Introduction

Related work

Background

Proposed RB assignment scheme

Simulations

Conclusion and future work A Distributed Resource Block Assignment Scheme for Relay-Assisted Cellular Networks With Self-Organizing Terminal Relays

Yaser Fouad B.Sc. Supervisor: Prof. Halim Yanikomeroglu

Masters Thesis Defence Carleton University, Ottawa, ON, Canada

July 15th, 2011

Introduction

Related work

Background

Proposed RB assignment scheme

Simulations

Conclusion and future work

Introduction-Overview

- Advanced cellular services spurred an increasing demand.
- Bringing the base station (BS) closer to the user is inevitable.
- How?
 - Heterogeneous network employing relays, femtocells, CoMP,...etc.

• The scope of our work is relaying.

Yaser Fouad B.Sc.

Introduction

Related work

Background

Proposed RB assignment scheme

Simulations

Conclusion and future work

Introduction–Relays

Advantages:

- Improving links quality
- Extended coverage
- High data throughput
- Easy to install in strategic locations
- Low cost
- Disadvantages:
 - More complex network
 - · Difficult to coordinate the assignment of resource blocks

Introduction

Background

Proposed RB assignment scheme

Simulations

Conclusion and future work

Introduction–Coordination

- Centralized coordination is plausible for small numbers of fixed relays.
- Number of fixed relays increases with the increase in the number of user terminals.
- Associated cost and coordination overhead might not be practical.

• An effective solution is to exploit terminal relaying.

Introduction

Background

Proposed RB assignment scheme

Simulations

Conclusion and future work

Introduction-Terminal relaying

- Idle terminals can relay signals of active ones in a cooperative manner.
- Their large number and incidental access renders their coordination a cumbersome task.
- Centralized coordination by BSs may not be practical.
- More efficient resource blocks (RBs) coordination schemes is required.

Related work

[Mishra, 2004] Clustered frequency reuse structure in GSM.

- [Koutsimanis *et al.*, 2008] Random based dynamic RBs assignment.
- [Mubarek *et al.*, 2005] Dynamic frequency allocation in frequency hopping schemes.
- [Etkin et al., 2007] Game theory based assignments.
- Can these schemes be applied in a network that employs terminal relaying?

A Distributed

Block Assignment Scheme for Relay-Assisted Cellular Networks With

> Self-Organizing

Terminal Relays

Yaser Fouad

B Sc

Related work

Yaser Fouad B.Sc.

Introduction

Related work

Background

Proposed RB assignment scheme

Simulations

Conclusion and future work

Problem statement

- Acquiring CQIs in terminal relaying systems may not be practical.
- How to efficiently coordinate the assignment of Resource Blocks?
- Given that
 - No channel quality indicators (CQIs).
 - Large numbers of RTs and WTs.
 - Terminal relays have limited processing and communications capabilities.
 - Centralized coordination is cumbersome.
- Solution:
 - RTs must autonomously assign their resources.

End goal

- Relay-Assisted Cellular Networks With Self-Organizing Terminal Relays A Due to absence o overlap in the RBs • An overlap will res
 - Yaser Fouad B.Sc.

A Distributed

Block Assignment Scheme for

- Introduction
- Related work
- Background
- Proposed RB assignment scheme
- Simulations
- Conclusion and future work

- Due to absence of CQIs and centralized coordination overlap in the RBs assignment will occur.
- An overlap will result in a high level of intra-cell interference.
- How to minimize the number these occurrences while some RBs are still not assigned?
- Develop a scheme that can :
 - Autonomously coordinate the assignment of RBs in a distributed fashion.
 - Accommodate arbitrary user distributions by allowing each relay to have access to all available RBs.
 - Efficiently assign the available RBs to wireless terminals.

B.Sc.

Introduction

Related work

Background

Proposed RB assignment scheme

Simulations

Conclusion and future work

Optimal case: 2-relay example

- Given N RBs.
- Relay 1 assigns its resources to its k₁ incoming users in the order r₁, r₂, ..., r_{k₁}.
- Relay 2 assigns its resources to its k_2 users in the order $r_N, r_{N-1}, ..., r_{N-k_2+1}$.
- An overlap occurs when $k_1 + k_2 > N$.
- Can it be extended to more than 2 relays?

Background

Organizing Definition Terminal Relays

Groups:

10 Yaser Fouad B Sc

A Distributed Resource

Block Assignment Scheme for Relav-Assisted Cellular Networks With Self-

Background

A group is a set G on which the closure property is satisfied: For all $(x, y) \in G \times G$ the element $xy \in G$.

- Cyclic groups.
- Type of groups depends on group operation (e.g., additive, multiplicative).

Primitive Roots

- The set {1,..., n-1} forms a multiplicative cyclic group under modulo n multiplication if n = P where P is a prime number.
- The group generators are the primitive roots of *P*.
- A primitive root is a number that generates a sequence of all the elements of the group.

$$(g_i^{k_1} \pmod{P}, \dots, g_i^{k_{p-1}} \pmod{P}) = (1, \dots, P-1)$$

 $k_i \in \{1, \dots, P-1\}, i = 1, \dots, P-1$

A Distributed Resource Block Assignment Scheme for Relay-Assisted Cellular Networks With Self-Organizing Terminal Relays 11 Yaser Fouad

B.Sc.

Related worl

Background

Proposed RE assignment scheme

Simulations

Conclusion and future work

Primitive Roots

- Lemma: There is no cyclic shift for which the sequence generated by g₁ coincides with the sequence generated by g₂.
- An additional degree of freedom arises which is cyclic shifts.
- In this case the new sequence becomes:

$$(g_i^{k_1+s_i} \pmod{P}, \dots, g_i^{k_{p-1}+s_i} \pmod{P}) = (1, \dots, P-1)$$

 $1 \le s_i \le P-1$

A Distributed Resource Block Assignment Scheme for Relay-Assisted Cellular Networks With Self-Organizing Terminal Relays 12

Yaser Fouad B.Sc.

Introduction

Background

Proposed RE assignment scheme

Simulations

Conclusior and future work

System model

- Consider a system with *M* relays and *N* RBs.
- Relays are not capable of communicating with each other.
- Users access the system according to a counting process.
- CQIs are not available at relays.
- We define the hit (collision) occurrences as the occurrences at which an RB is assigned to multiple wireless terminals.
- Performance can be improved by reducing interference.
- Our design metric is the average number of hits.

Related work

A Distributed

Block Assignment Scheme for Relay-Assisted Cellular Networks With

> Self-Organizing

> > Terminal Relays

13 Yaser Fouad

B Sc

Proposed RB assignment scheme

Simulations

Conclusion and future work

Introduction Related work

Proposed RB assignment scheme

Simulations

Conclusion and future work

Primitive roots based scheme

- For simplicity we assume that the number of RBs is P-1 where P is prime.
- A primitive-root-cyclic-shift (PRCS) pair is assigned to each relay.
- Relays follow a locally generated prescribed sequence in assigning the resources.

• Each relay has access to the entire pool of RBs.

Yaser Fouad B.Sc.

Introduction

Related work

Background

Proposed RB assignment scheme

Simulations

Conclusion and future work

Choosing the PRCS pairs

- There is no guarantee that the chosen sequence is the best over all possible combinations of sequences.
- We can guarantee that the chosen sequences are the best performing cyclic sequences.
- The PRCS selection process is performed offline prior to the system start-up.
- How to efficiently choose the PRCS pairs?
- A metric is proposed for a fast and relatively accurate choice of PRCS pairs.
- A graphical PRCS selection technique is proposed to further improve the metric proposed.
- Objective: Minimize average number of hits.

Introduction

Related work

Background

Proposed RB assignment scheme

Simulations

Conclusion and future work

Further improvement

- Due to lack of coordination, the number of hit occurrences can only be minimized and not completely eliminated.
- These occurrences can be utilized to further improve the performance using the proposed hit identification and avoidance (HIA) algorithm.

HIA algorithm

- Each relay is aware of the PRCS pairs adopted by its neighboring relays.
- When a hit occurs relays infer from the generated sequences the hit source with which they collided.

A Distributed

Block Assignment Scheme for Relay-Assisted Cellular Networks With

> Self-Organizing

> > Terminal Relays

Yaser Fouad B.Sc.

Proposed RB

assignment scheme

- With the sequence known and the hit source identified future hits can be avoided unlike the case when random assignment is adopted.
- Better avoidance can be achieved if relays are capable of immediately identifying the hit source.

• Number of relays M = 3, number of RBs N = P - 1.

A Distributed Resource Block Assignment Scheme for Relav-Assisted Cellular Networks With Self-Organizing Terminal Relays 18 Yaser Fouad B.Sc.

Related wor

Background

Proposed RE assignment scheme

Simulations

Conclusion and future work

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Related wor

Background

Proposed RE assignment scheme

Simulations

Conclusion and future work

◆□ > < @ > < E > < E > E = 900

Related worl Background

Proposed RE assignment scheme

Simulations

Conclusion and future work

Conclusion

Cellular Networks With Self-Organizing Terminal Relays 21

A Distributed

Block Assignment Scheme for Relay-Assisted

Yaser Fouad B.Sc.

Introduction Related wor

Background

Proposed RB assignment scheme

Simulations

Conclusion and future work

- In this we proposed an autonomous assignment scheme for terminal relaying based cellular systems.
- The RBs assignment is flexible to accommodate non-uniform user distributions.
- The RB assignment Sequences is generated locally from a single PRCS pair.
- CQIs are not required.
- Coordination overhead is negligible.

Introduction Related work Background

Proposed RE assignment scheme

Simulations

Conclusion and future work

Conclusion-Cont.

- Sequences enable information extraction (e.g. load in neighboring relays) when a collision occurs.
- Simulations indicate that the larger the number of RBs, the higher the gain of our scheme relative to the PN-based and uniformly distributed random assignments.
- The proposed RBs assignment scheme is not limited to cellular networks.

Future Work

Implementing a trellis diagram approach in the HIA algorithm to improve its performance.

A Distributed

Block Assignment Scheme for Relay-Assisted Cellular Networks With Self-Organizing Terminal

Relays

23 Yaser Fouad B.Sc

Conclusion and future work

- Extending the proposed graphical PRCS selection technique.
- Investigate the effect of employing occasional spectrum sensing on the performance of the proposed HIA algorithm.

Publications

 Yaser Fouad, Ramy Gohary, and Halim Yanikomeroglu, "A Resource Block Assignment Scheme For OFDMA-Based Cellular Networks With Self-Organizing Terminal Relays," in *Proc. IEEE Vehic. Tech. Conf.* (*VTC2011-Spring*), (Budapest), May 2011.

A Distributed

Block Assignment Scheme for Relay-Assisted Cellular Networks With

> Self-Organizing

> > Terminal Relays

> > > 24

Yaser Fouad B.Sc.

Conclusion

and future

 Yaser Fouad, Ramy Gohary, and Halim Yanikomeroglu, "An Autonomous Resource Block Assignment Scheme For OFDMA-Based Relay-Assisted Cellular Networks", under review in *IEEE Trans. Wireless Commun.* (submission: 18 October 2010, 1st results: 01 January 2011, 1st review submitted: 01 March 2011, 2nd review: in progress).

Yaser Fouad B.Sc.

Introduction

Background

Proposed RE assignment scheme

Simulations

Conclusion and future work

Metric for choosing the PRCS pairs

- A load matrix $X(g_i, s_i)$ is generated for each RT *i*.
- For each pair of relays *i* and *j* a pairwise hit matrix, *H*_{*i*,*j*}, is calculated.
- For a specific load of *M* relays, the number of hits, $Z(k_1, \ldots, k_M)$, is calculated.
- The average number of hits given all possible combinations of relay loads, *C*(*K*) is calculated.
- We choose the PRCS pairs that minimize the value of *C*(*K*).

Introduction

Related work

Background

Proposed RB assignment scheme

Simulations

Conclusion and future work

Graphical selection of the PRCS pairs

- How can we further improve the selection process?
- A graphical PRCS pairs selection technique is proposed.

Yaser Fouad B.Sc.

Introduction Related work Background

Proposed RB assignment scheme

Simulations

Conclusion and future work

Graphical selection of the PRCS pairs

- A group generator is chosen to be the circle basis.
- The graph representing the cyclic group is constructed.
- The group generators and their inverses are grouped into pairs (g, g^{-1}) .
- One group generator of each pair is used to construct a pattern.

Figure: Graphical representation of a cyclic group of order 18.

Graphical selection of the PRCS pairs

Relay-Assisted Cellular Networks With Self-Organizing Terminal Relays 28 Yaser Fouad B Sc

A Distributed

Block Assignment Scheme for

- The pattern is shifted with all possible shifts.
- Another group generator is selected to construct its pattern.
- The group generator and the cyclic shifts yielding the minimum number of hits are selected.

HIA, an example

Resource Block Assignment Scheme for Relay-Assisted Cellular Networks With Self-Organizing Terminal Relays 29 Yaser Fouad B.Sc.

A Distributed

• Consider the case where P = 17, $s_i = 0$, i = 1, 2, 3 and $g_1 = 3$, $g_2 = 5$ and $g_3 = 6$.

(g_1, s_1)	3	9	10	13	5	15	11	16	14	8	7	4
(g_2, s_2)	5	8	6	13	14	2	10	16	12	9	11	4
(g_3, s_3)	6	2	12	4	7	8	14	16	11	15	5	13