, γ̄rd)), (5.11)

where

δ(γ̄sd, γ̄rd) =

γ̄rd+γ̄sd

γ̄rd

(
P̄b

(
γ̄rd γ̄sd

γ̄rd+γ̄sd

)
− P̄b(γ̄rd)

)

1− 2 γ̄rd+γ̄sd

γ̄rd
P̄b(γ̄rd) + 2 γ̄sd

γ̄rd
P̄b

(
γ̄rd γ̄sd

γ̄rd+γ̄sd

) . (5.12)

Proof. Let a0 and a1 denote the two actions the relay can take: to remain silent or

to forward the detected symbols, respectively. Then, the optimal threshold can be

obtained by simplifying the following decision rule solved at the relay:

P{Ee2e|Nr = 1, γsr}
a1

a0

≷P{Ee2e|Nr = 0, γsr}. (5.13)

Clearly, if the relay remains silent

P{Ee2e|Nr = 0, γsr} = P̄b(γ̄sd).

If the relay forwards the data the average e2e BER is equal to

P{Ee2e|Nr = 1, γsr}=P{Ee2e|Nr = 1,As, γsr}P{As|Nr = 1}

+P{Ee2e|Nr = 1,Ar, γsr}P{Ar|Nr = 1}.

Following the same steps as in Section 5.2, we obtain

P{Ee2e|Nr = 1, γsr}=P{Esd,As|Nr = 1}+ P{Erd,Ar|Nr = 1}

+P{Erd,Ar|Nr = 1}(1− 2Pb(γsr))

+P{Ar|Nr = 1}Pb(γsr). (5.14)

Note that, (5.14) is the same as (5.6) except that P{Esr|γsr > γt} is replaced with

P{Esr|γsr} = Pb(γsr), since γsr is available at the relay.



66

For Nr = 1, (5.8), (5.9), and (5.10) simplify to

P{Esd,As|Nr = 1}=P̄b(γ̄sd)− γ̄rd

γ̄sd + γ̄rd

P̄b

(
γ̄sdγ̄rd

γ̄sd + γ̄rd

)
,

P{Erd,Ar|Nr = 1}=P̄b(γ̄rd)− γ̄sd

γ̄sd + γ̄rd

P̄b

(
γ̄sdγ̄rd

γ̄sd + γ̄rd

)

and

P{Ar|Nr = 1} =
γ̄rd

γ̄rd + γ̄sd

.

We note that for Mr = 1 relay, P{Esd,As|Nr = 1} and P{Erd,Ar|Nr = 1} expressions

are symmetric with respect to γ̄sd and γ̄rd. After substituting all the terms into (5.13),

we obtain the following rule

Pb(γsr)
a1

a0

≷δ(γ̄rd, γ̄sd)

γsr

a1

a0

≷P−1
b (δ(γ̄rd, γ̄sd)), (5.15)

where δ(., .) is given by (5.12). Hence, the threshold that minimizes the e2e BER is

equal to γ∗t = P−1
b (δ(γ̄rd, γ̄sd)).

5.3 Diversity Order of TRS

In this section, as in Chapter 4, we express all the average link SNRs as γ̄ij = κijSNR

and study the behavior of the e2e BER as SNR → ∞. Let us first take a close look

at the e2e BER minimizing threshold derived in Proposition 5.1, for a network with

Mr = 1 relay. If Pb(γ) = βm erfc(
√

αmγ), the average error probability given in (3.4)

is asymptotically equal to

P̄b(κ, SNR) = βm

[
1−

√
αm κSNR

1 + αm κSNR

]
∼ βm

2αmκ

1

SNR
.
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Substituting this asymptotic expression in (5.12), we observe that,

δ(κsd, κrd, SNR) ∼ βm

2αm

κsd + κrd

κsdκrd

1

SNR
. (5.16)

By approximating erfc(z) ≈ e−z2
, and δ ≈ βm

2αm

κsd+κrd

κsdκrd

1
SNR

, we obtain

γ∗t =P−1
b (δ) =

1

αm

(
erfc−1(δ/βm)

)2 ≈ 1

αm

log

(
βm

δ

)

≈ 1

αm

log

(
2αm

κsdκrd

κsd + κrd

SNR

)

This approximate expression is the same as the approximate threshold derived in

Section 4.3 in Chapter 4 (eqn. 4.13) for a single relay network using BPSK modulation

in all the links (αm = 1) and MRC combining at the destination.

Based on the insight from the e2e BER minimizing threshold for Mr = 1, for

a network with Mr > 1 relays we propose a threshold function in the form of

log(c1SNRMr/αm), where c1 is a positive constant. Next, we show that TRS can

achieve full diversity with the proposed threshold function.

Lemma 5.1 (Asymptotic behavior of P{Ee2e|Nr = i}). With the proposed threshold

γ∗t = log(c1SNRMr/αm), as SNR →∞ the e2e bit error probability conditioned on the

number reliable relays Nr = i decays as P{Ee2e|Nr = i} = O(1/SNRi+1).

See Appendix C.2 for the proof.

Proposition 5.2. The diversity order of the TRS protocol having Mr relays and

employing a modulation scheme that has a BER of Pb(γ) = βmerfc(
√

αmγ), achieves

diversity order of Mr + 1 using a threshold of γ∗t = log(c1 SNRMr/αm) , where c1 > 0

is a constant independent of SNR.

Proof. The e2e BER of TRS is given in (5.2). The first term of (5.2) is equal to

P{Nr = i}=
(

Mr

i

) (
e−γt/γ̄sr

)i (
1− e−γt/γ̄sr

)Mr−i
.
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With the proposed threshold, as SNR →∞ we obtain

e−γt/γ̄sr=e− log(c1SNRMr/αm )/(κsrSNR) ∼ 1, and

(1− e−γt/γ̄sr)=1− e− log(c1SNRMr/αm )/(κsrSNR)

∼ log(c1SNRMr/αm)

κsrSNR
.

Thus, P{Nr = i} is of order

P{Nr = i} = O(log(SNRMr/αm)Mr−i/SNRMr−i). (5.17)

Next, we study how fast the term P{Ee2e|Nr = i} (given in (5.6)) decays with increas-

ing SNR.

Combining the result of Lemma 5.1 with (5.17), we observe that in

(5.2) the term with index i, i.e., P{Nr = i}P{Ee2e|Nr = i} decreases as

O(log(SNRMr/αm)Mr−i/SNRMr+1). The order of the sum of these Mr + 1 terms is

determined by the term that has the slowest decay, which is the term with index

i = 0. Hence,

BERe2e = O(log(SNRMr/αm)Mr/SNRMr+1). (5.18)

We observe that while the Mr + 1 order diversity achieved by conventional diversity

combining schemes will decrease as 1/SNRMr+1, the cooperative diversity achieved by

the TRS protocol has a decay of O(log(SNRMr/αm)Mr/SNRMr+1). However, at large

SNR the log term becomes insignificant and the diversity order is equal to

d = − lim
SNR→∞

log(BERe2e)

log(SNR)
= Mr + 1. (5.19)
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5.4 Results

5.4.1 Benchmark Protocols

In this section we describe two Relay Selection (RS) protocols to which we compare

TRS protocol in terms of e2e BER performance.

Relay Selection with the Instantaneous SNR of the S −R Links (RS-inst)

In RS-inst the relay is selected based on the instantaneous S − R and R −D links.

The equivalent BER of the branch through relay k is given by

P inst
k =Pb(γsr,k)(1− Pb(γrd,k))

+Pb(γrd,k)(1− Pb(γsr,k)), k = 1, . . . ,Mr.

The direct branch from the source to the destination has an equivalent BER of P inst
0 =

Pb(γsd). The destination selects the branch with the minimum equivalent BER. Then,

conditioned on the SNR values, the e2e BER is given by

P{E (RS−inst)
e2e |γsr,1, . . . , γsr,Mr , γrd,1, . . . , γrd,Mr , γsd} = min

k∈{0,1,...,Mr}
{P inst

k } (5.20)

and the average e2e BER of this protocol is given by

BER
(RS−inst)
e2e = Eγsr,1,...,γsr,Mr ,γrd,1,...,γrd,Mr ,γsd

[
min

k∈{0,1,...,Mr}
{P inst

k }
]

. (5.21)

The RS-inst is very similar to the C-MRC with relay selection introduced in [58]. The

only difference is that the scheme in [58] combines the direct signal from the source

with one of the relay signals, whereas RS-inst selects either one of the relay signals

or the direct signal.

Relay Selection with Average SNR of the S −R Links (RS-avr)

In RC-avr the destination has no knowledge of γsr,i values and the relay selection is

based on the average S − R and the instantaneous R − D SNRs. In this case the
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equivalent BER of the branch through relay k is given by

P avr
k =P̄b(γ̄sr,k)(1− Pb(γrd,k))

+Pb(γrd,k)(1− P̄b(γ̄sr,k)), k = 1, . . . ,Mr

and P avr
0 = Pb(γsd). Conditioned on the SNR values the e2e BER of RS-avr is equal

to

P{E (RS−avr)
e2e |γrd,1, . . . , γrd,Mr , γsd} = min

k∈{0,1,...,Mr}
{P avr

k } (5.22)

and the average e2e BER of RS-avr is given by

BER
(RS−avr)
e2e = Eγrd,1,...,γrd,Mr ,γsd

[
min

k∈{0,1,...,Mr}
{P avr

k }
]

. (5.23)

In these two protocols the relay selection is done by the destination only, whereas

in threshold based relay selection both relay and the destination contribute to the

decision. While RS-inst is the selection version of the C-MRC of [30], RS-avr can be

viewed as the selection version of the ML receiver of [29].

5.4.2 Numerical Results

We consider two scenarios for numerical results: symmetric network scenario and

linear network scenario. In the symmetric network, all average link SNRs are the

same: κsr = κrd = κsd = 0 dB. The linear network is based on a group of relays

at the mid-point between the source and the destination. In particular, we assume

κsr = κrd = 0 dB and κsd = −12 dB. The e2e BER of TRS is computed from

the analytical expression of Section 5.2 and the threshold values for Mr > 1 are

determined from the numerical minimization of this expression. Fig. 5.2 shows the

e2e BER of different protocols in the symmetric network scenario as a function of

SNR for Mr = 1 relay. For reference, we also plot the BER in the absence of errors

in the S − R links. In this figure, TRS and RS-avr perform similarly, while RS-inst
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Figure 5.2: The e2e BER for all relaying protocols for Mr = 1 relay as a function
of SNR in a symmetric network (κsr = κrd = κsd = 0 dB). The BER of direct
transmission and the BER in the absence of errors in the S−Ri links are also shown
as reference curves.

performs slightly better than these two protocols. For Mr = 1, all protocols achieve

full diversity gain as observed from the slopes of the BER curves.

However, as we increase the number of relays to Mr = 2, RS-avr cannot deliver

full diversity. In fact, by analyzing RS-avr for Mr values greater than 2, we observed

that the diversity order of RS-avr is limited to 2. The TRS achieves full diversity for

2 relays as well, in accordance with our claims in Section 5.3. We conclude that

TRS constitutes a good tradeoff between performance and signaling overhead since

it performs close to RS-inst with less complexity.

In Fig. 5.4, we show the threshold values used by TRS to minimize the e2e BER in

the symmetric network scenario. It is seen that the optimal threshold increases with
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Figure 5.3: The e2e BER for all relaying protocols for Mr = 2 relays as a function
of SNR in a symmetric network (κsr = κrd = κsd = 0 dB).

increasing number of relays. As a function of average SNR, the optimal threshold

increases logarithmically. Figs. 5.5 and 5.6 depict the e2e BER for different protocols

and the optimal threshold for TRS for the linear network scenario. We see that the

conclusions for symmetric scenario are valid for linear scenario as well.

5.5 Conclusions

In this chapter, we have proposed a threshold based relay selection protocol for two

hop, multi-relay communication. This protocol requires minimal information about

the quality of the source-relay links. We have proposed a threshold function that

increases logarithmically with the link SNRs and linearly with the number of relays
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Figure 5.4: The threshold values that minimize the e2e BER of TRS in symmetric
networks with different number of relays Mr.

and we have shown that, with a threshold of this form, our protocol achieves full

diversity. We have also presented performance results in which the thresholds are de-

termined through numerical optimization and have compared the BER of our protocol

to similar protocols found in the literature. We conclude that threshold based relay

selection offers an attractive trade-off between performance and signaling overhead

as it achieves full diversity without instantaneous S − R SNR knowledge at the des-

tination. Finding optimal thresholds analytically remains as a challenging problem

for future work.
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Figure 5.5: The e2e BER for all the protocols with Mr = 1 and Mr = 2 in a linear
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Chapter 6

Cooperative Digital Relaying in Wireless

Ad-hoc Networks

In the previous chapters, we considered simple and fixed network scenarios, in which

average link SNRs are deterministic parameters. These studies conducted for de-

terministic topologies provide useful understanding of different aspects of diversity

relaying. However, in wireless ad hoc networks, the network topology is often ran-

dom and time-varying. While for some source-destination pairs there might be many

relays at favorable locations, there might also exist pairs which can find no relays at

all. Thus, the performance obtained in deterministic topologies is not necessarily a

good indicator of the network-wide gain from diversity relaying in wireless networks.

In this chapter, we incorporate the randomness in node positions into the problem

formulation.

Often the ultimate goal in an ad-hoc network is to guarantee connectivity, i.e.,

maintaining the ability to send a data packet from any source node to any destination

node, even when certain links undergo deep fading. Ideally, routing in such a network

requires complete knowledge of the state of the network. However, in practice, even

medium size networks do not have sufficient resources to discover all possible paths in

a time-varying environment in presence of mobility induced fading. Hence, we focus

76
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on a more modest two-hop relaying protocol.

We note that diversity relaying in random topologies is closely related with the

relay selection problem considered in Chapter 5. In a random topology, in most cases,

there will be multiple relays in the vicinity of a source-destination pair. Although

the reliability can be increased by using all of these relays, bandwidth and delay

constraints limit the number of time slots allocated for retransmissions.

In this chapter, we propose a practical two-hop diversity relaying protocol that

can be implemented as an “add-on diversity relaying feature” along with an existing

routing protocol in order to improve the performance of each hop. For instance, the

source and destination defined in the protocol could constitute one hop of a longer

route, which has been determined by a higher layer protocol. Our protocol aims to

take advantage of other nodes in the vicinity in an opportunistic fashion.

We assume that the maximum number of relays that can be used for each packet

is limited by Mr, which represents bandwidth and delay constraints. Unlike in Chap-

ters 3-5, in this chapter, to simplify the problem, we consider ideal coding. Hence,

the nodes that receive the packet with an SNR higher than a minimum value can

decode it correctly. Such nodes are called reliable relays. Due to ideal channel coding

assumption, error propagation does not occur. First the source transmits a packet,

and then selects Mr reliable relays. In general, the relay selection can be done based

on the instantaneous or average SNRs of the relays to the destination. In order to

limit the feedback from the destination, in this problem we assume relay selection

based on average SNR to the destination. Hence, our protocol only requires that

each node in the vicinity of the source knows its average SNR to the destination.

Assuming that the relay nodes are distributed according to 2-dimensional Poisson

point process, we analytically study the performance of the protocol as a function of

node density, fading parameters and node transmit powers. We consider both max-

imal ratio combining and selection combining at the destination. Our performance
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metric is e2e outage probability for a given target SNR. In the relaying protocols

studied in the rest of this thesis, the second phase takes place even if the destination

receives the transmission in the first phase correctly. A widely known technique to

improve the packet delivery ratio of data networks with little bandwidth expansion is

“automatic repeat request” (ARQ). Several variations of the basic concept have been

proposed and their performance has been studied [59–61]. However, ARQ is not very

helpful when the fading is slow. When this is the case, applying both ARQ and coop-

erative diversity could be very effective. In this chapter, we also propose and analyze

an ARQ-augmented version of the basic protocol, which we call Relay-Assisted ARQ

(RARQ) protocol.

In the literature, few studies consider multihop relaying in random networks

[62–64]. In [62] Zorzi and Rao analyze a greedy geographic forwarding algorithm

for a multihop network, where a relay for the next hop is chosen “post transmission”

among the nodes that receive the data packet correctly. Their criterion for selecting

the next relay is having the shortest distance to the destination. The proposed scheme

assumes that each node knows its own location and the location of the destination

is included in the “header” of the packet. In [65] the same authors describe several

possible avoidance/contention resolution schemes by which nodes acknowledge recep-

tion, and a single node, the one closest to the destination, is chosen to serve as the

next relay. The authors derive upper and lower bounds on the average number of

hops the protocol requires when the destination is at a distance D from the source.

However, Zorzi and Rao do not consider fading and diversity.

In [63] Khandani et al. derive the routing metric that minimizes end-to-end outage

in a multihop network in the presence of Rayleigh fading. This approach requires that

the source knows the location of all the nodes in the network. The path is chosen

as the best on average based on the node locations. The same work also considers

diversity enabled routing under the same assumptions.
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In [64] Biswas and Morris propose a protocol called opportunistic multihop routing

protocol. This protocol takes advantage of the broadcast nature of wireless transmis-

sions by selecting the “best” relay among the nodes that receive the data packet

correctly. The selection criteria is the cost of delivering the packet from each node to

the destination rather than the geographical distance. As the cost metric they use the

number of hops from the node to the destination along the best route in traditional

routing, where the packets are sent along pre-computed routes that are selected to

minimize the estimated number of transmissions.

Most published work on diversity relaying, including the rest of the chapters of

this thesis, consider optimistic scenarios, where, for example, all the relays are in the

midpoint between the source and the destination. Some of the exceptions are [66], [67]

and [68]. In [66] Zhao and Valenti propose a multihop protocol they call Hybrid

ARq-Based Intra-cluster GEographically-informed Relaying (HARBINGER), which

combines Hybrid ARQ and cooperative diversity. As a packet propagates in the

network, each transmitting node uses an independent code to encode the packet.

Since multiple independently coded replicas of the source data are received, mutual

information rather than signal power is accumulated. A node becomes a reliable relay

for the packet as soon as it accumulates sufficient mutual information to decode the

packet reliably.

In [67] Song and Hatzinakos propose a cooperative relaying protocol called Co-

operative Transmission Protocol for Sensor Networks (CTP-SN). They analyze the

performance of the protocol in a network where nodes are distributed in two dimen-

sional space according to homogeneous Poisson point process. Unlike our protocol,

CTP-SN does not use Channel State Information (CSI) at the transmitting nodes. In

CTP-SN an arbitrary region is chosen, and all the nodes in the region that received

the packet from the source retransmit to the destination using a space-time code.

The authors show that the outage probability decreases exponentially with the node
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density. Our protocol does not limit the relay locations; any node that receives the

source packet successfully can possibly serve as a relay. The authors also describe a

variant of the CTP-SN protocol, which includes feedback from the destination. How-

ever, this variant requires that all relays can hear the destination, an assumption that

is hard to guarantee in practice. The CTP-SN protocol further assumes that every

reliable relay knows the relay region associated with each possible pair of source and

destination in its neighborhood. This is a more demanding requirement than knowing

the (local) mean channel gain to any neighboring node, which is what we assume in

this chapter.

Bletsas et al. studied path selection in two hop relaying [68]. They assume that the

instantaneous CSI of all source-relay and relay-destination links are available at the

source and show that the path selection can achieve the same asymptotic performance

(diversity multiplexing trade-off) as the distributed space time coding of [35] with

reduced complexity at the destination. They also design a protocol to implement

path selection with reduced overhead. Another related work on relay selection is in

the context of coded cooperation [69]. In this paper, Lin et al. assume that there exists

a “partner” for each source node, which is a pre-selected node that serves as relay for

a particular destination. The paper derives the criteria for choosing a particular node

as a partner over other existing nodes. End-to-end performance between the source

and destination depends consequently on the reliability of the channel between the

source and its partner. Our approach differs from this work since we select a relay

from those nodes that have actually received correctly. Therefore, different packets

may be relayed by different nodes and diversity transmission may take place as long

as at least one other node has received the source transmission correctly.

The rest of this chapter is organized as follows. The system model and the re-

laying protocols are described in Section 6.1 and Section 6.2, respectively. Outage

probabilities of the direct transmission and the basic relaying protocol are derived
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in Section 6.3. In Section 6.4 we discuss some enhancements to the basic relaying

protocol including ARQ. Numerical results are presented in Section 6.5. Findings of

the chapter are summarized in Section 6.6.

6.1 System Model

A system as shown in Fig. 6.1 is considered. A source node S communicates with a

destination node D, and the nodes in the vicinity of S and D can serve as relays.

6.1.1 Node Location Model

We assume a very general node location model. Nodes are distributed in two di-

mensional space according to homogeneous Poisson point process. A homogeneous

Poisson point process is fully described by its density, λ (nodes/area). Some impor-

tant properties of this process are as follows:

• The number of nodes in a region A is Poisson distributed random variable with

mean λ× area(A), i.e., N(A) ∼ Poiss(λ× area(A)). That is,

P{N(A) = k} = e−λ×area(A) (λ× area(A))k

k!
.

• The number of nodes in two disjoint regions are independent.

• Given the number of nodes in a region A the location of each node follows a

uniform probability distribution in A.

6.1.2 Propagation Model

Our propagation model includes three components: distance related loss, lognormal

shadowing and Rayleigh fading. The SNR at node j due to a transmission from node
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i, which is located dij units away, is given by

γij =
KcPT

dυ
ijPN

10Zij/10X2
ij, (6.1)

where Kc represents all the constant gains such as antenna gains, PT is the transmit

power, PN is the noise power and υ is the path loss exponent. We assume that the

antennas are omnidirectional and Kc and PN are common for all nodes.

Fading components of all the channel gains, i.e., Xij and Zij terms are independent

and identically distributed from link to link. The shadowing component Zij is a

Gaussian random variable with zero mean and variance equal to σ2, and the Rayleigh

fading component X2
ij is an exponential random variable with unit mean. We assume

that the channel coherence time is sufficiently long, such that the channel does not

change during the delivery time of a packet, which is at most two time slots.

We assume that all the transmissions are at a fixed rate R (in bits per transmission

per Hertz) and all the nodes use an ideal channel coding which is designed for rate R

and achieves the Shannon capacity. The codeword length L is assumed to be large

enough so that a decoding error occurs if and only if log2(1 + γij) < R. That is, the

transmission by node i is successfully decoded by node j, if and only if the received

SNR γij is larger than a given target value γtr, which is equal to γtr = 2R − 1. We

define rN(PT ) as the transmission range of a node transmitting with power PT in the

absence of fading:

rN(PT ) =

(
Kc

PT

PNγtr

)1/υ

,

Then, the event of successful transmission, i.e., {γij > γtr}, is equivalent to the event

that

{dij < rN(PT )X
2/υ
ij ehZij/υ}, (6.2)

where h = ln(10)/10.

The transmit power of the source and the relays are denoted by Ps and Pr, respec-

tively. Corresponding transmission ranges in the absence of fading are denoted by



83

rNs and rNr, i.e., rNs = rN(Ps) and rNr = rN(Pr). The expectation of γij is denoted

by γ̄ij. γ̄ij normalized by the target SNR γtr is denoted by gij, which is equal to

gij =
γ̄ij

γtr

=

(
rN(PT )

dij

)υ

E[X2
ij] =





(
rNs

dij

)υ

, if node i is a source node;

(
rNr

dij

)υ

, if node i is a relay node.

(6.3)

6.2 Description of the Basic Relaying Protocol

The protocol has two phases. Fig. 6.1 illustrates the phases of the relaying protocol.

In phase I, S transmits a packet with transmit power Ps, specifying the intended

destination. We identify useful relays based on the following criterion: to be able to

act as relay, a node must decode the transmission of S correctly based on the criterion

given in (6.2). Hence, our protocol falls in the class of selective relaying protocols [4].

The nodes that satisfy this constraint are called reliable relays. Each reliable relay

sends a short acknowledgement message (ACK) to S, which also includes additional

information related to the propagation channel between the relay and D. Based on

all the information collected from the reliable relays, S decides which relays should

relay the packet.

In scenarios where each relay is able to maintain the instantaneous gain of the

channel between itself and D, S can pick the relay with the largest gain as in [57].

However, in the present work we assume that nodes can provide only local average

SNRs, which do reflect the distance dependent loss and shadowing, but cannot track

Rayleigh fading which changes at a faster rate. We do not require that every node

in the neighborhood of S to readily provide the instantaneous channel gain to any

possible destination that other nodes in its neighborhood might wish to send packets

to. This feature allows the protocol to perform also in mobile scenarios.

The source node S can select the relays to participate based on the information
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Figure 6.1: The two phases of the relaying protocol for Mr = 2. In phase I, the
successful transmissions are shown by solid lines. The transmissions that are combined
by D are shown by dotted lines.

provided to S, the direct channel between S and D, and, possibly on resource con-

servation considerations that we do not discuss here. In this chapter, we assume

that among all reliable relays with respect to S those with the best average channel

gains to D are selected as relays. The maximum number of relays to be selected is

limited by Mr. In phase II the selected relays are informed of the decision of S and

they transmit to D one by one, in different time slots each using transmit power Pr.

Then, D combines all the received signals using either SC or MRC.

6.3 Outage Probability Analysis

6.3.1 Outage Probability of the Direct Transmission

We denote the outage probability of the direct transmission as Po,1. The probability

that the single hop transmission is not successful conditioned on the average SNR is

equal to

P{γsd < γtr|γ̄sd} = 1− exp (−γtr/γ̄sd) = 1− exp(−1/gsd). (6.4)
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Let the distance between S and D be denoted by dsd. Then, the normalized received

SNR at D is given by

gsd =

(
rNs

dsd

)υ

ehZsd . (6.5)

Averaging over gsd we obtain

Po,1 = P{γsd < γtr} = EZsd

[
1− exp

(−1/
(
(rNs/dsd)

υehZsd
))]

= 1−
∫ ∞

−∞

1√
2πσ2

e−z2/(2σ2) exp(−e−hz(rNs/dsd)
−υ)dz.

(6.6)

6.3.2 Outage Probability of the Basic Relaying Protocol

In this section we analyze the outage performance of the relaying protocol described

in Section 6.2 for given rNs, rNr, Mr, λ and propagation parameters σ and υ. The

protocol allows up to Mr relays participate when possible. If the number of available

relays Nr is smaller than Mr, then only Nr relays retransmit. In the rest of this

section, we first the distribution of various random variables that will be required to

derive the outage probability of the basic relaying protocol.

Number of Reliable Relays

To find the probability mass function (PMF) of the number of reliable relays, we

make use of a well-known result on Poisson processes [70], which is also used in [71].

Theorem 6.1. Let the number of objects N in a given region be a Poisson random

variable with mean µ. Let εi be the event that object i has a certain property. If all εi’s

are independent events and have the same probability of occurrence p = P{εi|N = n}
when conditioned on {N = n} for all n, then the number of objects out of N objects

having the defined property is also Poisson random variable with mean pµ.
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Let B(a, b; r) denote a disc with radius r centered at point (a, b). Suppose that

the objects are the nodes in B(0, 0; r0) and the desired property is having a reliable

link to S at (0, 0). Then the number of reliable relays within r0 of S are

Nr(B(0, 0; r0)) ∼ Poiss(µr(r0)), (6.7)

where

µr(r0) = λπr2
0pr, (6.8)

and pr is the probability that an arbitrary node in B(0, 0; r0) is a reliable relay.

All the nodes in B(0, 0; r0) are randomly and uniformly distributed in the region.

Hence, dsr, the distance from an arbitrary node to S at (0, 0) has PDF pdsr(r) = 2r/r2
0,

0 ≤ r ≤ r0. Then, we calculate r2
0pr and take its limit as r0 →∞, covering the whole

plane.

lim
r2
0→∞

r2
0 pr= lim

r2
0→∞

r2
0 P{dsr < rNsX

2/υehZ/υ}

= lim
r2
0→∞

r2
0

∫ ∞

−∞
pZ(z)

∫ ∞

0

pX(x)

∫ min(r0,rNsx2/υehZ/υ)

0

2r

r2
0

dr dxdz

= lim
r2
0→∞

∫ ∞

−∞
pZ(z)

∫ ∞

0

pX(x) min(r2
0, r

2
Nsx

4/υe2hZ/υ)dxdz

=r2
Ns EX [X4/υ]EZ [e2hZ/υ]. (6.9)

As derived in [71], EX [X4/υ] = Γ(1+2/υ) for Rayleigh distributed X and EZ [e2hZ/υ] =

exp(2%2) for Z ∼ N (0, σ2), where

% =
hσ

υ
,

and the gamma function Γ(.) is defined as

Γ(x) =

∫ ∞

0

tx−1e−tdt.

Then, the average number of reliable relays in the entire plane is found by substi-

tuting (6.9) into (6.8):

µr = lim
r0→∞

µr(r0) = λπr2
NsΓ

(
1 +

2

υ

)
exp

(
2%2

)
. (6.10)
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The pmf of the number of reliable relays of S is

Nr ∼ Poiss
(
λπr2

NsΓ (1 + 2/υ) exp
(
2%2

))
.

(6.11)

Distance of a Reliable Relay to the Source

Let dsr denote the distance of an arbitrary node in B(0, 0; r0) to S and A(r0) denote

the event that this node has a direct connection with S. In Section 9A of [71], PDF

of dsr given A(r0) as r0 →∞ is calculated (eqn (47)):

pdsr|A(r)=
2r

{
1− EZ

[
FX

(√
e−hZ(r/rNs)υ

)]}

[rNs exp(%2)]2 E[X4/υ]

=
2rEZ [exp

(−(r/rNs)
υe−hZ

)
]

[rNs exp(%2)]2 Γ(1 + 2/υ)
. (6.12)

Distance of a Reliable Relay to the Destination

Consider an arbitrary reliable relay, node i, which has connection to S. Let drd,i

denote the distance of this node to D at (dsd, 0). Since the locations of such nodes

are i.i.d., so are their distances to D. Hence, we drop the relay index and denote the

common PDF of the distances of reliable relays to D as pdrd
(l). The CDF of drd can

be calculated from

Fdrd
(l)=

∫ ∞

0

P{drd ≤ l | dsr = r}pdsr|A(r)dr. (6.13)

We first calculate the probability that the distance of a reliable relay to D is below

l given that its distance from S is equal to r. Since the angular distribution of all

reliable relays around S is uniform in [0, 2π], such nodes are located uniformly on the

circle C(0, 0; r). If the circle C(0, 0; r) and the disk B(dsd, 0; l) intersect partially, i.e.,

|l− dsd| < r < l + dsd, then the probability that drd ≤ l is equal to the fraction of the

length of C(0, 0; r) arc that is within B(dsd, 0; l). In the illustration of Fig. 6.2, this
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Figure 6.2: Illustration for the calculation of Fdrd|dsr(l|r) for |l− dsd| < r < |l + dsd|

fraction is equal to θ/π. Using the law of cosines, we can express θ as

θ = arccos

(
d2

sd − l2 + r2

2dsdr

)
.

If l > r + dsd, then the circle is within the disk and all the points on the circle are

within l of the point (dsd, 0). However, if r > l− dsd, the disk is inside the circle and

none of the nodes on the circle are closer to dsd than l.

Hence, we obtain the conditional CDF Fdrd|dsr(l|r) as

Fdrd|dsr(l|r)=





1
π

arccos
(

d2
sd−l2+r2

2dsdr

)
,

|l − dsd| < r < l + dsd;

1, 0 < r < l − dsd;

0, otherwise,
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where l, dsd, r > 0. Then, averaging over dsr, the CDF of drd is obtained from

Fdrd
(l)=

∫ ∞

0

Fdrd|dsr(l|r)pdsr|A(r)dr

=

∫ max{0,l−dsd}

0

pdsr|A(r)dr

+
1

π

∫ l+dsd

|l−dsd|
arccos

(
d2

sd − l2 + r2

2dsdr

)
pdsr|A(r)dr. (6.14)

We substitute (6.12) in the first integral, use the change of variable u = r/rNs and

obtain
∫ max{0,l−dsd}

0

pdsr|A(r)dr=
2

[exp(%2)]2 Γ(1 + 2/υ)

×
∫ max{0,l−dsd}

0

r

r2
Ns

EZ

[
exp

(−(r/rNs)
υe−hZ

)]
dr

=
2

[exp(%2)]2 Γ(1 + 2/υ)

∫ max{0,l/rNs−dsd/rNs}

0

uEZ

[
exp

(−uυe−hZ
)]

du. (6.15)

For the second integral of (6.14), again using u = r/rNs, we can express the

integrand in terms of dsd/rNs, l/rNs and u:
∫ l+dsd

|l−dsd|
arccos

(
d2

sd − l2 + r2

2dsdr

)
pdsr|A(r)dr =

2

[exp(%2)]2 Γ(1 + 2/υ)

×
∫ l/rNs+dsd/rNs

|l/rNs−dsd/rNs|

{
uEZ

[
exp

(−uυe−hZ
)]

arccos

(
(dsd/rNs)

2 − (l/rNs)
2 + u2

2(dsd/rNs)u

)
du

}
.

(6.16)

Since both (6.15) and (6.16) are functions of l/rNs, d/rNs, υ and σ only, we denote

Fdrd
(l) as

Fdrd
(l) = h(l/rNs, dsd/rNs, υ, σ). (6.17)

Distribution of Average SNR Received at the Destination from an Arbi-

trary Reliable Relay

Relay selection among the reliable relays is based on the average SNR determined by

the distance related loss and the lognormal shadowing. Let γrd,a denote the instan-

taneous SNR at D as a result of the transmission of an arbitrary reliable relay node.
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Normalized by the target SNR, γrd,a is given by

γrd,a

γtr

=

(
rNr

drd

)υ

ehZ′(X ′)2,

where Z ′ and X ′ represent the lognormal and Rayleigh fading between the reliable

relay node and D. Since (X ′)2 is exponential distributed with mean equal to 1, locally

averaged (over the small scale fading X ′) and normalized SNR grd,a is given by

grd,a = EX′

[
γ

γtr

]
=

(
rNr

drd

)υ

ehZ′ .

Then the CDF of grd,a is given by

Fgrd,a
(g) = 1− EZ′

[
Fdrd

(
rNre

hZ′/υg−1/υ
)]

(6.18)

= 1− 2

[exp(%2)]2 Γ(1 + 2/υ)

∫ ∞

−∞
pZ′(z

′)

{

∫ max{0,(ζ exp(hz′)/g)1/υ−d̃sd}

0

uEZ

[
exp

(−uυe−hZ
)]

du

+

∫ (ζ exp(hz′)/g)1/υ+d̃sd

|(ζ exp(hz′)/g)1/υ−d̃sd|

(
uEZ

[
exp

(−uυe−hZ
)]

× 1

π
arccos

(
d̃2

sd − (ζ exp(hz′)/g)2/υ + u2

2d̃sdu

)
du

)}
dz′

= 1− 2

[exp(%2)]2 Γ(1 + 2/υ)

∫ ∞

−∞

∫ ∞

−∞
pZ′(z

′)pZ(z)

{

∫ max{0,(ζ exp(hz′)/g)1/υ−d̃sd}

0

u exp
(−uυe−hz

)
du

+

∫ (ζ exp(hz′)/g)1/υ+d̃sd

|(ζ exp(hz′)/g)1/υ−d̃sd|

(
u exp

(−uυe−hz
)

× 1

π
arccos

(
d̃sd

2 − (ζ exp(hz′)/g)2/υ + u2

2d̃sdu

)
du

)}
dzdz′, (6.19)

where we defined ζ and d̃sd as

ζ = (rNr/rNs)
υ and d̃sd = dsd/rNs.

In Fig. 6.3, we plot Fgrd,a
(g) for different dsd values.
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Figure 6.3: The CDF of grd,a (Fgrd,a
(g)), the average normalized SNR of an arbitrary

reliable relay to D. υ = 4, σ = 8, rNs = rNr (ζ = 1). Dotted curves with mark-
ers are obtained from (6.19) and dashed curves are obtained through Monte Carlo
simulations.
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Distribution of the Averaged Normalized SNR of the Best Mr Out of k

Reliable Relays

Let us consider the case where we have exactly k reliable relays (k ≥ Mr) and we

choose Mr relays with the largest average SNR. We denote the average SNR of the

relays as {grd(1), grd(2), . . . , grd(Mr)} where grd(j) is the j-th largest. The joint PDF of

Mr largest of k i.i.d. random variables is given in [72] (equation (9))

p(k)
grd(1),grd(2),...,grd(Mr)

(g1, g2, . . . gMr)

=
k!

(k −Mr)!
pgrd,a

(g1)pgrd,a
(g2), . . . , pgrd,a

(gMr)(Fgrd,a
(gMr))

k−Mr , (6.20)

where g1 > g2 > . . . > gMr . Note that the above distribution is a function of k.

Average SNR of the Best Mr Reliable Relays Given That Nr ≥ Mr

The pmf of the number of the reliable relays given there are at least Mr reliable relays

is given by:

P{Nr = k|Nr ≥ Mr}=P{Nr = k, Nr ≥ Mr}
P{Nr ≥ Mr} =

1

P{Nr ≥ Mr}P{Nr = k},

where k ≥ Mr.

When we average (6.20) over Nr the number of reliable relays, we obtain:

pgrd(1),grd(2),...,grd(Mr)
(g1, g2, . . . gMr)=

1

P{Nr ≥ Mr}
∞∑

k=Mr

{
P{Nr = k}

×p(k)
grd(1),grd(2),...,grd(Mr)

(g1, g2, . . . gMr)

}

=
1

P{Nr ≥ Mr}

{
Mr∏
i=1

pgrd,a
(gi)

}

×
∞∑

k=Mr

exp(−µr)
µk

r

k!

k!

(k −Mr)!
(Fgrd,a

(gMr))
k−Mr

=
µMr

r

P{Nr ≥ Mr} exp
(−µr(1− Fgrd,a

(gMr))
)

{
Mr∏
i=1

pgrd,a
(gi)

}
,

(6.21)
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where Fgrd,a
(g) is given by (6.19).

The derivation of CDF for general Mr seems to be cumbersome, we derive it only

for Mr = 1 and Mr = 2. Substituting Mr = 1 in (6.21), we obtain

pgrd(1)
(g) =

µr

1− exp(−µr)
exp

(−µr(1− Fgrd,a
(g))

)
pgrd,a

(g). (6.22)

By integrating the PDF, we obtain the CDF of grd(1)

Fgrd(1)
(g)=

1

1− exp(−µr)

∫ g

0

µr exp(−µr(1− Fgrd,a
(x)))pgrd,a

(x)dx

=
1

1− exp(−µr)

∫ (1−Fgrd,a
(g))

1

−µr exp(−µru)du

=
1− exp(µrFgrd,a

(g))

1− exp(µr)
, (6.23)

where we use the change of variables u = 1 − Fgrd,a
(x) for the integration. Fig. 6.4

shows Fgrd(1)
for different µr values. On the same graph we also plot Fgrd,a

. We observe

that as the average number of reliable relays increases, average SNR of the best relay

at D improves substantially compared to the average SNR of an arbitrary relay.

For Mr = 2 in (6.21), we obtain

Fgrd(1),grd(2)
(g1, g2)=

1

1− exp(−µr)(1 + µr)

×
∫ g1

0

µrpgrd,a
(t1)

∫ g2

t1

{
µr exp(−µr(1− Fgrd,a

(t2)))pgrd,a
(t2)dt2 dt1

}

=
1 + exp(µrFgrd,a

(g2))Fgrd,a
(g1)− exp(µrFgrd,a

(g1))

exp(µr) + µr − 1
. (6.24)

Let γrd(i) denote the instantaneous SNR of the reliable relay that has the i-th

highest average value, i.e., EX [γ(i)/γtr] ∼ grd(i). Note, that γ(i) does not necessarily

have the i-th highest value among γ(j), j ∈ {1, 2, . . . , k} . Let us use P
(Mr)
o,2 to denote

the probability of outage of the basic protocol when the maximum number of relays
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Figure 6.4: The CDF of grd(1) (Fgrd(1)
(g)), the average SNR of the best reliable relay

to D. υ = 4, σ = 8, d̃sd = 1, ζ = 1. Dotted curves with markers are obtained from
(6.19) and (6.23) and dashed curves are obtained through Monte Carlo simulations.
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is limited to 2. We can express P
(Mr)
o,2 as:

P
(Mr)
o,2 =

Mr−1∑

k=0

P{Nr = k}P{outage after signals from

S and k reliable relays are combined}

+P{Nr ≥ Mr}P{outage after the signals from

S and best Mr reliable relays are combined}. (6.25)

Outage Probability with Maximal Ratio Combining

If D uses MRC, the output SNR after combining is the sum of the SNR values received

from S and individual relays [10]. Hence, we can write

P
(Mr,MRC)
o,2 =

Mr−1∑

k=0

P{Nr = k}P
{(

γsd

γtr

+
k∑

i=1

γrd,i

γtr

)
< 1

}

+P{Nr ≥ Mr}P
{(

γsd

γtr

+
Mr∑
i=1

γrd(i)

γtr

)
< 1

}
. (6.26)

We define two new random variables G1 and G2 to shorten the notation.

G1=
γsd

γtr

+
k∑

i=1

γrd,i

γtr

, (6.27)

G2=
γsd

γtr

+
Mr∑
i=1

γrd(i)

γtr

. (6.28)

Conditioned on gsd and grd,i for i = 1, 2, . . . , k, G1 is a sum of independent exponen-

tial random variables. If the means of exponential components are distinct1, such

random variables are called hypoexponential random variable [73]. The PDF of an

hypoexponential random variable G is given by

pG(g; µ1, µ2, . . . , µt) =
t∑

i=1

ci,t
1

µi

e−g/µi , g ≥ 0,

1In our problem the means of exponential random variables are continuous valued random vari-
ables. Hence, the probability that they do not take distinct values is zero.
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where µ1, µ2, . . . , µt are the means of individual exponential summands and

ci,t=
t∏

j=1,j 6=i

µi

µi − µj

.

It is straightforward to find the CDF of G from its PDF:

FG(g; µ1, µ2, . . . , µt) =
t∑

i=1

ci,t

(
1− e−g/µi

)
, g ≥ 0.

(6.29)

Hence, the conditional PDF of G1 and G2 can be written as

P{G1 ≤ g|gsd, grd,1, . . . , grd,k}=FG(g; gsd, grd,1, . . . , grd,k), (6.30)

P{G2 ≤ g|gsd, grd(1), . . . , grd(Mr)}=FG(g; gsd, grd(1), . . . , grd(Mr)). (6.31)

Then, we can express the first part of (6.26) as:

Mr−1∑
j=0

P{Nr = k}P
{(

γsd

γtr

+
k∑

i=1

γrd,i

γtr

)
< 1

}

=
Mr−1∑

k=0

e−µr
µk

r

k!

∫ ∞

0

. . .

∫ ∞

0

FG(1; gsd, g1, . . . , gk)

×pgsd
(gsd) pgrd,1

(g1) . . . pgrd,k
(gk) dgsd dg1 . . . dgk.

The second part of (6.26) can be written as:

P{Nr ≥ Mr}P
{(

γsd

γtr

+
Mr∑
i=1

γrd(i)

γtr

)
< 1

}

=

(
1−

Mr−1∑

k=0

e−µr
µk

r

k!

) ∫ ∞

0

∫ ∞

0

∫ g1

0

. . .

∫ gMr−1

0

FG(1; gsd, g1, . . . , gMr)

×pgrd(1),...,grd(Mr)
(g1, . . . , gMr)pgsd

(gsd) dg1 . . . dgMrdgsd.
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For Mr = 1, (6.26) simplifies to

P
(1,MRC)
o,2 = e−µrPo,1 + (1− e−µr)

×
∫ ∞

0

∫ ∞

0

FG(1; gsd, grd,1)pgsd
(gsd)pgrd(1)

(g1)dgsddg1

= e−µrPo,1 + (1− e−µr)

{
1−

∫ ∞

0

∫ ∞

0

(
gsd

gsd − g1

e−1/gsd +
g1

g1 − gsd

e−1/g1

)

×pgsd
(gsd)pgrd(1)

(g1)dgsd dg1

}
. (6.32)

Outage Probability with Selection Combining

If D use selection combining to combine all the received signals, then we can express

the outage probability as

P
(Mr,SC)
o,2 = P

{
γsd

γtr

< 1

}(Mr−1∑

k=0

P{Nr = k}
k∏

i=1

P
{

γrd,i

γtr

< 1

}

+P{Nr ≥ Mr}
Mr∏
i=1

P
{

γrd(i)

γtr

< 1

})
. (6.33)

Due to the complexity of the general expressions, we focus on the simplest case and

consider SC with Mr = 1:

P
(1,SC)
o,2 =Po,1

(
P{Nr = 0}+ (1− P{Nr = 0})P

{
γrd(i)

γtr

< 1

})

=Po,1

(
e−µr + (1− e−µr)

∫ ∞

0

(1− exp(−1/g1)pgrd(1)
(g1)dg1

)
. (6.34)

Using integration by parts, we can express the integral in (6.34) as
∫ ∞

0

(1− e−1/g1)pgrd(1)
(g1)dg1=Fgrd(1)

(g1)(1− e−1/g1)

]∞

0︸ ︷︷ ︸
→0

+

∫ ∞

0

(g1)
−2e−1/g1Fgrd(1)

(g1)dg1.

Then,

P
(1,SC)
o,2 =Po,1

(
e−µr + (1− e−µr)

∫ ∞

0

(g1)
−2e−1/g1Fgrd(1)

(g1)dg1

)
. (6.35)
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Substituting (6.6) and (6.23) into (6.35), we can evaluate P
(1,SC)
o,2 numerically.

6.4 Enhancements to the Basic Relaying Protocol

In this section we propose two enhancements to the basic protocol and discuss imple-

mentation issues related to them. In the basic relaying protocol, as well as the rest

of the relaying schemes studied in the rest of this thesis, in the first phase the source

transmits a data packet and in the second phase one or more of the relays retransmits

the message. This protocol can be improved in terms of bandwidth expansion and

error/outage performance in two ways.

• In the basic protocol a second phase takes place even if the transmission in the

first phase is successful. Assuming that the destination sends an acknowledge-

ment message (ACK) when the source transmission is successful, the second

phase can be avoided.

• The basic protocol always selects one of the reliable relays to retransmit. In cer-

tain topologies and channel conditions, however, even the best relay’s channel

to the destination might not be good enough and a retransmission by the source

might be more advantageous than the relay transmission. The second enhance-

ment to the basic protocol allows these two options: source retransmission and

relay transmission.

Next we describe a protocol, in which we implement these two enhancements. We call

this protocol as Relay-Assisted ARQ (RARQ). We note that the second enhancement

can also be applied to the basic protocol without ARQ.
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6.4.1 Relay-Assisted ARQ Protocol

The protocol has two phases. In the first phase, S transmits a data packet, specifying

the intended destination. If D receives the packet successfully, it sends a short ACK

message to S. To account for propagation and processing delays, S uses a time-out

counter defining a time window for ACK to arrive from D. In case ACK arrives

in time, the protocol cycle is terminated. If S does not receive an ACK from D

before its timer expires, it assumes that its transmission is not successful and the

second phase starts. In the second phase, S broadcasts a message requesting that all

reliable relays identify themselves. Each reliable relay sends a short ACK to S, which

also includes its mean channel gain to the destination. For simplicity, we limit the

number of relays to transmit in the second phase to one relay. S then either instructs

the reliable relay with the highest channel gain to D to retransmit the packet, or

retransmits the packet itself, which is also what it does when there are no reliable

relays. To complete the second phase, the destination combines the two received

signals using Maximum Ratio Combining (MRC).

The above description leaves the following important issues unresolved, and we

discuss them now. Consider Nr reliable relays with respect to the given source node

with average normalized SNRs received at the destination denoted by grd,1, . . . , grd,Nr .

As in Section 6.3.2 let us denote their maximum as

grd(1) = max
i∈{1,2,...,Nr}

grd,i.

Depending on the values of grd(1) and gsd, S decides to retransmits itself, or instructs

the reliable relay with mean channel gain grd(1) to do that. In Section 6.4.3 we

derive a target value, gmin(gsd) for grd(1), below which source retransmission should

be preferred over relay transmission.

We note that concurrent transmissions of the ACKs from multiple reliable relays

can cause collisions if not managed by a separate protocol. A simple protocol for



100

this purpose is given below. The source includes the value of gmin in the transmitted

packet, then reliable relay i does not respond if grd,i < gmin. Each reliable relay whose

grd,i ≥ gmin is required to wait a certain time interval before responding. This time

interval is related to the grd,i of the relay through a properly chosen monotonically

decreasing function G(gsd, grd,i). Let the longest waiting time interval, the one corre-

sponding to gmin, be ∆tmax (See Fig 6.5). Then the reliable relay with the highest

channel gain to the destination will transmit the ACK first, and the rest, sensing the

transmission of the “best” relay, will withdraw. Note that even if some other reliable

relays fail to sense the signal of the “best” relay, with high probability no collision

will occur, because the ACK messages are short compared to ∆tmax. S then waits to

the end of the ∆tmax interval (no reliable relay will be on the air beyond this point)

and then sends a message to the “best” relay instructing it to transmit to D. The

“best” relay then transmits the data packet terminating the cycle. Having to wait

for a specific instruction from S prevents the possibility that the “best” relay, not

receiving an ACK from D, will transmit even though D may have issued an ACK

that was received by S.

6.4.2 Minimum Average SNR for Relay Transmission: gmin

If the first transmission by the source fails, there are two possible actions: as represents

the retransmission by the source and ar represents the transmission by the best relay.

Let Ps2 and Psr denote the outage probability at the destination if, following a failed

transmission, the source chooses as and ar, respectively. Since we only consider the

best relay in this analysis, to simplify the notation, we use γ̄rd and grd instead of γ̄rd(1)

and grd(1).

Recall that the destination node uses MRC, and therefore the SNR at the MRC
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Figure 6.5: G(gsd, grd,i): The waiting time before responding for reliable relay i with
grd,i ≥ gmin.

combiner output is the sum of the SNRs obtained in the two attempts. Hence,

Ps2=P{2γsd < γt | γ̄sd, γsd < γt} =
P{γsd < γt/2 | γ̄sd}
P{γsd < γtr | γ̄sd}

=
1− exp

(
− γtr

2γ̄sd

)

1− exp
(
− γtr

γ̄sd

) =
1− exp

(
− 1

2gsd

)

1− exp
(
− 1

gsd

) , (6.36)
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and

Psr=P{γsd + γrd < γt | γ̄sd, γ̄rd, γsd < γt} =
P{γsd + γrd < γt, γsd < γt | γ̄sd, γ̄rd}

P{γsd < γt | γ̄sd}
=

1

1− exp
(
− γt

γ̄sd

)
∫ γtr

0

∫ γtr−γsd

0

1

γ̄rd

e−γrd/γ̄rd
1

γ̄sd

e−γsd/γ̄sddγrd dγsd

=1− γ̄rd

γ̄rd − γ̄sd

exp
(
− γt

γ̄rd

)
− exp

(
− γt

γ̄sd

)

1− exp
(
− γt

γ̄sd

)

=1− grd

grd − gsd

exp
(
− 1

grd

)
− exp

(
− 1

gsd

)

1− exp
(
− 1

gsd

) . (6.37)

Then, the optimal decision can be found as:

Psr

as

ar
≷Ps2 (6.38)

1− grd

grd − gsd

exp
(
− 1

grd

)
− exp

(
− 1

gsd

)

1− exp
(
− 1

gsd

) as

ar
≷

1− exp
(
− 1

2gsd

)

1− exp
(
− 1

gsd

) . (6.39)

Note that Psr monotonically decreases with grd. After some arithmetic, (6.39) sim-

plifies to the following form:

grd

a0

a1

≷gmin(gsd),

where gmin denotes the minimum grd required for the relay transmission to be advan-

tageous over the source retransmission. The function gmin is given by

gmin(gsd) = gsd

(
1− exp

(
− 1

2gsd

))[
gsd

(
1− exp

(
− 1

2gsd

))
W (f(gsd)) + 1

]−1

,

where we define f() as

f(x) =

exp

(
1+exp(− 1

2x)
2x(−1+exp(− 1

2x))

)

x
(−1 + exp

(− 1
2x

)) ,

and W is the Omega function or Lambert’s W -function [74]. W (x) = w if x and w

satisfy x = wew. Fig. 6.6 shows gmin for a wide range of gsd values. We note that
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gmin has a limit as gsd →∞ :

lim
gsd→∞

gmin(gsd) =
1

W (−2e−2) + 2
≈ 0.6275.
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Figure 6.6: Minimum average SNR for relay transmission (gmin) as a function of
gsd.

6.4.3 Outage Probability of Relay-Assisted ARQ

The outage probability of the relay assisted ARQ protocol can be represented as

PRARQ = Po,1P2, (6.40)

where Po,1 is probability of outage of the direct transmission and P2 is the probability

that the packet is not received after the second transmission, following a failed first
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attempt. Let pgrd
and Fgrd

denote the PDF and CDF of grd, respectively. According

to the protocol, the source retransmits if either there is no reliable relay or the grd

is less than gmin(gsd). For analytical convenience, instead of treating the case of no

reliable relays separately, we modify grd as follows: If there is no reliable relay, we say

grd is equal to zero. We can express P2 as

P2=

∫ ∞

0

∫ ∞

0

min{Ps2(gsd), Psr(x, gsd)}pgrd
(grd)pgsd

(gsd)dgrd dgsd

=

∫ ∞

0

∫ gmin(gsd)

0

Ps2(gsd)pgrd
(grd)pgsd

(gsd)dgrd dgsd

+

∫ ∞

0

∫ ∞

gmin(gsd)

Psr(x, gsd)pgrd
(grd)pgsd

(gsd)dgrd dgsd.

Due to the complexity of computing this expression numerically, we resort to Monte

Carlo simulations to evaluate the performance of RARQ protocol.

6.5 Results

In this section we validate some of the analytical results of this chapter with sim-

ulations. In our simulation study, for each data point shown in the graphs a large

number of topologies are generated where S is placed at position (−dsd/2, 0) and the

destination is placed at position (+dsd/2, 0) on a K ×K square, where K is chosen

depending on the node density λ. N = 600 other nodes are placed randomly and

uniformly on the region. The source and relays are assumed to have identical trans-

mission ranges (rNr = rNs, ζ = 1). The distance dependent loss exponent υ is 4. The

log-normal and Rayleigh fading are generated i.i.d. across all the links with σ = 8

for the log-normal fading.

In Fig. 6.7 we plot the outage probability for single hop transmission and the

basic relaying protocol. The curves of P
(1,SC)
o,2 from the simulations and the analysis

agree completely, which validates both our analysis and simulation setup. We observe
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Figure 6.7: Performance comparison of the basic relaying protocol with MRC and
SC using Mr = 1 and Mr = 2 relays at maximum, σ = 8, υ = 4, λr2

Ns = 2 (µr = 8.51).
Analytical results are obtained from (6.6) and (6.35).

that the basic relaying protocol can decrease the outage probability significantly even

if only one relay is allowed and selection combining is performed at D.

We perform simulations to observe the effect of the relay selection criterion on the

outage probability. The relaying protocol analyzed in this chapter selects the reliable

relay(s) with largest average SNR to D, i.e., the selection criterion is maximum grd.

We compare this protocol to the protocols in which the relay selection is done based

on minimum distance to D (drd) and the instantaneous SNR to D (γrd). The latter

criterion has also been used in Chapter 5 for fixed number of relays and relay locations.

We also consider random relay selection, in which one of the reliable relays is selected

at random. In Fig. 6.8, we plot the outage probability for different relay selection



106

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d̃sd

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

d̃sd

 

 

Po,1

P
(1,MRC)
o,2 (random)

P
(1,MRC)
o,2 (based on drd)

P
(1,MRC)
o,2 (based on grd)

P
(1,MRC)
o,2 (based on γrd)

λr2
Ns = 1.0 λr2

Ns = 2.0

Figure 6.8: Outage probability of the basic relaying protocol with MRC and Mr = 1
relay at maximum using different relay selection criteria (distance, average SNR, and
instantaneous SNR) as a function of d̃sd. σ = 8, υ = 4. Two relay densities are
considered: λr2

Ns = 1.0 (µr = 4.255) and λr2
Ns = 2.0 (µr = 8.51).

criteria. All the relay selection methods perform significantly better than random

relay selection as expected. Surprisingly, the performance of the average SNR based

selection is close to the performance of the instantaneous SNR based selection even

when the expected number of reliable relays is quite large (µr = 8.55). Since the

average SNR is also easier to measure compared to the internode distance and easier

to keep track compared to the instantaneous SNR, it is a good relay selection criterion.

To examine the effect of relay density on the outage probability, we vary the

number of nodes in the area and in Fig. 6.9, we plot the outage probability of the
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Figure 6.9: Outage probability of the basic relaying protocol with MRC and Mr = 1
relay at maximum as a function of µr. σ = 8, υ = 4. µr is varied by varying λ. Two
d̃sd values are considered: d̃sd = 0.5 and d̃sd = 1.0

basic relay protocol for two different d̃sd values as a function of µr. It is seen that as

µr increases, the outage probability decreases rapidly from the outage probability of

the direct transmission. We also observe that the logarithm of the outage probability

decreases linearly with µr, which supports the findings of Song and Hatzinakos in [67]

that the outage probability decreases exponentially with the relay density in a similar

protocol.

In order to study the effect of lognormal shadowing to the outage performance, in

Fig. 6.10 we plot the probability of outage as a function of the shadowing parameter

σ for two S −D distance values (d̃sd = (0.25, 1.0)) and a fixed value of node density

(λr2
Ns = 1.0). We note that the outage probability of direct transmission can increase
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or decrease with σ depending on the internode distance. For instance in Fig. 6.10 at

d̃sd = 0.25, Po,1 increases with σ. However, at d̃sd = 1.0, Po,1 decreases with σ. A

similar effect is expected for the single input multiple output (SIMO) channel formed

by the relaying protocol using the selected relay. On the other hand, as seen from

(6.10) the average number of reliable relays µr increases with σ. The dependence of

µr to σ is shown in Fig. 6.11. An increase in µr is expected to improve outage, as

it makes the selected relay to be located closer to the destination. For d̃sd = 1.0, we

observe that the overall performance of the relaying protocol improves with increasing

σ. For d̃sd = 0.25 for smaller values of σ, the negative effect of lognormal shadowing

on the direct and the SIMO channel dominates and the outage probability of the

relaying protocol increases with σ. As σ becomes larger, the positive effect of σ on

the number of reliable relays dominates and the outage probability of the relaying

protocol decreases with increasing σ.

In Fig. 6.12, we compare the outage probability of RARQ protocol to the the

outage probability of the basic relaying protocol with a single relay and MRC. For

reference we also plot the outage probability of ARQ protocol, in which S retransmits

whenever the the direct transmission fails. We observe that RARQ combines the

advantages of ARQ and the basic relaying protocol by selecting the best option for

any given topology and channel conditions. The gain of RARQ over the basic relaying

protocol in terms of outage probability is negligible at larger relay densities. However,

the main advantage of RARQ is its reduced bandwidth expansion when the direct link

is favorable. Fig 6.13 depicts the average number of transmissions used per packet

for different protocols. We note that the basic relaying protocol (with Mr = 1) uses

two transmissions per packet whenever there is at least one reliable relay. The ARQ

and RARQ use the same number of transmissions per packet. Hence, the figure only

shows the curve for RARQ.
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Figure 6.10: Outage probability of the basic relaying protocol with MRC and Mr =

1 relay at maximum as a function of σ. υ = 4 and λr2
Ns = 1.0. Two d̃sd values are

considered: d̃sd = 0.25 and d̃sd = 1.0



110

0 5 10 15 20
0

5

10

15

20

25

30

35

40

σ

µ
r

Figure 6.11: Average number of reliable relays as a function of σ. υ = 4 and
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6.6 Conclusions

In this chapter we studied the network-wide benefits of two-hop diversity relaying

in wireless ad hoc networks, where the node locations follow a homogeneous Pois-

son point process on a plane. We have defined a communications protocol where

the source chooses nodes to serve as relays out of those that have actually received

correctly the data packet transmitted by the source. The source makes this choice

based on feedback from each such node, which includes the node’s estimate of its

average channel gain to the destination node. We derived the CDF of this quan-

tity analytically through numerical integration. We have studied analytically and

presented simulation results for the outage probability of the protocol, when the des-

tination node employs selection combining and maximal ratio combining. We showed

that two-hop cooperative diversity can be extremely beneficial in random multihop

networks.

We have compared the performance of different relay selection criterion and ob-

serve that as a relay selection criterion average SNR to the destination constitutes a

good trade-off in terms of end-to-end outage performance and the signaling required

for the relay selection. We have shown graphically how increasing the intensity of

the nodes reduces the outage probability, or to put it differently, allows a further

destination to be reached with acceptable packet delivery ratio. We also proposed

enhancements to the relaying protocol including an adaptive ARQ scheme assisted

by the relays. We have shown the benefits of this protocol in terms of bandwidth

expansion and outage performance.



Chapter 7

Cooperative Diversity and Distributed

Spatial Multiplexing in Wireless Fixed

Relay Networks

In this chapter, we consider diversity relaying opportunities in infrastructure based

wireless networks in the presence of fixed relays that are deployed as a part of the

infrastructure. Conventional cellular architecture limits the user to base station and

base station to user communication to a single hop. However, allowing multi-hop

communication can reduce coverage holes within the cell due to unfavorable propaga-

tion conditions and also extend cell coverage. Multihop communication is especially

critical for the performance observed by the cell edge users, which is one of the main

issues for data communication in future wireless networks.

In the previous chapters we considered cooperative diversity relaying among the

nodes with similar features. There are two options for relaying in infrastructure based

architectures. The relays can be either users assisting each other by forwarding each

others’ packets or they can be fixed nodes dedicated for relaying. If the users are

utilized as relays, cooperation puts a burden on them in terms of power. Fixed relays

can take the burden of cooperation from users. They are provisioned to have direct

114
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access to the power line. Hence their operation is not limited by battery lifetime [5].

Due to their physical stability and less strict power constraints, deploying fixed relays

can also mitigate the security problems of multihop wireless networks by using more

powerful key management and encryption schemes.

Fixed relays are also expected to have less severe constraints for cost and size

compared to user terminals. While mounting multiple antennas at user terminals

might be impractical due to such constraints, fixed relays can easily accommodate

multiple antennas. Nodes with multiple-antennas introduce new possibilities in the

network.

In point-to-point links, multiple antennas, either on the transmitter or the receiver

side, can improve link reliability through receive diversity, transmit beamforming or

space-time coding. This feature can be easily transferred to the simple networks that

we studied in Chapters 3-5.

Consider a network in which one or more multi-antenna relays assist to a source-

destination pair. In this context deploying relays with multi-antennas has many

advantages. For instance, in [44] the authors utilize multiple relay antennas to increase

the reliability of the source-relay channel. They show that having multiple receive

antennas at the relays mitigates error propagation in digital relaying without relying

on decoding and error detection at the relay. Relay antennas can also be leveraged

to increase the reliability of the relay-destination links through space-time coding

or distributed beamforming. In [45], Fan et al. consider the same scenario. They

propose to employ MRC at the source-relay links and transmit beamforming at the

relay-destination links. In particular, they study the effect of antenna distribution

among the relay nodes on the capacity. Given a fixed total number of relay antennas,

they show that the capacity is maximum when all the antennas are located at a single

relay. In [75] diversity order achievable in general network configurations is studied.

The study includes networks with multiantenna nodes and analytically derives the



116

maximum diversity order achievable in such networks.

It is well-known that by deploying multiple antennas at both transmitter and

receiver sides, a significant increase in the capacity of wireless channels is possible

in rich scattering environments [76], [77]. There is also a rich literature on the ca-

pacity of multiuser aspects of MIMO systems [78]. The main focus the research in

this area is the so called MIMO broadcast problem, where multi-antenna base station

transmits to multiple users simultaneously and applies interference cancelation before

the transmission so that users with few antennas can decode their own information

reliably. The capacity of two-hop networks including multi-antenna nodes have been

studied in [79] and [80]. The asymptotic behavior of the end-to-end achievable capac-

ity of a network with a multi-antenna source and destination, and a large number of

relays is studied in [79]. In [80], in a similar setting, the authors analyze end-to-end

capacity achievable using different signaling and relay selection techniques. In [81]

the same authors consider the outage capacities for these signaling and relay selection

techniques.

In point-to-point links, even practical MIMO architectures with certain constraints

brings much higher spectral efficiencies than the conventional techniques. For in-

stance, in V-BLAST the data stream is multiplexed into K substreams, where K is

the number of transmit antennas, and these substreams are transmitted simultane-

ously through K antennas [82]. This technique is called spatial multiplexing. At the

receiver side different techniques can be used to separate the substreams. The sim-

plicity of spatial multiplexing allows it to be implemented in a distributed fashion on

the transmitter side. Individual user antennas can be viewed as different substreams

and can transmit simultaneously forming a distributed spatial multiplexing system.

As the user antennas are not collocated, spatial diversity through space-time coding

requires additional communication among the users and thus, is not practical in this
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scenario. Introducing a multiantenna relay to a distributed spatial multiplexing sys-

tem, as shown Fig. 7.1, and combining the signals arriving directly from the users

and through the relays improves the end-to-end reliability of this system.

This chapter is an initial study that explores the potential benefits of multi-

antenna relays for spatial multiplexing of different users sending data to a common

multi-antenna destination such as a base station or an access point. Neither of the

aforementioned papers included the direct link from source to destination in their

analysis. Combining source and relay signals, where both signals are spatially multi-

plexed and possibly have different average SNRs, is a new problem that appears only

in multi-stream diversity relaying.

In our study, we consider zero forcing decision feedback detector (ZF-DF) type

MIMO receivers and study their outage performance under various (non-selective

and selective) digital relaying protocols. For diversity relaying protocol, we propose

two schemes, Joint ZF-DF and Parallel ZF-DF, for joint processing (combining and

decoding) of the direct user signals and the signal from the relay. We show that with

the proposed selective diversity relaying protocols and joint ZF-DF processing, the

outage probability of the system can be decreased significantly.

We note that when the destination has multiple antennas a straightforward way

of increasing diversity is to reduce the number of simultaneously transmitting users

in order to have extra degrees of freedom at the receiver. For instance, in a point-to-

point V-BLAST system, each extra receive antenna will increase the diversity order

of all users by one. This will, of course, require more bandwidth, since reducing the

number of simultaneously transmitting users decreases the effective rate. We also

compare the performance of relaying protocols to a time sharing protocol using the

same bandwidth and energy.

Three multi-stream digital relaying protocols for the spatial multiplexing of Ms
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users are considered. Conventional Digital Relaying (CDR) is digital relaying with-

out diversity combining at the destination. Non-selective Digital Relaying (NDR)

and Selective Digital Relaying (SDR) are extensions of well-known digital relaying

protocols [4] to spatially multiplexed signals. In NDR, the relay retransmits, regard-

less of the quality of user-relay channels. In SDR, the relay is allowed to transmit

only when it can decode all the user streams without error. We analyze the impact of

these strategies on the outage performance of the system. The NDR and SDR can be

viewed as the multi-stream versions of the simple digital relaying and the genie-aided

digital relaying introduced in Chapter 3 as benchmarks.

Based on the SDR protocol described in this chapter, Khuong and Le-Ngoc pro-

pose a more flexible protocol called cooperative re-transmission of trustable (CRT)

users [83]. In CRT the relay sends a short feedback message to the users indicating

which user streams have been received reliably at the relay. Then, the relay trans-

mits only the reliable user streams while the rest of the users retransmit their own

data streams synchronously. They study the optimal relay location for CRT and

SDR, and show that the flexibility of CRT can provide SNR gain over SDR. In [84]

and [85] the same authors study another protocol similar to SDR and CRT. In this

protocol, unlike ours, the relays transmit one by one, which provides higher reliability

in the user-relay communication, but also increases the bandwidth expansion. They

include code combining as opposed to diversity combining by jointly encoding the

user streams at the relay and jointly decoding the relayed signal and direct signals

at the destination. In [84] space time block coding in relay-destination link is also

considered.

We first investigate ways of combining the direct signal and the relay signal using

a V-BLAST receiver. We define two methods based on Zero Forcing with Decision

Feedback Detection (ZF-DF). In Joint ZF-DF, two output signals are stacked and

ZF-DF is applied to this equivalent system. In the second method, which we call
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Figure 7.1: An Ms×Kr×Kd system: Ms single antenna source nodes, a relay with
Kr antennas and a destination with Kd antennas.

Parallel ZF-DF, the data of a user is estimated independently from the direct and

relay output signals. These two estimates are combined to detect and decode the

stream.

In accordance with the results for single-stream relaying [4], selective diversity

relaying, if used with joint ZF-DF detection at the destination, can improve the

outage performance significantly, even if the direct signals have lower average SNRs

than the relayed signal.

7.1 System Model

We consider a system with Ms source nodes, each with a single antenna and a des-

tination with Kd antennas (Kd ≥ Ms). In the context of uplink communication in a

cell, these source nodes are users selected by a higher layer protocol to be served in
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the next time slots and the destination is the basestation. We note that there might

be more than Ms users within the coverage of the basestation. In our system the

source nodes represent the users selected by the basestation to be served in the next

time slots. The problem of scheduling of the users in the cell is beyond the scope of

our work.

A fixed relay with Kr antennas (Kr ≥ Ms) assists the communication between

the users and the destination. We call such a system as an Ms×Kr×Kd system. All

channels, Source-Relay channel (Hsr), Source-Destination channel (Hsd), and Relay-

Destination channel (Hrd), are assumed to experience independent Rayleigh fading.

We also assume slow block fading, which implies that all channels stay unchanged for

two block durations, where each block duration is equal to L symbol periods. The

channel state information is available only at the receiver side for all three links.

As the performance metric, the probability of system outage event is used, which

is defined as the union of individual user outages. We assume that user i has a fixed

target rate Ri and encodes its data independently using a single input single output

(SISO) encoder whose rate depends on Ri but its codeword length is fixed and equal

to L. The block length L is assumed to be large enough so that a decoding error

occurs if and only if log2(1 + βi,r) < Ri, where βi,r is the post-processing SNR of user

i at the relay.

Source nodes transmit synchronously but without any cooperation. Both the relay

and the destination use ZF-DF receivers. In the absence of errors in the source-relay

link, the system is equivalent to a horizontally coded layered space-time architecture,

which is usually referred to as H-BLAST [86]. To simplify the analysis, we assume

that the order of decoding is the same at the relay and the destination and it is

independent of the channel realizations.

It is also possible to increase relay-destination channel reliability through space-

time coding. The focus of this chapter is “multi-stream” relaying, where more than
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one user streams are relayed simultaneously by forming MIMO channels between the

source(s), the relay and the destination.

Notation

Superscripts T and H are used for transpose and Hermitian conjugate of matrices,

respectively. diag{x1, x2, . . . , xn} stands for an n × n diagonal matrix with given

elements on its diagonal. In and 0m,n denote the n × n identity matrix and m × n

zero matrix, respectively. A(i1 : i2, j1 : j2), with i1 ≤ i2 and j1 ≤ j2, represents the

submatrix of A composed of rows i = i1, i1+1, . . . , i2 and columns j = j1, j1+1, . . . , j2.

A(i, j) denotes the element at the i-th row and the j-th column of A.

A real Gaussian vector with zero mean and identity covariance matrix is called

a standard real Gaussian random vector. A circularly symmetric complex Gaussian

vector with zero mean and identity covariance matrix is called standard Gaussian

random vector and is denoted by CN (0, I). A central chi-square random variable

with n degrees of freedom is denoted by χ2(n).

The system outage probability of the MIMO channel between the users and the

destination is denoted by P s→d
o . Similarly, the system outage probabilities of the

user-relay channel and relay-destination MIMO channels are denoted by P s→r
o and

P r→d
o , respectively. P s,r→d

o represents the system outage probability after combining

at the destination, given that the relay decoded all the streams correctly.

7.1.1 Multi-stream Relaying Protocols

We consider three digital relaying protocols: The conventional Digital Relaying

(CDR), Non-selective Digital Relaying (NDR), and Selective Digital Relaying (SDR).

In all protocols, transmission takes place in two equal time slots, each having L sym-

bol periods. During the first time slot, Ms active users transmit simultaneously in a
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synchronous manner. Then, in the second slot, the relay transmits using at most Ms

antennas.

In all protocols, relay decodes the signals from the users, and then reencodes its

estimates and retransmits the resulting block Ĉ in the second slot. It uses the same

SISO encoder as user i for regenerating this user’s signal. The streams of different

users are spatially multiplexed and transmitted from randomly assigned antennas.

• Conventional Digital Relaying (CDR): In CDR, the relay retransmits re-

gardless of the outcome of the transmission in the first time slot and the desti-

nation decodes based on the relay signal only.

• Non-Selective Digital Relaying (NDR): In NDR, the relay retransmits

regardless of the outcome of the transmission in the first time slot and the

destination decodes based on the direct and the relayed signals.

• Selective Digital Relaying (SDR): The relay transmits only if it can decode

all Ms streams reliably. Otherwise, it remains silent. The destination decodes

based on both the direct and the relayed signals when the relay retransmits.

7.2 Outage Analysis of Direct Transmission and

Multistream Relaying Protocols

First, we review the outage probability of the direct transmission from sources to the

destination, which uses ZF-DF.
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7.2.1 Outage Probability of Direct Transmission

The system is described by

Yd = HsdWdC + N, (7.1)

where C ∈ CMs×L is the transmit signal block of Ms sources, Yd ∈ CKd×L is the

received block. Hsd is the channel matrix with independent, circularly symmetric

complex gaussian elements representing i.i.d. Rayleigh fading, CN (0, I). N ∈ CKd×L

is Gaussian noise with temporally and spatially independent elements having distri-

bution N(i, j) ∼ CN (0, 1). Wd = diag{√γ̄1,d, . . . ,
√

γ̄Ms,d} and γ̄i,d is the average

SNR of source i’s direct signal at the destination.

We assume that the source streams are decoded according to their indices. Each

time, the total received signal is projected onto a subspace orthogonal to the streams

that are yet to be detected. From [87], the resulting output SNR for the i-th source

detected can be obtained as

βi,d =
1

2
γ̄i,d z(2(Kd −Ms + i)), (7.2)

where z(m) represents a chi-square random variable with m degrees of freedom. After

all the data block is projected, source i is decoded. Then, the codeword of source

i is regenerated and its effect is canceled from the total signal. It is well known

that this procedure is equivalent to Gram-Schmidt orthogonalization of the channel

matrix [88]. Assuming that Hsd has linearly independent columns, which happens

with very high probability, it can be uniquely decomposed as [89]

Hsd = QsdRsd,

where Qsd ∈ CMs×Ms is unitary, satisfying QH
sdQsd = IMs and Rsd ∈ CMs×Kd

is an upper triangular matrix whose diagonal elements are positive. Then,

Rsd(Ms,Ms)W(Ms, Ms) corresponds to the output SNR of the first stream decoded.1

1In this representation decoding order is decreasing source index, source Ms is decoded first.
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Moreover, the output SNRs obtained by this procedure are independent, given that

the decoding order is independent of matrix Hsd [90, pp. 100-101].

Source i is in outage whenever log2(1 + βi,d) < Ri, where Ri is the target rate of

source i. Hence, the outage probability for source i is equal to

P si→d
o (Ms, Kd, γ̄i,d)=P{log2(1 + βi,d) < Ri} = P{βi,d < γtr,i} (7.3)

=Fχ2 , 2(Kd−Ms+i)(2γtr,i/γ̄i,d), (7.4)

where γtr,i = 2Ri−1 and Fχ2 , k(.) denotes the CDF of the chi-square distribution with

k degrees of freedom. Since the output SNRs for different sources are independent,

the system outage probability can be expressed as

P s→d
o (Ms, Kd,Wd)=1−

Ms∏
i=1

P{βi,d > Ri}

=1−
Ms∏
i=1

[
1− Fχ2 , 2(Kd−Ms+i)(2γtr,i/γ̄i,d)

]
. (7.5)

7.2.2 Outage Probability of the Time-Division Direct Trans-

mission (TDDT)

Having noted that all the relay protocols use twice the bandwidth used by direct

transmission, we define the following protocol to enable a fair comparison between

relaying and direct transmission: In Time-Division Direct Transmission (TDDT),

sources are divided into two sets of equal size. Assuming Ms is even, each set has

Ms/2 sources. In the first time slot, the first set of streams are transmitted from their

assigned antennas and the second set follows in the second slot. The system outage

of this protocol is given by

P TDDT
o =1−

((
1− P s→d

o (Ms/2, Kd,Wd1)
)

× (
1− P s→d

o (Ms/2, Kd,Wd2)
))

, (7.6)

where Wd1 and Wd2 are the Ms/2×Ms/2 weight matrices for the two groups.
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7.2.3 Outage Probability of Relaying Protocols

Let Yd1 and Yd2 be the received signals at the destination in the first and second

time slots, respectively. These received signals can be represented as

Yd1=HsdWdC + Nd1 (7.7)

Yd2=HrdWrĈ + Nd2, (7.8)

where Wr is a diagonal matrix whose entries depend on the average SNR at the

destination due to the relay transmission. We assume that the relay allocates the

power uniformly for all active antennas. Hence, Wr is given by Wr =
√

γ̄r IMs .

Similarly, we represent the source-relay channel as:

Yr = HsrWsrC + Nr, (7.9)

where Wsr depends on the average received SNRs.

If the source-relay channel is in outage, i.e., at least one of the sources is in outage

in this channel (Ĉ 6= C), we assume that data of some sources will be decoded

incorrectly at the destination, causing a system outage.

The outage probability of the three protocols are equal to

PCDR
o =P s→r

o + (1− P s→r
o ) P r→d

o , (7.10)

PNDR
o =P s→r

o + (1− P s→r
o )P s,r→d

o , (7.11)

P SDR
o =P s→r

o P s→d
o + (1− P s→r

o )P s,r→d
o , (7.12)

where all the arguments are dropped to simplify notation. The outage probabilities

P s→r
o (Ms, Kr,Wsr) and P r→d

o ((Ms, Kd,Wr)) can be computed as in (7.5). The term

P s,r→d
o depends on the combining method used at the destination.
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7.3 Combining Methods for Diversity Relaying

Protocols

In this section we investigate the outage at the destination, given that the relay

decodes all the sources correctly. We propose two methods for detecting C based on

Yd1 and Yd2: Joint ZF-DF (JZF-DF) and Parallel ZF-DF (PZF-DF).

7.3.1 Joint ZF-DF (JZF-DF)

Assuming correct decoding of all Ms streams at the relay, the equivalent system is

given by

Ye = HeC + Ne, (7.13)

where

He =



HsdWd

HrdWr


 , (7.14)

and Ye = [Yd1
T Yd2

T ]T , Ne = [Nd1
T Nd2

T ]T . Then, the destination decodes the

equivalent Ms × 2Kd system based on (7.13).

7.3.2 Parallel ZF-DF (PZF-DF)

This detection method is based on parallel zero forcing and per stream combining.

Let i be the index of the stream to be detected. First, the outputs Yd1 and Yd2 are

filtered independently to nullify the interference of the streams yet to be detected.

Next, the filtered signals are combined using maximal ratio combining. After the

stream is detected and decoded based on the combined output, the contribution of

stream i is subtracted both from Yd1 and Yd2.
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This procedure can be mathematically represented as follows. After the QR de-

composition, we have

Hsd = QsdRsd and Hrd = QrdRrd,

where Qsd,Qrd ∈ CMs,Ms are unitary matrices satisfying QH
sdQsd = QH

rdQrd = IMs

and Rsd,Rrd ∈ CMs,Kd are upper triangular matrices whose diagonal elements are

positive. Then, we can write

Ỹ1=RsdWdC + Ñ1 (7.15)

Ỹ2=RrdWrC + Ñ2, (7.16)

where Ỹ1 = QH
sdYd1, Ỹ2 = QH

rdYd2 and Ñ1, Ñ2 are statistically equivalent to Nd1

and Nd2. In this notation, decoding order is in terms of decreasing source index. ZF-

DF decoding corresponds to decoding the last stream first and cancelling the effect

of this codeword from all upper streams. To decode source j, destination combines

j-th row of Ỹ1 and Ỹ2 using maximal ratio combining:

Yc(j, :)=Rsd(j, j)Wd(j, j)Yd1(j, :) + Rrd(j, j)Wr(j, j)Yd2(j, :). (7.17)

Then, stream j is decoded based on Yc(j, :) and its effect on Ỹ1(1 : j − 1, :) and

Ỹ2(1 : j − 1, :) are cancelled. By continuing this process for all the streams, output

SNR for source j, which is decoded as the i-th stream (j = Ms − i + 1) is given by

βi,d =
1

2

(
γ̄j,dz

(1)(2(Kd −Ms + i)) + γ̄rz
(2)(2(Kd −Ms + i))

)
, (7.18)

where z(1)(m) and z(2)(m) are i.i.d. with χ2(m) distribution.

7.3.3 P s,r→d
o with JZF-DF and PZF-DF

Here, we analyze the performances of JZF-DF and PZF-DF under the assumption

that the relay decoded all the sources correctly. We introduce two special topologies
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Figure 7.2: Illustration of case 1 and case 2. In case 1, γ̄i,d = γ̄sd for all i =
1, 2, . . . ,Ms. In case 2, in addition to this condition, γ̄rd = γ̄sd. However, in both
cases, the sources can have arbitrary distances to the relay.

for which the performance comparison of JZF-DF and PZF-DF is easier. In case 1 , it

is assumed that all the sources have the same average SNR to the destination. Hence,

Wr =
√

γ̄r IMs and Wd =
√

γ̄d IMs . In case 2 , which is a special case of case 1, the

relay signal and the direct channel have the same average SNR, Wr = Wd =
√

γ̄ IMs .

Fig. 7.2 illustrates these special topologies.

P s,r→d
o with JZF-DF

We note that, unlike individual channel matrices Hsd and Hrd, for general diagonal

Wd and Wr, He is not a normal data matrix2. Thus, many useful results on normal

data matrices do not apply to this problem.

Hence, for JZF-DF, only two special cases introduced above will be considered.

Clearly, in case 2 , JZF-DF is equivalent to direct transmission with 2Kd receive an-

tennas instead of Kd. Hence, output SNR for the ith stream is chi-square distributed

with 2(2Kd −Ms + i) degrees of freedom and diversity order is increased by Kd for

all streams compared to the direct transmission.

2A random matrix is a normal data matrix if all of its row vectors are i.i.d. complex normal
random vectors with arbitrary covariance matrix. Each column vector, however, must have identity
covariance matrix [91].
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In case 1 , we can represent the equivalent channel as a Rayleigh channel with

receive correlation [92] [93]:

He=HrHw, (7.19)

where

Hr =




√
γ̄d IKd

0

0
√

γ̄r IKd


 , (7.20)

and Hw ∈ C2Kd×Ms is a Rayleigh channel, whose elements are i.i.d. and distributed

as Hw(i, j) ∼ CN (0, 1). Exact CDF of output SNR for ZF receiver in a correlated

Rayleigh MIMO channel is given in [94]3.

P s,r→d
o with PZF-DF

In case 2, (7.18) simplifies to

βi,d=
1

2
γ̄ z (4(Kd −Ms + i)) , (7.21)

where z(m) ∼ χ2(m). Hence, it is clear that, PZF-DF combining at the destination

doubles the diversity order at each stage and the diversity order for the i-th source

is 2(Kd − Ms + i), which is smaller than or equal to the one achieved by JZF-DF

(2Kd −Ms + i), for all i = 1, 2, . . . , Ms for any Ms ≥ 2.

From (7.18), we observe that output SNR is a weighted sum of two chi-square

random variables with even degrees of freedom. Theorem 2.4 of [95] provides a closed-

form expression for the exact CDF of the weighted sum of an arbitrary number

of chi-square random variables in terms of a finite sum of chi-square CDFs4. For

completeness this theorem is given below.

3The derivation in [94] assumes that RRX = HrHr
H has distinct eigenvalues and its final results

do not apply to our problem. Hence, for the numerical results we present in this chapter, we derived
the CDF of output SNRs for a system with channel matrix given in (7.19) and (7.20).

4A less general form of this result later published in [96].
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Theorem 7.1 (Theorem 2.4 of [95]). The exact distribution of X =
∑r

j=1 λjχ
2(νj),

where the νj = 2gj are even integers, is a weighted finite sum of χ2 distributions,

P{X > X0} =
r∑

j=1

sj∑
s=1

αjsP{χ2(2s) > X0/λj},

and αjs is a constant involving only the λ’s and is given by

αjs = f
(gj−s)
j (0)/(gj − s)!

where f
(h)
j (0) is obtained by differentiating fj(y) h times with respect to y and then

putting y = 0 and

fj(y) =
r∏

i6=j

[
λj − λi

λj

+ y
λi

λj

]−νi/2

.

Applying this theorem to our case, we obtain:

P{βi,d > x}=1−
2∑

j=1

gi∑
s=1

αjsP
{

χ2(2s) >
x

λj

}
, (7.22)

where

α1s=f(gi, s)

(
λ2

λ1

)gi−s (
λ1 − λ2

λ1

)−2gi+s

(7.23)

α2s=f(gi, s)

(
λ1

λ2

)gi−s (
λ2 − λ1

λ2

)−2gi+s

, (7.24)

f(gi, s)=(−1)gi−s (2gi − s− 1)!

(gi − s)!(gi − 1)!
, (7.25)

gi = Kd −Ms + i, λ1 = γ̄d/2 and λ2 = γ̄r/2. Note that (7.22) gives the exact outage

probability for the i-th source with PZF-DF for general Wr and Wd.

7.4 Results

We compare the system outage probability of all protocols and combining methods.

All terminals transmit with the same power per antenna in each protocol. We consider



131

two scenarios for the average link SNRs: linear network and symmetric network. In

the linear network, the relay is located at the midpoint between the source nodes and

the destination. That is, γ̄i,d = γ̄i,r. In particular, we assume that γ̄sd is 12 dB lower

than γ̄sr and γ̄rd. This network is an example of case 1. In the symmetric network, all

the links between all the antennas have the same average SNR, i.e., γ̄i,d = γ̄i,r = γ̄rd.

Symmetric network is an example of case 2. The x-axis shows the SNR of the source-

destination channel for direct transmission. For other protocols we plot the outage

for the same total energy as the direct transmission. Target SNR γtr,i is taken as 10

dB for all sources.

In Fig. 7.3, we plot the system outage probability of all protocols using both ana-

lytical results and Monte Carlo simulations for the linear network. Analytical curves

are obtained from (7.5), (7.6), (7.10)-(7.12), and the derivations in Section 7.3.3. In

simulations, output SNRs and outage rates are calculated based on a large number

of randomly generated channel matrices. Having validated our analytical expressions

for case 1 in Fig. 7.3, in Fig. 7.4 we plot (analytical) system outage probability for a

2× 3× 2 system for the linear network. As expected, conventional relaying provides

only a constant SNR gain over direct transmission. In Fig. 7.3, we observe that the

performance of NDR is limited by the source-relay channel, regardless of the com-

bining method used at the destination. The NDR is also outperformed by TDDT at

high average SNRs. For this configuration, we can conclude that the relaying protocol

(NDR vs. SDR) is the dominant factor that determines the outage performance. In

Fig. 7.4, however, we see that NDR and SDR have almost identical outage perfor-

mances and the outage probability is mostly determined by the combining scheme.

In Fig.s 7.5 and 7.6 we plot the performance of 2 × 2 × 2, and 2 × 3 × 2 systems

in the symmetric network. The observations for the linear network are valid for the

symmetric network with the same configuration. The main difference is that in the

symmetric network relaying protocols do not have any gain against the path loss and
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Figure 7.3: System outage probability of 2× 2× 2 system in linear network case as
a function of the average link SNR. Markers show simulation results and dashed lines
show analytical results.



133

−15 −10 −5 0 5 10 15 20 25 30
10

−8

10
−6

10
−4

10
−2

10
0

γ̄sd (dB)

P
o

2× 3× 2 system, linear network

 

 

direct

CDR

TDDT

NDR & PZF-DF

SDR & PZF-DF

NDR & JZF-DF

SDR & JZF-DF
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case as a function of average link SNR.
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hence they have less gain against direct transmission and TDDT.

In Figs. 7.7 and 7.8, we plot the system outage for 2×2×3 and 2×3×3 systems,

respectively, again for the symmetric network case. In 2 × 2 × 3 system, the TDDT

protocol performs better than all the relaying protocol. This is due to the small

number of antennas at the relay (Kr) compared to the number of antennas at the

destination. As soon as we increase Kr to 3, as shown in Fig. 7.8, the SDR with

either PZF-DF or JZF-DF outperforms TDDT.

7.5 Conclusions

This chapter discusses the potential benefits of using a multi-antenna relay in the

spatial multiplexing of independent single antenna users communicating with a com-

mon multi-antenna destination. Digital relaying protocols of fixed vs. selective and

conventional vs. diversity kind were considered. For diversity relaying, which has not

been tackled so far in the context of multiple users/streams, we proposed two ZF-DF

type combiners/decoders (JZF-DF and PZF-DF) to be used at the destination. We

derived outage expressions, in closed-form for some special cases, and evaluated the

performance for selective and non-selective relaying protocols.

Our study indicates that, as in single user case, significant gains can be obtained

if spatially multiplexed data streams are relayed using diversity relaying instead of

conventional relaying. Selective diversity relaying is crucial when the user-relay chan-

nel has lower diversity than the cooperative channel from the users and the relay to

the destination, which is expected in most practical configurations. When user-relay

channel is sufficiently reliable, which, for example, happens if the relay has a large

number of antennas, diversity protocols are the most advantageous compared to con-

ventional relaying. In this case, the performances of NDR and SDR for the same

combining method are very close. Then, the outage probability is determined by the
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combining method used by the destination rather than the protocol used by the relay

and JZF-DF has a considerably better performance than PZF-DF.



Chapter 8

Conclusions and Future Work Directions

Multihop communication presents many challenges as well as opportunities in wire-

less networks. In this thesis, we focused on cooperative diversity, which is one of the

opportunities presented by multihop communication. We considered two-hop digital

relaying in different scenarios and studied relaying strategies and combining schemes

to induce end-to-end diversity. It is well-known that fixed relaying and combining

strategies, in which relays forward the received data blindly and the destination com-

bines the received signals independent of channel qualities, result in poor end-to-end

performance. In this thesis, we concentrated on selective relaying strategies to achieve

the diversity potential of cooperative diversity relaying.

The main conclusions and suggested future work for each part are summarized

below.

1. Threshold based cooperative digital relaying as a method to mitigate error prop-

agation without relying on channel coding has been studied.

• A set of optimal threshold values that minimize the e2e BER in a single

relay network under different CSI assumptions at the relay have been de-

rived analytically. The BER performance of these thresholds have been

evaluated and it has been shown that the optimal threshold selection can

140
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improve BER significantly.

• The asymptotic BER performance of threshold relaying has been analyzed.

It has been observed that the optimal threshold increases logarithmically

with the average link SNRs. It has been proven that the threshold relaying

with the optimal threshold achieves full diversity. In addition, any thresh-

old that increases logarithmically with the average link SNRs achieves the

same diversity order as the optimal threshold.

• Threshold relaying for multiple parallel relays has been studied in the

context of relay selection. A simple threshold based relay selection proto-

col has been proposed and its e2e error performance has been analyzed.

Threshold values for the relays have been proposed and it has been shown

that with the proposed threshold values the threshold based relay selection

protocol achieves full diversity.

• Possible future work items for this topic are as follows:

– Threshold based relaying policies in the presence of feedback from the

destination to the source and the relays can be investigated. The

objective is to obtain diversity with very infrequent retransmissions

as in ARQ protocols. Our preliminary study shows that a single bit

feedback from the destination based on received SNR of the direct link

can achieve full diversity order with negligible multiplexing loss.

– The analysis of optimal thresholds and their performance can be ex-

tended to networks which allow more than two hops.

– The exact threshold expressions derived in this thesis are based on

BPSK modulation. Extension of these expressions to more general

modulation schemes, such as M-QAM can be another topic for future

studies.
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2. A selective cooperative relaying protocol for wireless ad hoc networks has been

proposed and its network-wide benefit in random network topologies has been

evaluated.

• A simple two-hop relaying protocol has been designed for random and

dynamic environments. This protocol selects different relays for different

data packets opportunistically based on the outcome, i.e., success or failure,

of the source-relay transmission and the local mean SNR of the relay-

destination channels.

• The outage probability of the relaying protocol has been evaluated an-

alytically assuming that the relay nodes are distributed according to a

two-dimensional Poisson point process with a given density. It has been

shown that cooperative relaying can increase the average performance of

the network significantly in such random topologies.

• The performances of several relay selection criteria, such as distance from

the relay to the destination and instantaneous SNR from the relay to the

destination, have been studied. The average SNR to the destination has

been identified as a good trade-off in terms of end-to-end outage perfor-

mance and the signaling required for the relay selection.

• Future studies on this topic may target the investigation of the gain of

multi-hop cooperative relaying in terms of end-to-end throughput in ran-

dom topologies.

3. The potential of multiple-antenna relays has been analyzed in the context of

uplink in the form of distributed spatial multiplexing of multiple users.

• To be employed in decode-and-forward diversity relaying of multiple data
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streams simultaneously, two different methods have been proposed to com-

bine the direct user signals and the relayed signal. These methods, called

Parallel ZF-DF and Joint ZF-DF, are both based on ZF-DF type MIMO

receivers. The end-to-end outage performance has been derived analyti-

cally with these two combining schemes assuming i.i.d. Rayleigh fading.

• It is shown that using the proposed combining schemes in conjunction

with selective decode-and-forward diversity relaying, the outage perfor-

mance can be improved compared to the performance of direct transmis-

sion schemes.

• Possible future work on this topic includes:

– designing transmit antenna selection and precoding strategies at the

relay based on all the link quality information available for different

channels.

– analyzing the end-to-end diversity achieved by different relaying and

combining schemes.

– scheduling algorithms for selecting the set of users to be served based

on the end-to-end performance.



List of References

[1] B. H. Walke, S. Mangold, and L. Berlemann, IEEE 802 Wireless Systems:

Protocols, Multi-hop Mesh/Relaying, Performance and Spectrum Coexistence.

Wiley & Sons, 2006.

[2] IEEE 802.16m System Requirements Document, available at

http://wirelessman.org/tgm/docs/80216m-07 002r6.pdf.

[3] A. Sendonaris, E. Erkip, and B. Aazhang, “User cooperation diversity– Part I:

System description,” IEEE Transactions on Communications, vol. 51, pp. 1927–

1938, Nov. 2003.

[4] N. Laneman, D. Tse, and G. Wornell, “Cooperative diversity in wireless net-

works: Efficient protocols and outage behavior,” IEEE Transactions on Infor-

mation Theory, vol. 50, pp. 3062–3080, Dec. 2004.

[5] R. Pabst, B. H. Walke, D. C. Schultz, P. Herhold, H. Yanikomeroglu, S. Mukher-

jee, H. Viswanathan, M. Lott, W. Zirwas, M. Dohler, H. Aghvami, D. D. Fal-

coner, and G. P. Fettweis, “Relay-based deployment concepts for wireless and

mobile broadband cellular radio,” IEEE Communications Magazine, vol. 42,

pp. 80–89, Sept. 2004.

[6] H. Takagi and L. Kleinrock, “Optimal transmission ranges for randomly dis-

tributed packet radio terminals,” IEEE Transactions on Communications,

vol. 32, pp. 246–257, Mar. 1984.

[7] L. Kleinrock and J. Silvester, “Spatial reuse in multihop packet radio networks,”

Proc. of IEEE, vol. 75, pp. 156–167, Jan. 1987.

[8] F. A. Tobagi, “Modeling and performance analysis of multihop packet radio

networks,” Proc. of IEEE, vol. 75, pp. 135–155, Jan. 1987.

[9] J. G. Andrews, A. Ghosh, and R. Muhamed, Fundamentals of WiMAX: Un-

derstanding Broadband Wireless Networking. Prentice Hall, 2007.

144



145

[10] J. G. Proakis, Digital Communications. McGraw-Hill, 2000.

[11] M. O. Hasna and M.-S. Alouini, “Harmonic mean and end-to-end performance

of transmission systems with relays,” IEEE Transactions on Wireless Commu-

nications, vol. 52, pp. 130–135, Jan. 2004.

[12] M. O. Hasna and M.-S. Alouini, “Outage probability of multihop transmission

over Nakagami fading channels,” IEEE Communications Letters, vol. 7, pp. 216

– 218, May 2003.

[13] A. Florea and H. Yanikomeroglu, “On the optimal number of hops in

infrastructure-based fixed relay networks,” in Proc. of IEEE Globecom Con-

ference, Nov. 2005.
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Appendix A

Derivations for Chapter 3

A.1 Derivation of h(x, y) Given in (3.14)

We first introduce two integrals, which we derive using integration by parts.

J1(a, b, c; x0, x1) =

∫ x1

x0

erfc
(√

ax + b
)

e−cxdx

=
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(A.1)

where x0, x1, c ≥ 0, (a + c)/a ≥ 0, and

J2(a, b, c; x0, x1) =
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(A.2)

where x0, x1, c ≥ 0.

The function h(x, y), which is defined as h(x, y) =
∫∞

x
1
2y

e−t/yerfc(
√

t)dt, can be

expressed as
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which is the same as the expression given in (3.14). In [50], the authors used a similar

derivation to obtain Eqn. (15) of their paper.

A.2 Derivation of P{Esr|γsr > γt}
Consider a general modulation scheme that has a probability of bit error rate of

Pb(γ) = βmerfc(
√

αmγ). The probability of bit error at the S − R link given that

γsr > γt is equal to

P{Esr|γsr > γt} =

∫
βm erfc(

√
αmγsr) pγsr|γsr>γt1(γsr)dγsr, (A.4)

P{Esr|γsr > γt1}=exp(γt1/γ̄sr)

γ̄sr

∫ ∞

γt1

βmerfc(
√

αmγsr) exp(−γsr/γ̄sr) dγsr (A.5)

= exp(γt1/γ̄sr)
βm

γ̄sr

J1(αm, 0, 1/γ̄sr; γt,∞) (A.6)

= βm

[
erfc(

√
αmγt1)− eγt1/γ̄sr
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αmγ̄sr

1 + αmγ̄sr

erfc
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γt1

(
αm +

1

γ̄sr

))]
.(A.7)

where we substituted the function J1 given by (B.8) to obtain (A.7) from (A.6).

A.3 Average BER Calculation for Models 2, 3,

and 4

For Model 2 the e2e BER conditioned on γsr and γrd is equal to

BER
(2)
e2e(γsr, γrd, γ̄sd) =





P{Esd|γ̄sd}, γsr < γ∗t2(γrd, γ̄sd);

P{Esr|γsr} (P{Eprop|γrd, γ̄sd} − P{Ecoop|γrd, γ̄sd})

+P{Ecoop|γrd, γ̄sd}, otherwise.
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The average e2e BER can be obtained by averaging BER
(2)
e2e(γsr, γrd, γ̄sd) over γsr

and γrd:

BER
(2)
e2e(γ̄sr, γ̄rd, γ̄sd)=Eγsr,γrd

[
BER

(2)
e2e(γsr, γrd, γ̄sd)

]

=Eγrd

[
Eγsr

[
BER

(2)
e2e(γsr, γrd, γ̄sd)

]]
. (A.8)

The first expectation is equal to

Eγsr

[
BER

(2)
e2e(γsr, γrd, γ̄sd)

]
=

∫ γ∗t2(γrd,γ̄sd)

0

P{Esd|γ̄sd}pγsrdγsr

=

∫ ∞

γ∗t2(γrd,γ̄sd)

P{Esr|γsr} (P{Eprop|γrd, γ̄sd} − P{Ecoop|γrd, γ̄sd}) pγsrdγsr

+

∫ ∞

γ∗t2(γrd,γ̄sd)

P{Ecoop|γrd, γ̄sd}pγsrdγsr

= P{Esd|γ̄sd}(1− exp(−γ∗t2(γrd, γ̄sd)/γ̄sr)) (A.9)

+ (P{Eprop|γrd, γ̄sd} − P{Ecoop|γrd, γ̄sd}) h(γ∗t2(γrd, γ̄sd), γ̄sr)

+P{Ecoop|γrd, γ̄sd} exp(−γ∗t2(γrd, γ̄sd)/γ̄sr)

By taking the expectation of (A.9) over γrd we obtain

BER
(2)
e2e(γ̄sr, γ̄rd, γ̄sd)=Eγrd

[
P{Esd|γ̄sd}(1− exp(−γ∗t2(γrd, γ̄sd)/γ̄sr))

+(P{Eprop|γrd, γ̄sd} − P{Ecoop|γrd, γ̄sd}) h(γ∗t2(γrd, γ̄sd), γ̄sr)

+P{Ecoop|γrd, γ̄sd} exp(−γ∗t2(γrd, γ̄sd)/γ̄sr)

]
. (A.10)

After substituting (3.6), (3.15), and (3.24) into (A.10) the average BER of Model 2

is found as

BER
(2)
e2e(γ̄sr, γ̄rd, γ̄sd)≈

∫ ∞

0

[
1

2

(
1−

√
γ̄sd

1 + γ̄sd

)
(1− exp(−γ∗t2(γrd, γ̄sd)/γ̄sr))

+
(
(1− e−γrd/γ̄sd)− eγrd/γ̄sdh(γrd, γ̄sd)

)
h(γ∗t2(γrd, γ̄sd), γ̄sr)

+(1− e−γrd/γ̄sd) exp(−γ∗t2(γrd, γ̄sd)/γ̄sr)

]
1

γ̄rd

eγrd/γ̄rddγrd. (A.11)
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In a similar manner, the e2e BER for Model 3 and Model 4 are calculated as

BER
(3)
e2e(γ̄sr, γ̄rd, γ̄sd)≈

∫ ∞

0

[
1

2
erfc(

√
γsd)(1− exp(−γ∗t3(γ̄rd, γsd)/γ̄sr))

+
(
e−γsd/γ̄rd − eγsd/γ̄rdh(γsd, γ̄rd)

)
h(γ∗t3(γ̄rd, γsd), γ̄sr)

+eγsd/γ̄rdh(γsd, γ̄rd) exp(−γ∗t3(γ̄rd, γsd)/γ̄sr)

]
1

γ̄sd

e−γsd/γ̄sd dγsd,

(A.12)

and

BER
(4)
e2e(γ̄sr, γ̄rd, γ̄sd)=

1

γ̄sdγ̄rd

∫ ∞

0

∫ ∞

0

1

2

[
erfc(

√
γsd)(1− exp(−γ∗t4(γrd, γsd)/γ̄sr))

+

(
erfc

(
γsd − γrd√
(γsd + γrd)

)
− erfc(

√
γrd + γsd)

)
h(γ∗t4(γrd, γsd), γ̄sr)

+erfc(
√

γrd + γsd) exp(−γ∗t4(γrd, γsd)/γ̄sr)

]
e−γsd/γ̄sde−γrd/γ̄rddγrd dγsd.

(A.13)

A.4 The Threshold that Minimizes Symbol Error

Rate for MPSK Modulation

Consider the case where the source and the relay modulate their signals using MPSK.

Let the symbols be denoted by x0, . . . , xM−1, where xi = ej2πi/M . The symbol sent

by the source and the relay are denoted by xs and xr, respectively. The received

signals are given by ysr = αsr

√
Es,s xs + nsr, ysd = αsd

√
Es,s xs + nsd, and yrd =

αrd

√
Es,r xr + nrd, where Es,s is the energy per symbol spent by the source and Es,r

is the energy per symbol spent by the relay. Let γij and γ̄ij denote the instantaneous

and average SNR per symbol.

Consider Model 1, where the relay makes decisions based on I1 =

{γsr, γ̄rd, γ̄sd}. The decision rule to minimize e2e symbol error rate (SER) is

P{Ee2e|I1, a0}
a1

a0

≷P{Ee2e|I1, a1}, where Ee2e represents the e2e symbol error event.
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P{Ee2e|I1, a0} = P{Esd|γ̄sd} and is given in [97, Eqn. (8.112)]. Without loss of gener-

ality, let us assume that the source transmits x0. Then the term P{Ee2e|I1, a1} can

be decomposed as

P{Ee2e|I1, a1}=
M−1∑
i=1

P{xr = xi|xs = x0}P{Eprop|xs = x0, xr = xi, γ̄rd, γ̄sd}

+P{xr = x0|xs = x0}P{Ecoop|γ̄rd, γ̄sd}. (A.14)

The term P{Ecoop|γ̄rd, γ̄sd} is given in [97, Eqn. (9.14)]. The term P{xr = xi|xs = x0}
is obtained in integral form in [98, Eqn. (4.198.b)], and [97, Eqn. (8.29)]. We observe

that in M-ary modulation, unlike in BPSK, there are M − 1 ways of making an in-

correct decision and their impacts on detection at the destination are not necessarily

the same. After MRC the decision variable is given by y = γsd + γrde
j2πi/M + ñ

(derivation is given in Section 3.2.2). As in Section 3.2.2, we assume that an incor-

rectly detected symbol sent by the relay constitutes the dominant cause of detection

errors at the destination. That is, the term P{Eprop|xs = x0, xr = xi, γ̄rd, γ̄sd} can be

approximated by the probability that γsd + γrde
j2πi/M falls in the decision region of

symbol xi, denoted as Ri. Exploiting the geometry of the MPSK constellation, one

can easily derive that γsd + γrde
j2πi/M ∈ Ri if and only if γsd − ci,M γrd < 0, where

ci,M ,





sin(π(2i−1)/M)
sin(π/M)

, i = 1, 2, . . . , bM/2c;

− sin(π(2i+1)/M)
sin(π/M)

,i = bM/2c+ 1, . . . ,M − 1.

(A.15)

Then, as in (3.25), we can calculate an approximate expression for

P{Eprop|x0, xi, γ̄rd, γ̄sd}:

P{Eprop|x0, xi, γ̄rd, γ̄sd}≈P{γsd − ci,M γrd < 0|γ̄rd, γ̄sd}

=

∫ ∞

0

∫ ci,Mγrd

0

1

γ̄sdγ̄rd

e−γsd/γ̄sde−γrd/γ̄rddγsd dγrd

=
γ̄rdci,M

γ̄sd + γ̄rdci,M

. (A.16)
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By substituting (A.16) and the other terms into (A.14), the decision rule can be

determined. Since P{Ee2e|I1, a1} decreases with γsr, the decision rule is a threshold

rule on γsr, where the optimal threshold is a function of γ̄rd and γ̄sd. Obtaining a

closed-form expression for the optimal threshold is quite difficult. However, bounds

such as union bound, can be used to derive approximations for P{Ee2e|I1, a1}, thereby

leading to approximate closed-form expressions for the optimal threshold.



Appendix B

Derivations for Chapter 4

B.1 Asymptotic Behavior of the Probability of Er-

ror Propagation

In this section we derive upper and lower bounds for P{Eprop} and, invoking the Pinch-

ing Theorem, we prove that limSNR→∞ P{Eprop} = κrd/(κrd + κsd). The probability of

error propagation is given by [99]

P{Eprop} =
1

2
Eγrd,γsd

[erfc (g(γsd, γrd))] =
1

2
Eγrd

[
Eγsd|γrd

[erfc (g(γsd, γrd))]
]

=
1

2

∫ ∞

0

1

γ̄rd

e−γrd/γ̄rd

∫ ∞

0

erfc (g(γsd, γrd))
1

γ̄sd

e−γsd/γ̄sddγsd dγrd, (B.1)

where

g(γsd, γrd) =
γsd − γrd√
γsd + γrd

.

Let us denote the upper and lower bounds for P{Eprop}, as pl and pu, and the upper

and lower bounds for the inner integral in (B.1), i.e. Eγsd|γrd
[erfc (g(γsd, γrd))], as fl

and fu. Let µg and µh be the geometric and harmonic means of two positive numbers,

where µg(x, y) =
√

xy and µh(x, y) = 2xy/(x + y). The square of g(γsd, γrd) can be

expressed as

g2(γsd, γrd) = γsd + γrd − 2µh(γsd, γrd).

159
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When g(γsd, γrd) ≥ 0, i.e., γsd ≥ γrd, making use of the fact that µh(x, y) ≤ µg(x, y)

we reach the following inequality

g2(γsd, γrd) ≥ γsd + γrd − 2
√

γsdγrd = (
√

γsd −√γrd)
2

⇒ g(γsd, γrd) ≥ √
γsd −√γrd, γsd ≥ γrd. (B.2)

For the region where g(γsd, γrd) < 0, i.e., γsd < γrd, due to the fact that mh(x, y) ≥
min(x, y), we have

g2(γsd, γrd) ≤ γsd + γrd − 2 min(γsd, γrd) ⇒ g(γsd, γrd) ≥ −√γrd − γsd, γsd < γrd.

(B.3)

From (B.2) and (B.3), Eγsd|γrd
[erfc (g(γsd, γrd))] can be bounded as follows:

Eγsd|γrd
[erfc (g(γsd, γrd))]=

∫ ∞

0

erfc(g(γsd, γrd))
1

γ̄sd

e−γsd/γ̄sddγsd ≤ fu(γrd, γ̄sd),

where

fu(γrd, γ̄sd),
∫ γrd

0

erfc
(−√γrd − γsd

) 1

γ̄sd

e−γsd/γ̄sddγsd

+

∫ ∞

γrd

erfc (
√

γsd −√γrd)
1

γ̄sd

e−γsd/γ̄sddγsd (B.4)

Following a similar approach, we also derive a lower bound for

Eγsd|γrd
[erfc (g(γsd, γrd))]. It can be easily verified that

g(γsd, γrd)≤√γsd −√γrd, γsd ≤ γrd, and (B.5)

g(γsd, γrd)≤
√

γsd − γrd, γsd > γrd. (B.6)

Thus, fl(γrd, γ̄sd) ≤ Eγsd|γrd
[erfc (g(γsd, γrd))], where

fl(γrd, γ̄sd),
∫ γrd

0

erfc (
√

γsd −√γrd)
1

γ̄sd

e−γsd/γ̄sddγsd

+

∫ ∞

γrd

erfc
(√

γsd − γrd

) 1

γ̄sd

e−γsd/γ̄sddγsd. (B.7)
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Next, we introduce two integrals, which we derive using integration by parts, to

be used to calculate fu and fl.

J1(a, b, c; x0, x1) =

∫ x1

x0

erfc
(√

ax + b
)

e−cxdx

=

{
−1

c
erfc(

√
ax + b)e−cx − 1

c

√
a

a + c

(
1− erfc

(√
(a + c)/a

√
ax + b

))
ebc/a

}]x1

x0

,

(B.8)

where x0, x1, c ≥ 0, (a + c)/a ≥ 0, and

J2(a, b, c; x0, x1) =

∫ x1

x0

erfc
(
a
√

x + b
)
e−cxdx =

{
−1

c
erfc(a

√
x + b)e−cx

− a

c
√

a2 + c

(
1− erfc

(√
a2 + c

√
x + ab/

√
a2 + c

))
exp(−b2 + a2b2/(a2 + c))

}]x1

x0

,

(B.9)

where x0, x1, c ≥ 0. Using erfc(−x) = 2 − erfc(x), (B.4) is expressed in terms of J1

and J2. Then, by substituting (B.8) and (B.9) for J1 and J2, we obtain1

fu(γrd, γ̄sd)=2
(
1− e−γrd/γ̄sd

)− (1/γ̄sd)J1(−1, γrd, 1/γ̄sd, 0, γrd)

+(1/γ̄sd)J2(1,−√γrd, 1/γ̄sd, γrd,∞)

=erfc (−√γrd)− 1√
1− 1/γ̄sd

(
1− erfc

(√
γrd

√
(1− 1/γ̄sd)

))
e−γrd/γ̄sd

− 1√
1 + 1/γ̄sd

erfc

(
√

γrd
1/γ̄sd√

1 + 1/γ̄sd

)
exp (−γrd/(1 + γ̄sd)) . (B.10)

Similarly,

fl(γrd, γ̄sd)

=
1√

1 + 1/γ̄sd

[
−e−γrd/γ̄sd − e−γrd/(1+γ̄sd)

(
1− erfc

(√
γrd/

(
γ̄sd

√
1 + 1/γ̄sd

)))

+(2− erfc(
√

γrd))
√

1 + 1/γ̄sd − e−γrd/(1+γ̄sd)
(
1− erfc

(√
γrd/

√
1 + 1/γ̄sd

)) ]
.

(B.11)

1It is assumed that γ̄sd ≥ 1, which is satisfied when SNR is sufficiently large.
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Upper and lower bounds for P{Eprop} are found by using (B.1) and taking the expec-

tation of fu and fl w.r.t. γrd:

fl(γrd, γ̄sd) ≤ Eγsd|γrd
[erfc (g(γsd, γrd))] ≤ fu(γrd, γ̄sd) ⇒ (B.12)

1

2
Eγrd

[fl(γrd, γ̄sd)]
︸ ︷︷ ︸

pl(γ̄rd,γ̄sd)

≤ P[Eprop] ≤ 1

2
Eγrd

[fu(γrd, γ̄sd)]
︸ ︷︷ ︸

pu(γ̄rd,γ̄sd)

. (B.13)

Then we express pl and pu in terms of J2:

pu(γ̄rd, γ̄sd)=− γ̄sd

2(γ̄sd + γ̄rd)

1√
1− 1/γ̄sd︸ ︷︷ ︸

t1

+
1

2γ̄rd

J2(−1, 0, 1/γ̄rd, 0,∞)
︸ ︷︷ ︸

t2

+
1

2γ̄rd

1√
1− 1/γ̄sd

J2

(√
1− 1/γ̄sd, 0, (γ̄rd + γ̄sd)/(γ̄rdγ̄sd), 0,∞

)

︸ ︷︷ ︸
t3

− 1

2γ̄rd

1√
1 + 1/γ̄sd

J2

(
1/(γ̄sd

√
1 + 1/γ̄sd), 0, (1 + γ̄sd + γ̄rd)/(γ̄rd + γ̄rdγ̄sd), 0,∞

)

︸ ︷︷ ︸
t4

.

We substitute γ̄sd = κsdSNR and γ̄rd = κrdSNR in (B.14), and take its limit as SNR →
∞. Since t1 → (1/2)κsd/(κsd + κrd), t2 → 1, t3 → 0 and t4 → (1/2)κsd/(κsd + κrd),

we conclude that

lim
SNR→∞

pu =
κrd

κrd + κsd

. (B.14)

Following the same approach for pl, we obtain

pl(γrd, γ̄sd)=1− 1

2
√

1 + 1/γ̄rd

(
γ̄sd

γ̄sd + γ̄rd

+
2(1 + γ̄sd)

1 + γ̄sd + γ̄rd

)

︸ ︷︷ ︸
s1

+
1√

1 + 1/γ̄rd

1

2γ̄rd

J2

(
1/(γ̄sd

√
1 + 1/γ̄sd), 0, (1 + γ̄sd + γ̄rd)/(γ̄rd + γ̄rdγ̄sd), 0,∞

)

︸ ︷︷ ︸
s2

− 1

2γ̄rd

J2(1, 0, 1/γ̄rd, 0,∞)
︸ ︷︷ ︸

s3

+
1√

1 + 1/γ̄rd

1

2γ̄rd

J2

(
1/

√
1 + 1/γ̄sd), 0, (1 + γ̄sd + γ̄rd)/(γ̄rd + γ̄rdγ̄sd), 0,∞

)

︸ ︷︷ ︸
s4

(B.15)
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Since s1 → (3/2)κsd/(κsd + κrd), s2 → (1/2)κsd/(κsd + κrd), s3 → 0, and s4 → 0 as

SNR →∞, we conclude that limSNR→∞ pl = κrd

κrd+κsd
. Using this result combined with

(B.14), the Pinching Theorem implies that

lim
SNR→∞

pl ≤ lim
SNR→∞

P{Eprop} ≤ lim
SNR→∞

pu ⇒ lim
SNR→∞

P{Eprop} =
κrd

κrd + κsd

.(B.16)

B.2 Proof of Lemma 4.1 – Asymptotic Behavior

of γ∗t

It can be easily verified that limSNR→∞
δ(SNR)
1/SNR

= 1
4

κsd+κrd

κsdκrd
. Hence, δ(SNR) is asymp-

totically equivalent to

δ(SNR) ∼ 1

4

κsd + κrd

κsdκrd

1

SNR
. (B.17)

For large SNR, δ(SNR) < 1/2. Thus, we ignore the second case in (4.3) and assume

that γ∗t (SNR) =
(
erfc−1(2δ(SNR))

)2
.

We make use of the following inequality given in [100, pp. 371]:

√
1− e−z2 < |erf(z)| <

√
1− e−2z2 .

By replacing erfc(z) = 1 − erf(z), the threshold value is equal to γ∗t (SNR) =
(
erf−1(1− 2δ(SNR))

)2
. Since erf(z) ≥ 0 for all z ≥ 0, and

√
γ∗t ≥ 0, we can write

√
1− e−γ∗t < erf(

√
γ∗t ) <

√
1− e−2γ∗t . (B.18)

Substituting erf(
√

γ∗t ) = 1− 2δ from (4.3), we obtain

1

2
log

(
1

4δ(1− δ)

)
< γ∗t < log

(
1

4δ(1− δ)

)
. (B.19)

It can be easily verified that

lim
SNR→∞

log

(
1

4δ(1− δ)

)
/ log(SNR) = 1. (B.20)
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Thus, there exists constants b1, b2 > 0 such that

b1 log(SNR) < log

(
1

4δ(1− δ)

)
< b2 log(SNR),

and (4.5) holds for c1 = b1/2 and c2 = b2, which concludes the proof. ¤

B.3 Proof of Lemma 4.2 – Asymptotic Behavior

of P{γsr ≤ γ∗t }
Since γsr has mean γ̄sr = κsrSNR, the probability that γsr ≤ γt, and hence relay

remains silent, is equal to

P{γsr ≤ γt} = 1− exp

(
− 1

κsr

γt(SNR)

SNR

)
=1− (exp(−γt(SNR)))

1
κsr SNR . (B.21)

By substituting the bounds derived in Lemma 4.1 into (B.21), we obtain

1− (exp(−c2 log(SNR)))
1

κsr SNR <P{γsr ≤ γ∗t } < 1− (exp(−c1 log(SNR)))
1

κsr SNR ⇒

1−
(

1

SNR

) c2
κsr SNR

<P{γsr ≤ γ∗t } < 1−
(

1

SNR

) c1
κsr SNR

.

We note that

lim
SNR→∞

1− (
1

SNR

) c
κsr SNR

log(SNR)/SNR
=

c

κsr

,

and hence,

1−
(

1

SNR

) c
κsr SNR

∼ c

κsr

log(SNR)

SNR
. (B.22)

Then, there exist positive constants b′1 and b′2 such that

b′1 c1

κsr

log(SNR)

SNR
< P{γsr ≤ γ∗t } <

b′2 c2

κsr

log(SNR)

SNR
,

and (4.6) is satisfied for c′1 =
b′1 c1
κsr

and c′2 =
b′2 c2
κsr

. ¤
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B.4 Proof of Lemma 4.3 – Asymptotic Behavior

of P{Esr|γsr > γ∗t }
Using Craig’s formula given in [101], erfc can be represented as

erfc(z) =
2

π

∫ π/2

0

exp(−z2/ sin2(θ))dθ.

Substituting this alternate representation in (A.6) results in

P{Esr|γsr > γt}=exp(γt/γ̄sr)

2γ̄sr

∫ ∞

γt

erfc(
√

γsr) exp(−γsr/γ̄sr) dγsr (B.23)

=
exp(γt/γ̄sr)

πγ̄sr

∫ ∞

γt

exp

(
−γsr

γ̄sr

) ∫ π/2

0

exp
(
− γsr

sin2 θ

)
dθ dγsr(B.24)

=
exp(γt/γ̄sr)

πγ̄sr

∫ π/2

0

∫ ∞

γt

exp

(
−γsr

(
1

sin2 θ
+

1

γ̄sr

))
dγsr dθ

=
1

π

∫ π/2

0

sin2 θ

γ̄sr + sin2 θ
exp(−γt/ sin2 θ)dθ. (B.25)

Since sin2(θ)

γ̄sr+sin2(θ)
< 1

γ̄sr
for any γ̄sr > 0, P{Esr|γsr > γt} is upper bounded by

P{Esr|γsr > γt}<
1

π

∫ π/2

0

1

γ̄sr

exp(−γt/ sin2 θ)dθ =
1

2γ̄sr

erfc(
√

γt). (B.26)

By substituting γt = γ∗t , γ̄sr = κsrSNR, and erfc(
√

γ∗t ) = 2δ from (4.3), (B.26) is

simplified to

P{Esr|γsr > γ∗t }<
1

κsr

δ(SNR)

SNR
. (B.27)

Since δ(SNR) ∼ 1
4

κsd+κrd

κsdκrd

1
SNR

, there exists a constant c′′ > 0 such that δ(SNR) <

c′′/SNR for sufficiently large SNR. Hence, using (B.27) we obtain

P{Esr|γsr > γt}< 1

κsrSNR
δ(SNR) <

c′′

κsr

1

SNR2 , (B.28)

and we conclude that (4.7) holds for c = c′′/κsr. ¤



Appendix C

Derivations for Chapter 5

C.1 Derivation of Eqn.s (5.8), (5.9), and (5.10)

To shorten the notation in the rest of the derivations we drop the condition {Nr = i}
in the terms P{Esd,As|Nr = i}, P{Erd,Ar|Nr = i}, P{As|Nr = i}, and P{Ar|Nr = i}
from the notation. Note that these terms are conditioned on {Nr = i}.

Derivation of Eqn. (5.8)

The probability of As can be expressed as

P{As}=P{γsd > γrd,1, . . . γrd,i}

=

∫ ∞

0

pγsd
(γsd)

∫ γsd

0

pγrd,1
(γrd,1) . . .

×
∫ γsd

0

pγrd,i
(γrd,i)dγrd,i . . . dγrd,1dγsd

=

∫ ∞

0

1

γ̄sd

eγsd/γ̄sd
(
1− e−γ̄sd/γ̄rd

)i
dγsd (C.1)

Using the binomial expansion for (1− e−γsd/γ̄rd)i we obtain

P{As} =
i∑

j=0

{(
i

j

)
(−1)j 1

1 + j(γ̄sd/γ̄rd)
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Since the probability of being selected by the destinations is the same for all

potential relays and independent of index k, we denote it by P{Ar} and calculate as

P{Ar} = 1
i
(1− P{As}). Hence,

P{Ar,k} =
1

i

(
1−

i∑
j=0

{(
i

j

)
(−1)j 1

1 + j(γ̄sd/γ̄rd)

)
.

Derivation of Eqn. (5.9)

The term P{Esd,As} is equal to the following integral

P{Esd,As}=
∫

As

Pb(γsd)pγrd,1
(γrd,1) . . . pγrd,i

(γrd,i)

×pγsd
(γsd)dγrd,1 . . . dγrd,idγsd

=

∫ ∞

0

Pb(γsd)(1− e−γsd/γ̄rd)i 1

γ̄sd

e−γsd/γ̄sddγsd

Again, using the binomial expansion for (1− e−γsd/γ̄rd)i we obtain

P{Esd,As} =
i∑

j=0

{(
i

j

)
(−1)j γ̄rd

jγ̄sd + γ̄rd

P̄b

(
γ̄sdγ̄rd

jγ̄sd + γ̄rd

)}

Derivation of Eqn. (5.10)

Similarly, the error probability given that a particular relay Rk is selected is equal to

P{Erd,Ar,k}=
∫

Ar,k

Pb(γrd,k)pγrd,1
(γrd,1) . . . pγrd,i

(γrd,i)

×pγsd
(γsd)dγrd,1 . . . dγrd,idγsd

=

∫ ∞

0

Pb(γrd,k)(1− e−γrd,k/γ̄rd)i−1

×(1− e−γrd,k/γ̄sd)
1

γ̄rd

e−γrd,k/γ̄rddγrd,k

=
i−1∑
j=0

{(
i− 1

j

)
(−1)j

[
1

j + 1
P̄b

(
γ̄rd

j + 1

)

− γ̄sd

γ̄sd(j + 1) + γ̄rd

P̄b

(
γ̄sdγ̄rd

γ̄sd(j + 1) + γ̄rd

)]}
.
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C.2 Proof of Lemma 5.1

We prove this lemma by analyzing the orders of terms in (5.6) as SNR →∞.

Part 1: Let us first analyze the asymptotic behavior of P{Esd,As|Nr = i} and

P{Erd,Ar|Nr = i}. In the absence of errors at the reliable relays the bit error proba-

bility at the destination would be equal to the performance of (i+1) branch selection

combining (SC), where one of the branches has average SNR of γ̄sd, and the rest have

γ̄rd. The probability of bit error of SC can be expressed as

P̄ SC
b (i, γ̄sd, γ̄rd)=P{Esd, As|Nr = i}+ iP{Erd, Ar|Nr = i}.

Hence, P{Esd, As|Nr = i} ≤ P̄ SC
b (i, γ̄sd, γ̄rd) and P{Erd, Ar|Nr = i} ≤ P̄ SC

b (i, γ̄sd, γ̄rd).

Since SC is known to achieve diversity order equal to the number of its branches,

we conclude that both P{Esd,As|Nr = i} and P{Erd,Ar|Nr = i} decrease at least

as fast as 1/SNRi+1: P{Esd, As|Nr = i} = O(1/SNRi+1) and P{Erd, Ar|Nr = i} =

O(1/SNRi+1).

Part 2: Now, let us examine the order of the term P{Esr|γsr > γt} if γt =

log(c1SNRMr/b). The analysis closely follows that given in Chapter 4 for Mr = 1

relay. In Chapter 4 for BPSK and any threshold γt it is shown that P{Esr|γsr >

γt} < 1
2γ̄sr

erfc(
√

γt). In the case of Pb(γ) = βm erfc(αmγ), this bound can easily be

generalized to

P{Esr|γsr > γt} <
1

γ̄sr

berfc(
√

αmγt). (C.2)

Using the well-known bound erfc(z) < e−z2
, we obtain

P{Esr|γsr > γt} <
βm

γ̄sr

e−αmγt . (C.3)

By substituting γt = log(c1SNRMr/αm), we conclude that

P{Esr|γsr > γt} <
βm

γ̄sr

1

cαm
1

1

SNRMr
=

βm

cαm
1 κsr

1

SNRMr+1
. (C.4)
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Thus P{Esr|γsr > γt} = O(1/SNRMr+1).

Part 3: As seen in (5.8), P{Ar|Nr = i} depends on γ̄rd and γ̄sd only through their

ratio. Hence, this quantity is independent of SNR and P{Ar|Nr = i} = O(1).

Combining Parts 1, 2 and 3, we obtain

P{Ee2e|Nr = i}=P{Esd,As|Nr = i}︸ ︷︷ ︸
O(1/SNRi+1)

+i×
(
P{Erd,Ar|Nr = i}︸ ︷︷ ︸

O(1/SNRi+1)

+P{Erd,Ar|Nr = i}︸ ︷︷ ︸
O(1/SNRi+1)

(1− 2P{Esr|γsr > γt})︸ ︷︷ ︸
O(1)

+P{Ar|Nr = i}︸ ︷︷ ︸
O(1)

P{Esr|γsr > γt}︸ ︷︷ ︸
O(1/SNRMr+1)

)
. (C.5)

Hence, P{Ee2e|Nr = i} = O(1/SNRi+1).
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