
Economics of Collectives

Michael Weiss
SCE, Carleton University

Ottawa, Canada
weiss@sce.carleton.ca

ABSTRACT
The transition from a software product line to a software
ecosystem, as reported by Bosch [5], takes place, when the
product line company makes its platform available to devel-
opers outside the company. A similar transition takes place
from a software ecosystem to a collective, when the platform
is jointly created and owned by a group of members. Build-
ing on the literature on software product line economics,
this research identifies three factors affecting the economics
of collectives (level of contribution, number of members, and
diversity of use), and develops a model linking those factors
to three economic outcomes (time, quality, and cost).

Categories and Subject Descriptors
D.2.8 [Software Engineering]: Metrics; D.2.9 [Software
Engineering]: Management

General Terms
Measurement, Management

Keywords
Software product lines, software ecosystems, collectives, prod-
uct line economics, open source software

1. INTRODUCTION
The traditional view of software product lines is that a prod-
uct line is managed entirely within a company. This view is
challenged by two recent developments. One is the transition
from software product lines to software ecosystems [5]. This
transition takes place when a product line company makes
its platform available to developers outside the company.
These include internal developers (as a in a product line),
strategic partners with long-term relationships, undirected
external developers, and independent solution providers.

The other transition is one from software ecosystems to col-
lectives. Many such collectives have recently been created,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SPLC’11, August 21-26, 2011, Munich, Germany.
Copyright c© 2011 ACM ISBN 978-1-4503-0789-5/11/08... $10.00.

often going by different names such as ecosystems. Exam-
ples are the open source Eclipse project [28], or the closed
source Artop ecoystem [19]. A collective is set up when a
group of organizations wants to achieve a goal they cannot
achieve on their own. For example, as a collective, a group of
startups can deliver a complete solution (a “whole” product)
to a customer. A collective can also collaborate to address
common needs of its members, allowing the members to fo-
cus on features of their products that differentiate them.

It is often observed that somewhere between 50% and 90%
of development effort is spent on creating software that does
not differentiate a company from its competitors [30]. Only
the remainder differentiates a company from its competitors.
This observation has motivated companies to acquire the
non-differentiating parts of their software stack elsewhere,
for example, as COTS (common off-the-shelf software) or
open source software (OSS). When such software is not avail-
able, or where a higher degree of control over the software
is desired to be able to tailor it more effectively, organiza-
tions have joined efforts to create their own common stack
in a collaborative effort, making the result available to each
other, or even to anyone else who wishes to use it.

The objective of this paper is to study the economics of
collectives. Specifically, we seek to identify the factors that
affect the economics of collectives, and to create a model
linking those factors to economic outcomes.

The paper makes several contributions to the areas identified
in the call for this workshop. Its subject, collectives, con-
sists of companies who seek to optimize their development
efforts in order to work on features that create the most
value for themselves and their customers. By developing
propositions from three case studies of collectives the pa-
per seeks to understand how the composition of a collective
affects the achievement of the business goals of their mem-
bers. Specifically, the propositions link three characteristics
of collectives (level of contribution, number of members, and
diversity of use) to three variables used in [2, 9, 23] to model
the economics of product lines (time, quality, and cost).

The paper is organized as follows. Section 2 reviews the liter-
ature on the evolution of software product lines to software
ecosystems and collectives, and on the economics of soft-
ware product lines. Section 3 describes the research method
used in this paper and introduces the case studies. Section 4
identifies factors that affect the economics of collectives, and

develops a model that links factors and economic outcomes.
Section 5 discusses the findings and concludes the paper.

2. LITERATURE REVIEW
2.1 From software product lines to software

ecosystems and collectives
As companies develop multiple products in the same do-
main, they benefit from organizing their software develop-
ment activities as a product line. A product line provides a
platform (also known as core asset base) shared by a set of
related products that are developed by an organization [4].
The shared platform identifies points of commonality and
variation. Products are created “on top” of the platform
by reusing its core assets. The motivation for a product
line is to reduce the cost of developing new products, while
increasing their quality and reducing the time to market.
By taking a product line approach a company can manage
product diversity and reuse more systematically [30].

A current trend is the transition from software product lines
to software ecosystems [5, 17]. In a software ecosystem the
company owning the platform opens the platform to external
developers, for example, through APIs, services, or plug-ins.
As a result, the overall product is no longer assembled by
the company that provides the platform, but by customers
instead.1 The shift to software ecosystems is a shift in own-
ership of the composition of the final product. But moving
towards a software ecosystem also allows customers to par-
ticipate in the creation of products that better satisfy their
needs. Thus, externalizing the platform provides the plat-
form owner with new growth opportunities. However, there
are also costs to opening the platform, including the cost to
create external interfaces, constraints on the further evolu-
tion of those interfaces, and the challenges that come with
managing the relationships with external developers.

Creating a software product line, and even more so a soft-
ware ecosystem, however, increases the effort required for
software development by as much as 1.5-3 times [8]. Tradi-
tionally, only large companies were able to justify this kind
of up-front investment. The option to build reusable assets
is not available to small companies, given the time and re-
source pressures under which they operate, and their focus
on managing cash flow. The solution lies in taking the con-
cept of software ecosystems one step further, to a collective.
In a collective, development is no longer carried out by indi-
vidual organizations, but by a group of organizations. Mem-
bers of a collective share the cost and risk of developing a
shared code base, but also reap the benefits that come from
being able to reuse code and the increased quality that re-
sults from collaborative development [38]. Pooling resources
allows companies to focus on the added value that differen-
tiates them [37]. A shared platform also attracts further
companies that might base their products on it, growing the
total market available to the platform [24]. There are several
successful implementations of this model, such as the open
source Eclipse project, or the closed source Artop ecoystem,
both of which are described in detail in Section 3.

A collective can achieve things that its individual members

1Customers are either knowledgeable end-customers or in-
termediaries who provide services to end-customers.

cannot achieve on their own. For example, as a collective, a
group of startups can deliver a complete solution to a cus-
tomer, whereas individually they are only able to deliver
pieces of the solution, which the customer has to integrate.
Joining forces makes the group of startups much more com-
petitive against large system integrators. Collectives can
also collaborate to address common needs, allowing their
members to focus on features of their products that dif-
ferentiate them. The more members a collective has, the
more its members are able to share the load of meeting com-
mon needs. However, such collaboration is also fraught with
problems, for example, the coordination overhead that re-
sults from dependencies between subtasks.

A key characteristic of collectives is that they are voluntary
organizations. Membership in a collective is a function of
how well the collective helps its members meet their busi-
ness goals. As contributors to the collective, members gain
access to the total value generated by the collective. As long
as the total value is higher than the cost of contribution,
previous research [1] has shown that members benefit from
joining. Conversely, existing members of a collective are not
interested in members who do not add value to the collec-
tive. Thus, collectives often impose conditions on member-
ship such as asking members to commit resources.

The link between software product lines and collectives has
been previously explored by studies that ask under which
conditions open source projects can be considered product
lines [7, 31]. The first study [7] examines how the Eclipse
project implements SEI’s software product line practice ar-
eas [8, 27]. Eclipse is found to have many of the charac-
teristics of a product line. Eclipse products are developed
by using and creating plug-ins, which can be end-user prod-
ucts or core assets. The plug-in development guide serves
as a production plan for an Eclipse product. Eclipse also
has an explicit organization to manage the product planning
process, including architecture, planning and requirements
councils, as well a management organization, the Eclipse
Foundation. The second study [31] notes that the examined
open source projects (Eclipse, Mozilla, and Linux) follow
best product development practices (such as release man-
agement and technical roadmaps) that are most suitable for
a distributed development style. Thus, while clearly not all
open source projects are product lines, certain open source
projects share characteristics with software product lines,
even though they employ different processes.

Figure 1 shows the transitions between the three models.
The transitions occur along two dimensions. The first tran-
sition, from software product lines to software ecosystems,
is one from an internal to an external activity, as the plat-
form is made available to external developers. The second
transition, from a software ecosystem to a collective, is one
from a hierarchical to a network type of governance as de-
scribed in [22]. The locus of creation and evolution of the
platform shifts from a single platform owner to a network.
The network collectively creates and owns the platform.

2.2 Economics of software product lines
Key motivations for creating a product line are: reducing
cost, enhancing quality, and reducing time to market. All
economic models of product lines include at least the reduc-

Internal

Software Product
Line

Software
Ecosystem

Collective

Externalize
platform Platform

created and
owned by
members

Access

G
ov
er
na
nc
e

External

H
ie

ra
rc

hy
N

et
w

or
k

Figure 1: Transitions from software product lines to software ecosystems and collectives

tion of cost. When assets from the platfom are used, a cost
reduction is achieved for each product. However, in order to
be able to reuse assets, an up-front investment must be made
to create the reusable assets. In most software products, a
break-even point between the up-front investment and the
savings from reuse is achieved around 2-3 products [23].

A cost model for product lines has been proposed in [2, 9].
It has the following cost components:

• Corg: cost for an organization to adopt a product line
approach (creation of processes, training, etc.)

• Ccab: cost to build the platform (core asset base)

• Cunique: cost to build product-specific parts (usually
a small portion of the complete product)

• Creuse: cost to reuse common parts (including finding,
tailoring, and testing the part in the new context)

The cost of creating a product line that consists of n prod-
ucts (pi) can then be estimated as:

C = Corg + Ccab +

nX
i=1

(Cunique(pi) + Creuse(pi))

For a more detailed description of the model see the Struc-
tured Intuitive Model for Product Line Economics (SIM-
PLE) model [9], which has been integrated into the SEI
Framework for Software Product Line Practice [27]. The
SIMPLE model only incorporates cost factors, neither qual-
ity nor time. A research agenda for software product line

economics that considers other factors than cost (such as
quality, time to market, and risk) is provided in [26].

3. RESEARCH METHOD
This research identifies factors affecting the economics of
collectives and creates a model linking those factors to eco-
nomic outcomes. It combines action research with an anal-
ysis of case studies from the literature. In action research,
the research is done by or in collaboration with practitioners
[16]. I have been actively involved in a collective to create
a shared platform for collaboration systems (TFN 200). I
have developed first-hand insights into the Eclipse project
based on meetings with members of the Eclipse Foundation
and members of the Eclipse ecosystem. The description of
the Artop ecosystem was taken from the literature [19].

The unit of analysis is a collective as defined in the pre-
vious section. The collectives described in this section of
the paper form a convenience sample. I had direct access
to two of the collectives (Eclipse and TFN 200), and iden-
tified a third collective (Artop) from the literature, which
complemented the other cases. A summary of each case was
prepared that described its purpose, governance structure,
and software architecture. Factors and economic outcomes
were identified in an iterative manner. Propositions link-
ing factors to economic outcomes were developed through a
combination of observations about the case studies, findings
in the literature, and logical deduction.

3.1 Eclipse
Eclipse is an open source community focused on building
an open software development platform [28]. The Eclipse
project was founded in 2001 as a spin-out of technology that
IBM had acquired from Object Technology International.

We use the term “spin-out” to refer to a case where a com-
pany externalizes an internal development project [34]. Ini-
tially, the Eclipse community was primarily driven by IBM
and other software vendors. With the creation in 2004 of an
independent, non-profit governance body, the Eclipse Foun-
dation, IBM relinquished its control over the project and
allowed other players, including IBM’s competitors, to be-
come equal members of the community [29].

The Eclipse Foundation is responsible for the technical in-
frastructure, coordination of the development process, han-
dling of IP rights, and promotion of Eclipse and its wider
ecosystem. The role of the Eclipse Foundation is adminis-
trative; it does not set the direction of the project or de-
velop code. The direction of the project is set by strategic
members of the collective. To become a strategic member, a
company has to pay a membership fee and commit resources
to the development of the platform. The Eclipse project is
organized as a set of top-level projects with subprojects.

Eclipse has a well-defined process for how members can en-
gage with the collective [12]. Three councils, responsible for
requirements, planning and architecture, guide the projects.
The requirements council collects, reviews, and prioritizes
incoming requirements. The planning council manages the
release train. The architecture council defines and evolves
the architecture of the Eclipse platform. Individual projects
are overseen by project management committees. The coun-
cils are comprised of strategic members and representatives
of the project management committees.

Eclipse is designed to be highly extensible. At its core is a
minimal runtime that provides tools for extension manage-
ment. All functionality of Eclipse (even “core” functionality
such as basic UI elements) is implemented in the form of
plug-ins. Plug-ins are the basic distribution unit of func-
tionality in Eclipse. A plug-in can declare extension points
(aka variation points), and implements extensions (aka vari-
ants) to the extension points of other plug-ins.

3.2 Artop ecosystem
The AUTOSAR Tool Platform (Artop) is the platform for
an ecosystem in the area of automotive tool development
[19]. The project was created in 2008 with the goal to pro-
mote and support the AUTOSAR software architecture for
complex E/E (Electrical/Electronic) systems. Artop is not
an open source project, and members of the collective have
to agree to the terms of the Artop license before using the
software. Recently, portions of Artop were relased as the
open source project Sphinx as part of Eclipse. Internally,
Artop relies on the Eclipse Modeling project for modeling,
model transformation, and code generation.

Artop is managed by the Artop User Group. This group
has members from 120 different companies. The direction
of the project is controlled by a subset of design members,
who also contribute the majority of the core assets to the
platform. Developers can also join as consulting members.
In this role, they are allowed to contribute to the core, as
well as to create their own subprojects. A final group of
members are adopters, who do not contribute directly to
the platform, but use it to develop tools.

Artop is based on several principles [19]: low entry barriers
to make it easy for members to join; commercial-friendly li-
censing: the Artop Software License allows other to include
the software in commercial products, but also requires con-
tributions to Artop itself to be released back to the platform;
technical focus: Artop focuses on platform functionality and
leaves end-user functionality to its members; and awareness
for competitive differentiators: Artop provides the common
parts for an AUTOSAR tool, so tool vendors can focus on
developing differentiating end-user features.

3.3 TFN 200
The TFN 200 is a next generation collaboration system re-
leased under an open source license. It is designed by a
collective that comprises academics and students, several
startups, an economic development agency, and early cus-
tomers. Its goal is to provide a shared platform that can
be extended by members to develop their own products in
a shorter time frame and to deliver a more comprehensive
solution than they could provide on their own. Achieving
alignment with the business goals of the members was an
important design goal of the TFN 200. The collective was
launched by Carleton University in March 2011.

The governance structure of the TFN 200 involves three
councils responsibile for architecture, opportunity develop-
ment, and infrastructure. The architecture council guides
the development and evolution of the platform. The oppor-
tunity council identifies opportunities – products or services
that can be derived from the platform – and extracts and
priorities requirements for the shared platform from the op-
portunities. Opportunities need to be backed up by commit-
ments; they only get to move forward, if there are members
of the collective willing to fund or assign resources to them.
The infrastructure council provides a shared testing and de-
velopment platform that is available to all members.

The platform has a plug-in architecture to facilitate its ex-
tension by third-party features. As in the Eclipse platform,
every component of the TFN 200, except for a small run-
time, is realized as a plug-in, maximizing the level of modu-
larity for evolving the platform to meet the common needs of
the collective. To encourage the development of commercial
products on top of the TFN 200 platform, while ensuring
that changes to it are made available to all members of the
collective under the same terms as the platform, an the plat-
form is licensed under the Eclipse Public License.

4. ECONOMICS OF COLLECTIVES
This section examines factors that affect the economics of
collectives. From the analysis of the cases, three factors
were identified as characteristics of collectives: level of con-
tribution, number of members, and diversity of use. Level
of contribution is amount of work contributed by a member
of the collective to the core asset base. Contributions are
not limited to code, but can include requirements, designs,
test cases, or feedback. The number of members is the size
of the collective. Diversity of use is a measure of the range
and variety of contexts of use for the platform.

Figure 2 shows a model that links these factors to economic
outcomes. Traditional cost-benefit models of product lines
[2] only model the impact on cost, not other benefits from

creating a product line such as time to market or quality.
The three economic outcomes selected are: time, quality,
and cost. Time is either time to market or the coordination
overhead. Quality refers to the quality of the core asset base
or the quality of the product. Cost is either the cost for the
organization of the collective, the cost to create the core
asset base, the cost to reuse assets, or the cost to create a
unique asset not based on the platform. In the following, I
will discuss nine propositions anchored around this model.

4.1 Level of contribution
The level of contribution is not evenly distributed among
members of a collective. Instead, as studies of open source
projects show, the distribution typically follows a power law,
where a small number of members account for a majority of
the contributions [10]. Some members may be in a better
position to create a specific core asset, because the skills
required are not generally available, or they may have a
more urgent need than other members for a specific asset
to be available in the asset base. When the development of
core assets is driven by “lead users” [33], those assets will
be available earlier than other planned assets. In the TFN
200 project, the development of a voice component requires
specialized expertise. The members of the collective driving
its development also have a particular interest in streaming
voice to many simultaneous users. A wider project scope
than this initial focus will be explored at a later stage.

Proposition 4.1. (Early bird) Time to market decreases
with the level of contribution as a result of better alignment
between contributed assets and the contributor’s needs.

In the literature on small groups, trust has been been noted
as a determinant of effective team collaboration [10]. Suc-
cessful leaders make a strong contribution and hold a cen-
tral position in the community [13]. Projects run by leaders
who have demonstrated their technical skills and who have a
record of past successes are generally more likely to succeed
[20]. Trust can be increased by developing key function-
ality early in a project to demonstrate that the project is
doable and has merit [36]. With the initial release of the
Eclipse source code in 2001, IBM triggered contributions
from other companies.2 The creation of an early prototype
of the TFN 200 by a small core team galvanized the collec-
tive and prompted signficant follow-up contributions from
other members. The higher the trust among the members
of a collective, the less they require formal coordination.

Proposition 4.2. (Track record) Coordination overhead
decreases with the level of contribution as a result of the
increase in trust it creates between the members.

Through their level of contribution a member can ensure fit
of the core assets with their business goals. Members who
contribute most to a specific asset can be expected to benefit

2A study of open innovation projects (such as Eclipse) found
that outsiders will invest as much as the founding company
itself, if the company voluntarily reveals knowledge and con-
tinues to commmit resources to the project [29].

when reusing the asset. A study of open source development
[32] found that contributors obtain private benefits from the
development of shared assets that are not available to “free
riders”, who only use the assets. These include learning,
sense of ownership and control, and feedback from others on
the code that was revealed. Contributors are also in a better
position to tailor their code to their individual needs, as the
code that was revealed for general use may not be a good fit
with somebody else’s needs. In the TFN 200 platform, fea-
tures to be added are selected from opportunities identified
by members as creating business value.

Proposition 4.3. (Fit for use) The cost to reuse assets
in the core asset base and the cost to develop unique, product-
specific assets both decrease with the level of contribution.

4.2 Number of members
When members of a collective contribute to a core asset base,
they develop a shared platform. The purpose of the shared
platform is to provide non-differentiating functionality to
members of the collective, so that each member can focus
on its differentiating features [19]. For example, the Artop
platform provides functionality needed by every AUTOSAR
tool such as an implementation of the AUTOSAR meta-
model, serialization, and editing capabilities [25]. A decision
on whether to include a contribution in the shared platform
is made on the basis of how well the contribution is aligned
with the goals of the other members of the collective. If a
contribution were only to benefit a single member, then it
would not be included in the platform.

Proposition 4.4. (80/20 rule3) The time to market de-
creases with the number of members. Members can focus on
the development of value-added features.

Each member added to a team introduces coordination over-
head [6], time not spent productively towards achieving the
task of the team. The capacity of team members to inter-
act with one other in meaningful way is also limited [21].
Conversely, a smaller number of collaborators allows mem-
bers to interact more frequently with each other. This cre-
ates stronger ties among the members and increases com-
mitment and identification with the collective and its goals
[14]. The effort to coordinate activities can be controlled by
restricting access, that is, strategically selecting members
for specific interactions [18]. In OSS projects, restricting
access to core members reduces the amount of coordina-
tion required when members collaborate on a section of the
project [35]. The Eclipse project is organized into top-level
projects, each of which has multiple subprojects. Only a
subset of project members are active in any specific subpro-
ject. The plug-in architecture of the TFN 200 makes the
system near-modular, that is, plug-in developers rarely have
to coordinate their work with other plug-in developers.

Proposition 4.5. (Too many cooks) Coordination over-
head increases with the number of members working on the
same section of the core asset base.

3States that as much as 80% of the code in a stack may be
non-differentiating, leaving only 20% as value-added.

Level of
contribution

Number of
members

Diversity of use

• Time to market
• Coordination

• Core asset base
• Product

• Organization
• Core asset base
• Reuse
• Unique

Time

Quality

Cost

1, 2

4, 5

6

78

9

3

Figure 2: Model of the factors that affect the economics of collectives

A high level of quality in the core asset base attracts new
members to the collective. Products built on top of a high
quality base will also be of higher quality. In a collective
of small companies like the TFN 200, individual members
do not have the resources to build a system to the level of
quality provided by the platform. From proposition 4.2 it is
also apparent that a collective needs to receive enough initial
contributions in order to reach an acceptable level of quality
that will attract more new members. A study of embedded
systems companies using Linux [15] showed that these com-
panies were motivated to reveal their changes to Linux to
receive technical support from other companies. The Artop
license asks developers to contribute modifications to the
Artop platform itself back to the community [19].

Proposition 4.6. (Many eyes) The quality of the core
asset base increases with the number of members who provide
feedback on the assets in the core asset base.

A collective-driven approach to developing a core asset base
is more efficient than for each member of the collective to
develop a full software stack in isolation [19]. Instead of
creating their own versions of commodity features, members
can focus on developing features that differentiate them from
each other. The effort for maintaining the software stack as
it evolves is also significantly reduced. Changes in under-
lying technologies can be spread among members. If mem-
bers have existing investments in their own software stacks,
switching to a platform developed by a collective may be ex-
pensive at first, but will pay off in the long term [19]. In the
Artop case, tool vendors differentiate themselves through
the value they offer to end users. Common tool components
such as integration with other backend systems for subsys-
tem design or simulation are provided by Artop [19].

Proposition 4.7. (Sharing the load) The cost of con-
tributing to the core asset base decreases with the number
of members who provide resources.

4.3 Diversity of use
Each time the core asset base is put to use in a new context,
new aspects of the base will be exercised. Each new context
of use may uncover errors or omissions that had not been
identified before. This increases the chance of correcting er-
rors, thus increasing the quality of all products that depend
on the asset base [23]. For example, the Artop platform
provided core assets that allowed individual members to de-
liver a better integration with other systems, functionality
that was either missing or incomplete from their solutions
before. Diversity of use also helps evolve the variability of
the asset base, as new contexts of use may require variation
points that had previously not been exposed. It has been ar-
gued that a single company can explore more design options
than a collective and thus produce code of higher quality [1].
However, this argument hinges on the assumption that the
collective does not have customers, which is not true in the
general case, as in the examples studied in this paper.

Proposition 4.8. (Many faces) The quality of the core
asset base increases with diversity of use. Each new context
of use will further harden the asset base.

Diversity of use is driven by the diversity of needs of the
members of the collective. The literature on team diver-
sity predicts that increasing knowledge diversity in a team
positively affects the range of information accessible to the
team, but also negatively affects how a team can integrate
information [11]. At early stages of growth, the availabil-
ity of multiple perspectives that come with diversity of use
benefits a collective. Decisions about what functionality to
include in the core asset base will be made from a broad
understanding of product needs. At later stages, too much
diversity may, in fact, hinder the evolution of the core as-
set base in a cohesive manner. When initially released, the
Eclipse project provided core components for a Java-centric
development environment. It subsequently grew in diversity
to include components for tool integration, modeling, and

web applications that could be applied across a range of do-
mains. Today, Eclipse can perhaps be best characterized as
a collection of vertical solutions for specific domains. About
one half of the Eclipse projects today are technology specific.
The diversity of Eclipse projects has increased significantly,
and as a group the projects are far less cohesive now.

Proposition 4.9. (Multiple perspectives) The cost of cre-
ating the core asset base first decreases, then increases with
diversity of use. At low diversity of use, the collective bene-
fits from a broader range of perspectives. When diversity of
use is high, the collective will appear less cohesive.

5. CONCLUSION
This paper builds on the literature on software product line
economics to identify factors affecting the economics of col-
lectives, and develops a model linking those factors to eco-
nomic outcomes. The paper identifies two factors that could
not be observed in either software product lines or ecosys-
tems: level of contribution, and number of members. It
shows how these factors suggest new ways to reduce time to
market, enhance quality, and lower cost by using a collec-
tive. The third factor (diversity of use) is also present in the
other models of organizing product lines, but has a more pro-
nounced effect in the context of collectives. In a collective,
the members are peers and offer a wider range of perspec-
tives on the product domain that may not be available to a
platform owner in a traditional product line approach.

The propositions developed can inform the construction of a
quantitive model of the economics of collectives. There are
two paths to operationalize the model in this paper. One
is to refine the model described in [2] to incorporate the
new factors and relationships predicted by the propositions
in this paper. The other is to collect data for a sample of
collectives and to estimate the parameters for a linear re-
gression model based on the propositions. For instance, the
Eclipse project makes statistics on the number of companies
contributing to its subprojects and their level of contribu-
tion publicly available.4 The diversity of use of Eclipse sub-
projects can be estimated from product announcements and
listings in the Eclipse marketplace. Another opportunity
for future work is to describe each of the propositions in the
form of a pattern or best practice. The short names given
to the propositions (for example, Early bird, or Many eyes)
are meant to suggest possible names for these practices.

6. REFERENCES
[1] C. Baldwin, and L. Clark. Architecture of

participation: does code architecture mitigate free
riding in the open source development model?.
Management Science, 52(7), 1116-1127, 2006.

[2] G. Böckle, P. Clements, J. McGregor, D. Muthig, and
K. Schmid. Calculating ROI for software product
lines. IEEE Software, 21(3), 23-31, 2004.

[3] S. Brown, and K. Eisenhardt. Product development:
Past research, present findings and future directions.
Academy of Management Review, 20(2), 343-378, 1995.

4Each of the Eclipse subprojects can be considered a collec-
tive in the sense described in this paper.

[4] J. Bosch. Design and Use of Software Architectures:
Adopting and Evolving a Product-Line Approach.
Addison-Wesley, 2000.

[5] J. Bosch. From software product lines to software
ecosystems. International Software Product Line
Conference, 111-119, 2009.

[6] F. Brooks. The Mythical Man Month. Addison Wesley,
1972.

[7] G. Chastek, J. McGregor, and L. Northrop.
Observations from viewing Eclipse as a product line.
Workshop on Open Source Software and Product
Lines, colocated with the International Software
Product Line Conference, 2007.

[8] P. Clements, and L. Northrop. Software Product
Lines: Patterns and Practices. Addison Wesley, 2002.

[9] P. Clements, J. McGregor, and S. Cohen. The
structured intuitive model for product line economics
(SIMPLE). Technical Report,
CMU/SEI-2005-TR-003, 2005.

[10] K. Crowston, K. Wei, J. Howison, and A. Wiggins.
Free/libre open source software development: What
we know and what we do not know. ACM Computing
Surveys, 44(2), 2012.

[11] K. Dahlin, L. Weingart, and P. Hinds. Team diversity
and information use. Academy of Management
Journal, 48(6), 1107-1123, 2005.

[12] Eclipse Foundation. Eclipse Development Process.
http://www.eclipse.org/projects/dev process/
development process 2010.php, 2010.

[13] L. Fleming, and D. Waguespack. Penguins, camels,
and other birds of a feather: Brokerage, boundary
spanning, and leadership in open innovation
communities. 2005-04, opensource.mit.edu, 2005.

[14] M. Granovetter. The strength of weak ties: A network
theory revisisted. Sociological Theory, 1, 201-233,
1983.

[15] J. Henkel. Selective revealing in open innovation
processes: The case of embedded Linux. Research
Policy, 35, 953-969, 2006.

[16] K. Herr, and G. Anderson. The Action Research
Dissertation. Sage, 2005.

[17] S. Jansen, A. Finkelstein, and S. Brinkkemper, A
sense of community: A research agenda for software
ecosystems. Companion of the 31st International
Conference on Software Engineering, 187-190, 2009.

[18] C. Jones, W. Hesterly, and S. Borgatti. A general
theory of network governance: Exchange conditions
and social mechanisms. Academy of Management
Review, 22(4), 911-945, 1997.

[19] C. Knüchel, M. Rudorfer, S. Voget, S. Eberle, R.
Sezestre, and A. Loyer. Artop – an ecosystem
approach for collaborative AUTOSAR tool
development. International Congress on Embedded
Real Time Software and Systems, 2010.

[20] K. Luther, L. Caine, K. Ziegler, and A. Bruckman.
Why it works (when it works): success factors in
online creative collaboration. International Conference
on Supporting Group Work, ACM, 1-10, 2010.

[21] J. Orton, and K. Weick. Loosely coupled systems: A
reconceptualization. Academy of Management Review,
15(2), 203-223, 1990.

[22] G. Pisano, and R. Verganti. Which kind of
collaboration is right for you? Harvard Business
Review, 86(12), 78–86, 2008.

[23] K. Pohl, G. Böckle, and F. van der Linden. Software
Product Line Engineering: Foundations, Principles,
and Techniques. Springer, 2005.

[24] D. Riehle. The economic case for open source
foundations. Computer, January, 86-90, 2010.

[25] M. Rudorfer, S. Voget, and S. Eberle. Artop
Whitepaper, Artop User Group,
https://www.artop.org/artop whitepaper.pdf, 2010.

[26] K. Schmid. An initial model of product line
economics. International Workshop on Product Family
Engineering, LNCS 2290, 38-50, Springer, 2001.

[27] SEI. Framework for Software Product Line Practice.
Version 5.0,
http://www.sei.cmu.edu/productlines/tools/framework,
last accessed in May 2011.

[28] D. Smith, and M. Milinkovich. Eclipse: A premier
open source community. Open Source Business
Resource, July, 2007, www.osbr.ca.

[29] S. Spaeth, M. Stuermer, and G. v. Krogh. Enabling
knowledge creation through outsiders: towards a push
model of open innovation. International Journal of
Technology Management, 52(3/4), 411-431, 2010.

[30] F. van der Linden. Applying open source softeware
principles in product lines. Upgrade, X(2), April,
32-40, 2009.

[31] J. van Gurp. OSS product family engineering.
International Workshop on Open Source Software and
Product Lines, colocated with the International
Software Product Line Conference, 2006.

[32] E. von Hippel, and G. v. Krogh. Open source software
and “private-collective” innovation model: Issues for
organization science. Organization Science, 14(2),
209-223, 2003.

[33] E. von Hippel. Horizontal innovation networks – by
and for users. Industrial and Corporate Change, 16(2),
293-315, 2007.

[34] J. West, and S. Gallagher. Challenges of open
innovation: the paradox of firm investment in
open-source software. R&D Management, 36(3),
319-331, 2006.

[35] M. Wasko, G. Sagers, and M. Dickey. Network
governance in open source software development
projects. Working Paper, Florida State University,
2010.

[36] M. Weiss. Performance of open source projects.
European Conference on Pattern Languages of
Programs, CEUR, 566, 2009.

[37] M. Weiss. Profiting from open source. European
Conference on Pattern Languages of Programs, 2010.

[38] M. Weiss. Control and diversity in company-led open
source projects. Open Source Business Resource,
April, 29-32, 2011, http://www.osbr.ca.

