
Interference Characterization and Spectrum
Sharing in Large Wireless Networks

PhD Thesis

Muhammad Aljuaid

Supervised by:

Dr. Halim Yanikomeroglu

Department of Systems and Computer Engineering
Carleton University

1



Outline

◮ Introduction

I Cumulant-based Characterization of the Aggregate
Interference Power

II Gaussianity of the Distribution of the Aggregate
Interference Power

III Impact of the Spatial Size of the Secondary Network on
Spectrum Sharing

IV Dominant Regions Dictating Spectrum Sharing
Opportunities

◮ Conclusions and Future Work

2



Introduction

◮ There is an exponential growth in the number of wireless
systems and devices.

◮ Radio spectrum is a scarce resource; however, it is
under-utilized.

◮ Spectrum management is going through a paradigm shift.
◮ Secondary users (SUs) could share the spectrum with

primary users (PUs) under the following condition:
◮ SUs don’t introduce “harmful interference" towards PUs.

◮ Different metrics are proposed to gauge the harmful
interference.
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Interference Probability
A harmful interference metric [Ghasemi08] and [Win09]

◮ Non-harmful interference:

P(IA ≥ Ith) ≤ β

⇒ spectrum sharing allowed

◮ Harmful interference:

P(IA ≥ Ith) > β

⇒ spectrum sharing NOT allowed
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System Model

◮ Aggregate Interference:

IA =
∑

i∈Λ

Ii =
∑

i∈Λ

g(ri)Xi

◮ Distance-Dependant Attenuation

g(ri) =

{

kr−n
i , ri ≥ rc

kr−n
c ; constant, ri < rc

◮ Other system and channel parameters

Xi =
∏

l

Xi ,l
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λ: Density of active nodes
n: Path loss exponent
Xi ’s are i.i.d.



I. Cumulant-based Characterization of the Aggregate
Interference Power
Motivations

◮ Characteristic function is known.
◮ No closed-form expressions for PDF/CDF.
◮ Numerical inversion is possible, however, cumulants

approach is more attractive.
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I. Cumulant-based Characterization of the Aggregate
Interference Power
Lit. Review

◮ A number or recent papers in literature have dealt with
cumulants of the aggregate interference but under specific
scenarios.

Lichte10 considers the first cumulant, i.e., the mean.
Chan01 provides an integral form to compute the cumulants for

out-of-cell interference in a CDMA networks.
Menon05,06 deal with cumulants for non-fading scenarios.
Ghasemi08 considers an infinite field with a very small exclusion region.

◮ Extending these results and generalizing them for a wide
range of scenarios are of great importance and advantage
to study the spectrum sharing in large secondary networks.
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I. Cumulant-based Characterization of the Aggregate
Interference Power
Results

IA =
∑

i∈N

g(ri)Xi

κm(IA) = Neff(m)[g(ro)]mµ̃m(X )

Neff(m) = λAeff(m)

Aeff(m) = 1
2θ
[

r2
eff(m) − r2

o

]

reff(m) = r̂

√

√

√

√1 +
2

mn − 2

(

1 −
[

r̂
ro + L

]mn−2
)

r̂ = max (min (rc, ro + L) , ro)
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λ: Density of active nodes
n: Path loss exponent
Xi ’s are i.i.d.
µ̃m(X) = E [Xm

i ]



I. Cumulant-based Characterization of the Aggregate
Interference Power
Cumulant-based Approximation of the Distribution of IA
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I. Cumulant-based Characterization of the Aggregate
Interference Power
Contributions

◮ Introduced a simple yet comprehensive method to
determine the cumulants of the aggregate interference
power originating from a wireless network.

◮ This method is quite general and applicable for finite and
infinite network sizes, and it is flexible to encompass
different system and propagation parameters such as
large-scale fading, small-scale fading, or even composite
fading.

◮ Investigated the behavior of these cumulants with respect
to changes in some system and channel parameters.
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II. Gaussianity of the Distribution of the Aggregate
Interference Power
Motivations and Lit. Review

◮ As the number of interfering nodes increases, there might
be a tendency to approximate the distribution of the
aggregate interference power by a Gaussian random
variable.

◮ Some scattered observations in literature (e.g., [Evans99],
[Chan01], [Hasan07], [Ganti08], and [Win09]) suggest that
this Gaussian approximation is not valid, except under
some specific scenarios.

◮ Literature lacks a thorough discussion of the Gaussianity of
the aggregate interference power in large wireless
networks.
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II. Gaussianity of the Distribution of the Aggregate
Interference Power
Results

◮ Exclusion Region (ro ≥ rc)

| FZ (y) − FN(y) |< 2.21
2(n − 1)

3
2

3n − 2
1

√

λπr2
o

µ̃3(Xi)

[µ̃2(Xi)]
3
2

◮ No Exclusion Region (ro = 0)

| FZ (y) − FN(y) |< 2.21
3(n − 1)

3
2√

n(3n − 2)

1
√

λπr2
c

µ̃3(Xi)

[µ̃2(Xi)]
3
2

◮ Gaussian approximation is valid if

√

λπr2
o >> 2.21

2(n − 1)
3
2

3n − 2
µ̃3(X )

[µ̃2(X )]
3
2

, for ro ≥ rc
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II. Gaussianity of the Distribution of the Aggregate
Interference Power
Effect of λ (ro = 10 meters, and n = 3)
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II. Gaussianity of the Distribution of the Aggregate
Interference Power
Effect of ro (λ = 0.01 nodes/meter2, and n = 3)
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II. Gaussianity of the Distribution of the Aggregate
Interference Power
Effect of Fading Distribution (ro = 10 meters, n = 3, and λ = 0.01 nodes/meter2)
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II. Gaussianity of the Distribution of the Aggregate
Interference Power
Contributions

◮ Casted scattered observations in a single mathematical
framework using Berry-Esseen bound.

◮ Expressed the conditions for which the Gaussian
approximation will be valid for the aggregate interference
power generated by a Poisson field of interferers.

◮ Discussed the effect of different system and channel
parameters on the convergence of the distribution of the
aggregate interference to a Gaussian distribution.

16



III. Impact of the Spatial Size of the Secondary
Network on Spectrum Sharing
Motivations and Lit. Review

◮ Previous works such as [Menon05], [Pinto07],
[Ghasemi08] and [Ofcom08] studied the effect of different
system parameters on spectrum sharing opportunities.

◮ However, a parameter that has received little attention is
the spatial size of the secondary network.

◮ Usually, the spatial size is assumed to be infinite, e.g.,
[Menon05], [Menon06], [Ghasemi08] and [Win09].

◮ Results developed for infinite networks might be too
pessimistic leading to missing spectrum sharing
opportunities.

◮ Impact of spatial size of the secondary network on
spectrum sharing opportunities?
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III. Impact of the Spatial Size of the Secondary
Network on Spectrum Sharing
Impact of the Spatial Size on Cumulants of IA

◮ Cumulants of IA:

κm(IA) =
1

nm − 2
λθµ̃m(X )r2−mn

o

×
[

1 −
(

ro

ro + L

)mn−2
]

◮ For L << ro:

κm(IA) ≃ λθro
1−mnL µ̃m(X )

◮ For L >> ro:

κm(IA) ≃ 1
nm − 2

λθµ̃m(X )r2−mn
o
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λ: Density of active nodes
n: Path loss exponent
Xi ’s are i.i.d.
µ̃m(W ) = E [W m

i ]



III. Impact of the Spatial Size of the Secondary
Network on Spectrum Sharing
Impact of the Spatial Size on Cumulants of IA
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III. Impact of the Spatial Size of the Secondary
Network on Spectrum Sharing
Impact of the Spatial Size on the CCDF of IA

Simulation
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III. Impact of the Spatial Size of the Secondary
Network on Spectrum Sharing
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Figure: Interference Probability, i.e., P(IA ≥ Ith), vs. L (based on a
shifted-lognormal approximation; ro = 10 m, n=3, rc = 1 m, θ = 2π, λ =
0.01 node/m2, no multipath fading, no shadow fading).
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III. Impact of the Spatial Size of the Secondary
Network on Spectrum Sharing
Contributions

◮ Studied the effect of the field size on IA and spectrum
sharing opportunities.

◮ Observations:
◮ Asymptotic results obtained for infinite fields are applicable

for finite but relatively large fields (when the radial depth of
the field is much greater than the minimum distance to the
primary user) as well.

◮ In some cases, however, asymptotic results are too
pessimistic hiding some spectrum sharing opportunities.

◮ In certain situations, a small reduction in the field size may
create spectrum sharing opportunities while in certain other
situations a huge increase in the field size may not
eliminate spectrum sharing opportunities.
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IV. Dominant Regions Dictating Spectrum Sharing
Opportunities
Motivations and Lit. Review

◮ There are some comments in literature (e.g., [Etkin06] and
[Weber07]) indicating that the aggregate interference is
dominated by the nearby interferers to the victim receiver.

◮ There is to the best of our knowledge no work devoted to
precisely identifying the boundary of the dominant region.

◮ A contribution is required to fill this gap, especially in the
context of spectrum sharing.
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IV. Dominant Regions Dictating Spectrum Sharing
Opportunities
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Dominant Regions Dictating Spectrum Sharing
Opportunities

◮ Cumulant-Based Approach:

κm(IA,Rt) − κm(IA,Rd )

κm(IA,Rt)
≤ ǫκ

◮ Interference Probability-Based Approach:

Pint(Ith,Rt) − Pint(Ith, Rd)

Pint(Ith,Rt)
≤ ǫ

25



IV. Dominant Regions Dictating Spectrum Sharing
Opportunities
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IV. Dominant Regions Dictating Spectrum Sharing
Opportunities
Contributions

◮ Identified the smallest portion (dominant region) of the
secondary network that would impact spectrum sharing
opportunities.

◮ Results reflect the following:
◮ The dominant region is not necessarily a small region

encompassing a few interferers within the proximity of the
primary user.

◮ Far interferers may tangibly contribute to spectrum sharing
decisions when a higher approximation accuracy is
required or when a wide exclusion region is considered.

◮ On the other hand, the dominant region shrinks with the
increase in the path-loss exponent or in the level of the
interference threshold specified by the primary user or a
regulator.

◮ Some implications of these results are highlighted.
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Summary of Contributions

I Cumulant-based Characterization of the Aggregate
Interference Power

II Gaussianity of the Distribution of the Aggregate
Interference Power

III Impact of the Spatial Size of the Secondary Network on
Spectrum Sharing

IV Dominant Regions Dictating Spectrum Sharing
Opportunities
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Suggested Future Work

◮ Spatially clustered secondary users
◮ Spectrum sharing for a secondary network overlapped with

spatially distributed many primary users
◮ Further accurate approximating distributions for the

aggregate interference power
◮ Effect of correlation among Xi ’s on spectrum sharing
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Thank you
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