
22	 IT Pro		September/October	2011	 P u b l i s h e d b y t h e I E E E C o m p u t e r S o c i e t y 	 1520-9202/11/$26.00 © 2011 IEEE

The FuTure oF Web Apps

Florian Daniel, University of Trento

Maristella Matera, Politecnico di Milano

Michael Weiss, Carleton University

Mashups have relatively simple, component-based development
paradigms, yet few end users develop their own applications. To help
turn end users into developers and innovators, the authors present
two mashup platforms for lightweight Web development practices
and discuss open challenges.

S
ince the beginning of the millennium,
the Web has evolved from a mere one-
way communication medium domi-
nated by developers and information

providers (Web 1.0) into a fully distributed and
democratic communication platform that equally
involves developers, information providers, and
consumers (Web 2.0). Many factors contributed
to this evolution, yet two clearly stand out: the
emergence of the service-oriented architecture
(SOA) and the success of social applications.
The former enabled unprecedented interoperability
among applications, and the latter, unprecedented
interoperability among people. As such, SOA rep-
resents a technological dimension, while social
applications represent a societal dimension. Both
dimensions will affect future Web applications.

Emerging technologies are already reshaping the
landscape of today’s Web development practices.

Cloud computing, with its elastic hardware re-
sources, is radically changing how developers
architect Web applications to cope with vary-
ing workloads. Software as a service (SaaS) is
changing how applications are distributed and
consumed, and HTML 5 (with its Web sockets)
is turning traditional client-server Web archi-
tectures into full-fledged, distributed program-
ming environments. Furthermore, increasingly
sophisticated mobile devices—smartphones and
tablet PCs—are making ubiquitous access
commonplace.

Similarly, societal changes are reshaping how
consumers act on the Web. Ten years ago, the
average Web user could barely navigate through
complex Web applications. Today, users actively
contribute to the Web’s success through user-
contributed content such as reviews, opinions
and ratings, tags, and status updates.

Next in Mashup
Development:
User-Created
Apps on the Web

itpro-13-05-Dan.indd 22 26/08/11 12:31 PM

	 computer.org/ITPro 	 2 3

Here, we discuss a particular set of techno-
logical and societal trends—Web mashups1 and
user innovation.2,3 Together, these lead to a novel
development paradigm in which end users and
developers co-develop applications. We expect
such support for end-user development to be
prominent in future Web development practices.
Mashup tools, or platforms that simplify mashup
development, are already common; they just typ-
ically fall short of adequate end-user support.

Toolkits for User Innovation
In a traditional design-build-evaluate product life
cycle, developers don’t collect user feedback un-
til after they’ve developed a prototype, at which
point changes are costly. In user-driven product
innovation, a company offers users an innovation
toolkit that lets them build their own products.2,3
The toolkit provides a constrained interface to
the capabilities of the company’s product plat-
form. In particular, it ensures that new products
are properly constructed.

An innovation toolkit aims to let the user carry
out the iterative experimentation needed to develop
a new product. Many users can work in paral-
lel on solving a problem, focusing on their own
need for a solution. They can create a solution that
closely meets their needs and can obtain feedback
quickly through their development experiments.
The company providing the toolkit doesn’t carry
the cost of failed experiments, but if an experiment
ends up adding significant value for users, the
company can integrate the user innovation back
into its core products. On the Web, this is similar
to Google monitoring use of its public APIs (such
as Google Maps and Google Search) and incorpo-
rating the best innovations to fine-tune the APIs.4

Opening services for integration in mashups
is thus a strategic choice that revolutionizes the
business model that for years has characterized
the Web and its applications. Rather than being
passive receivers of innovation, Web users can
become actively involved in the innovation pro-
cess. Their desire and ability to extend the func-
tionality of products they own—to realize their
ideas and express their creativity—can help drive
future mashups.

The Mashup Development Scenario
How mashups are developed depends on their
type. Current consumer mashups—for example,

mashups based on Google Maps—are mainly
clever hacks by expert developers. Enterprise
mashups, on the other hand, highlight much more
diverse development application scenarios and
are more interesting in terms of revealing under-
lying development practices and how traditional
development processes should evolve to cope
with the new paradigm.

We reviewed recent studies of such enterprise
mashups,5,6 noting the contributions of differ-
ent actors and their skill levels. We identified two
main scenarios, which differ in the heterogeneity
of services to be combined, the diversity of user
needs, and the sophistication of either the in-
volved actors or the tools supporting their work.

Figure 1a shows the first scenario, in which ex-
pert developers (such as IT programmers, service
providers, or sophisticated users) create mashups
centrally, exploiting ready-to-use internal or ex-
ternal resources to deliver applications quickly.
End users aren’t directly involved in constructing
such mashups, but they benefit from the shorter
turnaround time for new applications.

Figure 1b shows the second scenario, in which
the users create the mashups in a “distributed”
fashion, starting from a set of ready services.
Such services can be developed internally—
purposely created according to the final users’
needs—or achieved by wrapping public ser-
vices. In this scenario, users close to the appli-
cation domain construct the mashups to fulfill
a specific short-term, situational need.7 For ex-
ample, an enterprise manager might compose
his or her own dashboard. There’s a wide range
of corporate services (such as those that provide
access to enterprise information sources), Web
resources, and open services that, if integrated
together, would simplify the construction of ap-
plications for process and data analysis. These
mashup applications constitute the “long tail” of
applications and usually aren’t implemented in
the central development scenario,8 which means
that many users’ needs, though modest, aren’t
being met.

Mashup tools are already common;
they just typically fall short of
adequate end-user support.

itpro-13-05-Dan.indd 23 26/08/11 12:31 PM

24	 IT Pro September/October 2011

The Future of Web Apps

Creating a tool for this second scenario would
be challenging but could pay off significantly by
helping users combine services and data to create
their own mashups. An experiment conducted to
assess user experiences during a project that let
enterprise analysts and managers flexibly con-
struct dashboards revealed that this development
paradigm is effective and increases end-user
satisfaction.9

The two scenarios also differ in the degree of
control over the mashup’s quality. In the first sce-
nario, the IT department fully controls what kind
of mashup is being developed, ensuring the qual-
ity of those mashups. However, not all end users
need applications with stringent security, perfor-
mance, or reliability requirements; they might
want an application only for a specific purpose,
so a complex solution developed by the IT de-
partment would be too costly. Although the sec-
ond scenario doesn’t guarantee the quality of the
final applications, it allows for a greater flexibil-
ity with respect to the user needs and promotes
innovation.

Other researchers have similarly classified the
various roles in mashup development,8,10 distin-
guishing between three types of users: profes-
sional developers, consultants and sophisticated
users, and end users. These users work at dif-
ferent levels of complexity, using tools appropri-
ate for their level. Developers expose existing
enterprise applications and data sources through
APIs that provide the basic mashup components.
Consultants and sophisticated users combine
APIs into user interface widgets or API combi-
nations that can be reused as building blocks for
end-user mashups. Finally, end users configure
and use mashups and also create simple mashups.

Lightweight Development Processes
The life cycle of Web applications is typically
more dynamic than that of other classes of soft-
ware, because prototypes and a final application
must be developed in Internet time—that is, in
days or weeks instead of months or years. Ad-
ditionally, the possibility of logging usage data
for hundreds to millions of users leads to more

Figure 1. The two main mashup development scenarios. (a) Expert developers exploit mashup
tools “centrally” to deliver applications quickly. (b) Users exploit such tools to create mashups
in a “distributed” fashion, starting from a set of ready services. (The red arrows indicate when
the artifacts come into play during mashup development.)

Develops

Service Mashup tool Mash up

IT expert

Publishes Mashes up Uses

End user

Description

Architectures,
data sources, formats,
protocols, languages,
styles, layouts,
technologies...

Chooses Writes

Develops

Service Mashup tool Mash up

IT expert
Publishes Selects Mashes up Uses

End user

Description
Architectures,
data sources, formats,
protocols, languages,
styles, layouts,
technologies...

Chooses Writes

Service repository

Service repository

(a)

(b)

itpro-13-05-Dan.indd 24 26/08/11 12:31 PM

	 computer.org/ITPro 	 2 5

advanced testing and usability analyses. Finally,
once an application has been deployed, evolu-
tions and improvements are applied while the ap-
plication is actually online and in use. In other
words, the application undergoes continuous
online evolutions.

Development for the Web thus naturally spans
two main stages: the incremental development
of the application’s base version and its post-
deployment, incremental evolution. Such a devel-
opment process is oriented toward professional
programmers and big software projects and thus
goes well beyond the skills of average mashup
composers (see Figure 2a).

The ideal mashup development process should
reflect the innovation potential of mashups: to
compose an application, starting from given con-
tent and functionality that addresses personal
needs, and run it without worrying about what
happens behind the scenes. The prototype-centric
and iterative approach is accentuated: the com-
poser mashes up services and runs the result to
check whether it works. In case of unsatisfactory
results, the composer fixes the problems and runs
the mashup again. Given the situational nature of
mashup applications, the role of application stake-
holders must be put into perspective: requirements
indeed correspond to the (short-lived) needs of the
mashup composer. We summarize these consider-
ations in a lightweight development process model that
comprises three main activities (see Figure 2b).

Discovery and Selection
The mashup composer starts with an idea that
addresses personal needs and preferences and

then selects source services that can provide the
necessary data, application logic, or user inter-
faces. In most cases, these are open services
available on the Web.

Discovery and selection is a new life-cycle
activity for mashup applications. It precedes
mashup composition and implicitly incorporates
requirements analysis and specification, because
the idea itself is an informal expression of the
application requirements. The selected mashup
components represent these requirements in
terms of enabling services, proving the idea’s fea-
sibility and providing a draft of the final mash-
up’s organization.

Mashup Composition
Dedicated mashup platforms can help less-skilled
Web users visually compose the selected compo-
nents and set up the composite application’s inte-
gration logic and layout. The platforms must base
the integration logic on intuitive formalisms and
models, expressed in domain-specific languages,
which in most cases will be hidden behind graph-
ical modeling notations. The platforms can also
help with composition by recommending com-
patible services for improved mashup quality,11
presenting composition patterns that have been
successful in the past,12 or compiling or automati-
cally connecting services on the user’s behalf.9

Mashup composition simplifies traditional de-
sign and implementation activities by eliminat-
ing the need for cornerstone activities (such as
hypertext design) that have long characterized
the development of document-centric Web
applications. Deployment just requires saving the

Figure 2. Life-cycle models of (a) current Web applications and (b) mashups. The mashup model assumes
availability of a dedicated mashup platform and toolkit, along with a set of open Web services that support
features and available data.

Implementation

Testing and
evaluation

Requirements
analysis Design

Usage and
maintenance

Offline prototype

Online Web
application

Business requirements

Dismissal

Deployment

Discovery and
selection

Mashup
composition

Usage and
maintenance

Online mashup
application

Dismissal

Mashup idea

Evolution
Evolution Deployment

(a) (b)

itpro-13-05-Dan.indd 25 26/08/11 12:31 PM

26	 IT Pro September/October 2011

The Future of Web Apps

mashup application on a server for the hosted
execution (a one-click activity).

Usage and Maintenance
Once composed, the mashup must be immedi-
ately executable online. Note that to eliminate
the deployment task, which would be beyond
most end users’ capabilities, the mashup plat-
forms must support hosted solutions for both de-
velopment and execution (which is already partly
in practice). Consequently, we view mashups as
applications whose life cycle naturally starts from
the deployment point in Figure 2a and whose
development occurs via incremental evolutions.
Indeed, once saved, mashups are immediately
online, so there aren’t any incremental develop-
ment cycles.

After deployment, the mashup composer
shares application maintenance with the plat-
form provider: the composer fixes problems in
the composition logic, while the provider fixes
problems in components and the hosted execu-
tion environment.

The mashup usage and maintenance phase
incorporates the traditional test-and-evaluation
tasks. By running the mashup, the composer can
easily check whether the application works and
satisfies his or her needs, while at the same time
collecting feedback from other users. Applica-
tion evolution then requires simply starting the
mashup process anew (from service discovery
and selection).

Mashup Tools
So how do we enable even less-skilled Web us-
ers to develop their own mashups? A mashup
composer can always use a conventional pro-
gramming language to mash up the components
of his or her choice. Given the heterogeneity of
components, programming languages, and in-
teraction protocols, and the complexity of the
necessary integration logic, only highly skilled

programmers can manually develop mashups—
and even they might have a hard time mastering
all the development challenges. Service compo-
sition approaches (such as those using BPEL,
the Business Process Execution Language) can’t
cope with the heterogeneity of technologies and
are still rather complex.

In line with the end-user development vision,
enabling a larger class of users (not just skilled
developers) to compose their own mashups
and innovate requires the availability of intui-
tive development tools and a high level of assis-
tance.13 There’s a considerable body of research on
mashup tools (mashup makers), typically featuring
easy-to-use GUIs and drag-and-drop paradigms
for combining mashup components. However,
such tools are suited only for certain develop-
ment tasks and often don’t provide the integrated
development paradigms, instruments, and lan-
guages necessary for helping nonprogrammers
integrate heterogeneous components. For exam-
ple, Yahoo Pipes (http://pipes.yahoo.com) focuses
on data integration via RSS or Atom feeds and
offers a data-flow composition language, but it
doesn’t support the integration of user interfaces.
Furthermore, very few tools support integration
at all three layers characterizing Web applica-
tions: the data, application, and presentation
(user interface) logics.

Defining environments based on lightweight
development processes is the object of our re-
search on the agile, mashup-based development
of Web applications.14 Our work concentrates
on identifying abstractions and composition
paradigms that can hide the technical details of
the composition logics, thus easing mashup de-
velopment. We’ve developed two mashup plat-
forms, accommodating different development
scenarios.

MashArt
MashArt offers a universal integration approach
for handling components as varied as simple RSS
feeds, SOAP or RESTful Web services, and user
interface components.15 It addresses develop-
ment scenarios in which IT experts need easy-to-
use tools to quickly produce mashups. As Figure 3
shows, mashup development uses a hosted, Ajax-
based visual editor for graph-based composition.
Mashup composers “draw” their mashup logic by
specifying event and data flows among mashup

Enabling a larger class of users
to compose their own mashups
and innovate requires intuitive
development tools.

itpro-13-05-Dan.indd 26 26/08/11 12:31 PM

	 computer.org/ITPro 	 2 7

components: event-operation couplings syn-
chronize user interfaces, while data flows enable
service orchestration. The mashArt integration
platform hosts mashup specifications and inter-
prets them during mashup execution.

Given its modeling approach, which lets users
fine-tune components and services, mashArt is
probably more suited to assist the IT department
in the first development scenario we presented
(Figure 1a).

DashMash
Based on the same event-driven mashup para-
digm for composing user interfaces,14 the Dash-
Mash tool provides a sandbox environment,9

where inexperienced users can easily define
mashups through an intuitive drag-and-drop
development paradigm. As Figure 4 shows,
users select components from a visual menu
and move them into a composition canvas.
DashMash instantly interprets composition ac-
tions and executes the resulting mashup in a
WYSIWYG (what you see is what you get) style.
The tool guides the composition task in multi
ple ways. The composition engine creates
default bindings between components, using
compatibility rules automatically inferred from

component descriptors. The same compatibil-
ity rules also suggest additional bindings, which
users can define through a form-based mecha-
nism that abstracts from technical details (see
Figure 4).

DashMash steps into our second scenario
(from Figure 1b), hiding the underlying model
and proposing direct visual feedback to its users.

O ver the last few years, research on
mashups has concentrated on enabling
technologies, languages, and proto-

cols. However, to effectively turn end users into
developers and enable user innovation, we need
to devote more effort to less technology-specific
research challenges. For example, we need the
following:

•	 intelligible composition paradigms: mashup tools
must abstract from technical details, lever-
aging models that hide the complexity of the
technology heterogeneity characterizing the
plethora of resources available for mashup and
for composition logics;

•	 domain-specific platforms: for users to fully un-
derstand the possibilities of a mashup platform,

Figure 3. MashArt fosters universal compositions to address development scenarios in which IT
experts need easy-to-use tools to quickly produce mashups. The two screenshots show the design
and resulting mashup of a business compliance management application.

List of
components

available for the
mashup. Additional

components can
easily be loaded

into the editor by
referencing the

respective online
resource.

Mashup logic modeling
canvas

Tabs that let the designer
switch between different

views (such as composition logic
vs. layout) on the composite

application under
development.

The mashup application running
in a standard Web browser.

Deployment

UI componentService component Data flow connector

itpro-13-05-Dan.indd 27 26/08/11 12:31 PM

28	 IT Pro September/October 2011

The Future of Web Apps

we must tailor the platforms to well-defined
domains familiar to the users—so the tools
“speak the language of the user”;

•	 assisted composition: we need automatic recom-
mendations on mashup quality11 and knowl-
edge reuse12 to teach users how to “speak the
tool’s language” and develop applications.

Only the right coupling of technical solutions
with effective end-user development para-
digms will turn user innovation into practice,
yielding novel, lightweight Web development
practices.�

References
	 1.	 J. Yu et al., “Understanding Mashup Develop-

ment,” IEEE Internet Computing, vol. 12, no. 5, 2008,
pp. 44–52.

	 2.	 S. Thomke and E. von Hippel, “Customers as Inno-
vators: A New Way to Create Value,” Harvard Business
Rev., vol. 80, no. 4, 2002, pp. 74–81.

	 3.	 M. Weiss and G.R. Gangadharan, “Modeling the
Mashup Ecosystem: Structure and Growth,” R&D
Management, vol. 40, no. 1, 2010, pp. 40–49.

	 4.	 B. Iyer and T.H. Davenport, “Reverse Engineering
Google’s Innovation Machine,” Harvard Business Rev.,
vol. 86, no. 4, 2008, pp. 58–69.

	 5.	 A. Jhingran, “Enterprise Information Mashups: In-
tegrating Information, Simply,” Proc. 32nd Int’l Conf.
Very Large Databases (VLDB 06), ACM Press, 2006,
pp. 3–4.

	 6.	 M. Ogrinz, Mashup Patterns: Designs and Examples for
the Modern Enterprise, Addison-Wesley, 2009.

	 7.	 S. Balasubramaniam et al., “Situated Software: Con-
cepts, Motivation, Technology, and the Future,” IEEE
Software, vol. 25, no. 6, 2008, pp. 50–55.

	 8.	 T. Janner et al., “Patterns for Enterprise Mash-
ups in B2B Collaborations to Foster Lightweight
Composition and End User Development,” Proc. IEEE
Int’l Conf. Web Services (ICWS 09), IEEE CS Press,
2009, pp. 976–983.

	 9.	 C. Cappiello et al., “Enabling End User Develop-
ment through Mashups: Requirements, Abstractions
and Innovation Toolkits,” Proc. 3rd Int’l Symp. End-
User Development (IS-EUD 11), LNCS 6654, Springer,
2011, pp. 9–24.

	10.	 T. Gamble and R. Gamble, “Monoliths to Mashups:
Increasing Opportunistic Assets,” IEEE Software,
Nov./Dec. 2008, pp. 71–79.

Figure 4. DashMash supports inexperienced end users by offering a sandbox environment characterized by
default bindings and visual mechanisms for component synchronization. The screenshot shows the mashup
of sentiment-analysis dashboards, which provide company analysts with indicators that summarize user
opinions about entities of interest extracted from the Web.

Menu showing the list of available
components. Users can include

components into the mashup by simply
dragging and dropping them into a

workspace.

Once a component is added to the
composition, the workspace

immediately displays the resulting
mashup. The embedded components
are synchronized according to some

“default bindings.”

The users can enrich the default synchronization behavior and define
further “event-operation” couplings. Easy-to-use forms also provide

suggestions about possible combinations whenever a new component
(a pie-chart viewer in this case) is added into a workspace.

itpro-13-05-Dan.indd 28 26/08/11 12:31 PM

	 computer.org/ITPro 	 2 9

	11.	 M. Picozzi et al., “Quality-Based Recommendations
for Mashup Composition,” ComposableWeb 2010,
LNCS 6385, Springer, 2010, pp. 360–371.

	12.	 S. Roy Chowdhury et al., “Wisdom-Aware Comput-
ing: On the Interactive Recommendation of Com-
position Knowledge,” Proc. 6th Int’l Conf. Eng. Service-
Oriented Applications (WESOA 10), LNCS 6568,
Springer 2010, pp. 144–155.

	13.	 M. Burnett, C. Cook, and G. Rothermel, “End-User
Software Engineering,” Comm. ACM, vol. 47, no. 9,
2004, pp. 53–58.

	14.	 J. Yu et al., “A Framework for Rapid Integration of
Presentation Components,” Proc. 16th Int’l World Wide
Web Conf. (WWW 07), 2007, pp. 923–932; www2007.
org/papers/paper468.pdf.

	15.	 F. Daniel et al., “Hosted Universal Composition:
Models, Languages and Infrastructure in mashArt,”
Conceptual Modeling—ER 2009, LNCS 5829, Springer,
2009, pp. 428–443.

Florian Daniel is a postdoctoral researcher at the Uni-
versity of Trento, Italy. His main research interests are
mashups and user interface composition approaches for

the Web, Web engineering, and quality and privacy
in business intelligence applications. Daniel received
his PhD in information technology from Politecnico di
Milano, Italy. Contact him at daniel@disi.unitn.it or www.
floriandaniel.it.

Maristella Matera is an associate professor at Politecnico
di Milano. Her current research interests span Web mash-
ups, Web engineering models and design methods, quality
in Web engineering, Web adaptivity, and context aware-
ness. Matera received her PhD in information technology
from Politecnico di Milano, Italy. Contact her at matera@
elet.polimi.it or http://home.dei.polimi.it/matera.

Michael Weiss is an associate professor in the Depart-
ment of Systems and Computer Engineering at Carleton
University in Ottawa and teaches in the Technology
Innovation Management program. His research interests
include open source, ecosystems, mashups, patterns, and
social network analysis. Weiss received his PhD in com-
puter science from the University of Mannheim, Germany.
Contact him at weiss@sce.carleton.ca or www.sce.carleton.
ca/faculty/weiss.

How well do you know the software development process?

Rise to the challenge by taking the CSDA or CSDP Examination.

With more and more employers seeking credential holders,

it’s a great time to add this unique credential to your resume.

WWW.COMPUTER.ORG/GETCERTIFIED

Think You Know Software?

PROVE IT!

ertified

oftware

evelopme
nt

rofession
al

itpro-13-05-Dan.indd 29 26/08/11 12:31 PM

