Course: 94587 Assignment 1

The Simulation of Simple Local Traffic Control System

by

Jidong Cao (student #: 350637) and
Xuebing Qing (student #: 3037225)

Part I The Conceptual Model

A simple local traffic control system is simulated in this assignment. As shown in Figure 1, only the traffic control at one intersection, or a Unit Local Traffic Control System, is observed at this time. Physically, the Unit Local Traffic Control System is composed of four traffic lights, each of which controls the traffic in one direction respectively. The purpose of this simulation is to use CD++ to reproduce the behaviors of a local traffic control system, and to identify the factors that affect the throughput of the local traffic system as well as the potential defects of it that may cause vehicle collisions.

[image: image1.wmf]Traffic Light

Figure 1 Simple Local Traffic Control System (One Intersection)
As part of the conceptual definition of the system, we make the following assumptions that can serve as the boundary conditions of the system, which further form the so-called experimental frame of the Unit Local Traffic Control System:

1. Only traffic in four directions is considered; right-turn and left-turn traffic is not observed at this time.

2. The traffic in each direction has at least one lane respectively.

3. The length of each lane is unlimited, i.e. each lane is capable of accommodating unlimited number of vehicles at a given time.

4. On the contrary, the capacity of the intersection area is limited; the maximum number of vehicles it accommodates is constant and defined when the system is built.

5. Red-light-overlapping for any two intersectant directions is considered. The red-light-overlapping happens when the traffic light in one of the intersectant directions becomes red from yellow while the one in the other of the intersectant directions is red and turning into green. We call the time period in which the both lights are red as Red-light-overlapping time.

6. Each vehicle in traffic does not change lane at any given time.

7. A vehicle moving to a given direction never enters the intersection area if the traffic light for that direction is red.

8. A vehicle moving to a given direction enters the intersection area if and only if the traffic light for that direction is red or yellow.

9. No vehicle stops in the intersection area at any given time.

10. Each vehicle in traffic uses the same amount of time to pass through the intersection area. The time for one vehicle to pass can be obtained by observing the average passing time of all vehicles.

11. Except traffic lights, there are no other traffic control methods considered in the system.

12. No pedestrian and pedestrian control are involved in the system at this time.

The Model Structure

According to the place where functions are achieved, we have system structure as depicted in Figure 2.

1. Lights Group Controller

This component is responsible to control one-group lights, each for every direction.

It communicates with another group controller to synchronize them, and outputs same signals to the two lights belonging to this group. Its state includes RED, YELLOW and GREEN.

2. Traffic Light

This component represents the physical traffic light for a unidirectional traffic, which controls one or more lanes. Its state is controlled by “Traffic Light Controller” component.

2.1
Traffic Light Controller

This component receives signals from group controller, turns on only one of its three lights according to the signal, and output enable/disable signal to all lanes controlled by this light. Its state includes RED, YELLOW and GREEN.

2.2
Lights

This component represents the red, yellow and green lights belong to one traffic light, each light has ON and OFF state.

2.3
Lane

This component represents one lane and the area of intersection through which the traffic of that lane pass. It’s stateless.

2.3.1
Lane Queue

This component stores all cars in the specified lane, waiting to pass through the intersection, it can contain zero or more cars, and the number of cars in it specifies its state.

2.3.2
Intersection

This component represents the intersection area where car traffic passed through. It has status of ENABLED, DISABLED.

2.3.2.1 Intersection Queue

This component contains the cars passing the intersection; it has limited capacity, usually 1-2, which is specified by the length of the real intersection. Its state is the number of cars within it.

2.3.2.2 Intersection Controller
This component is responsible to control each car passing through the intersection, it has state of IDLE and BUSY. At this time, this component does very simple work – just for go straight traffic. If left turn, right turn or pedestrian are supported in the future, this component will check status of some other controller components before passing through the intersection.

[image: image2.wmf]

Traffice Light System

Traffic Light

Controller

lan queue

Lane

Intersection

queue

Intersection

co

ntroller

lan queue

Lane

Intersection

queue

Intersection

controller

Traffic Light A

Traffic Light B

signal B

Traffic Light C

signal C

Traffic Light D

signal D

Lights Group

Control

Lights Group

Control

signal A

lights B

lights A

lights D

lights D

Traffic

in of

light A

traffic out

traffic out

traffic out

traffic out

Traffic

in of

light B

Traffic

in of

light C

Traffic

in of

light D

standby

standby

on/off

enable/

disable

Light

Figure 2 Traffic Light System Structure

[image: image3.wmf]stop_in

block

in

out

out

next

done

stop_out

out

in

next

block

in

done

stop_out

busy

out

stop_in

car_out

leaved

entered

throughput

signal

stop

curQueue

Length

aveQueue

Length

in

block

intersection

_queue_a

intersection_

controller_a

lane_

queue_a

gen_a

collector_a

next

lane_a

ave_length_a

intersection_a

light_

controller_a

in

out

light

traffic_light_a

throughput_a

cur_length_a

light

light_

group_ab

light_

group_cd

signal

standby_out

standby_in

standby_out

standby_in

standby_in

traffic_light_b

traffic_light_c

traffic_light_d

signal (to

traffic_light_b)

signal (to

traffic_light_c)

signal (to

traffic_light_d)

lights

lights

top

light_a

car_in

Figure 3 Component Structure

Part II
The Formal Specifications for Models

2.1 Model Specifications

The component structure of Unit Local Traffic Control System is shown in Figure 3. We describe the specifications of models here one by one. First, the top model, or the specifications of local traffic control is represented; then, the specifications of secondary models are depicted. Finally, atomic models are described.

2.1.1 Local Traffic Control Model

This is the top coupled model and its formal specification is:

Local_Traffic_Control_Model = <X, Y, {Light_Group_ AB, Light_Group_ CD, Traffic_Light_A, Traffic_Light_B, Traffic_Light_C, Traffic_Light_D}, EIC, EOC, IC, SELECT>

· X=
[image: image4.wmf]f

· Y={throughput_A, cur_length_A, ave_length_A, light_A, throughput_B, cur_length_B, ave_length_B,light_B, throughput_C, cur_length_C, ave_length_C,light_C, throughput_D, cur_length_D, ave_length_D, light_D}, where throughput_X is the throughput of all lanes in the direction X, cur_length_X is the current length in the direction X and ave_length_X is the average length of the traffic in the direction X.
· EIC=
[image: image5.wmf]f

· EOC={(Traffic_Light_A.throughput, throughput_A),(Traffic_Light_A.curqueuelength, cur_length_A),(Traffic_Light_A.avequeuelength,ave_length_A),(Traffic_Light_A.light, light_A), (Traffic_Light_B.throughput, throughput_B),(Traffic_Light_B.curqueuelength, cur_length_B),(Traffic_Light_B.avequeuelength,ave_length_B), (Traffic_Light_B.light, light_B), (Traffic_Light_C.throughput, throughput_C),(Traffic_Light_C.curqueuelength, cur_length_C),(Traffic_Light_A.avequeuelength,ave_length_C), (Traffic_Light_C.light, light_C), (Traffic_Light_D.throughput, throughput_D),(Traffic_Light_D.curqueuelength, cur_length_D),(Traffic_Light_D.avequeuelength,ave_length_D), (Traffic_Light_D.light, light_D) }

· IC={(Light_Group_ AB.lights, Traffic_Light_A.signal), (Light_Group_ AB.lights, Traffic_Light_B.signal), (Light_Group_ CD.lights, Traffic_Ligh _C.signal), (Light_Group_ CD.lights, Traffic_Light _D.signal),

(Light_Group_ AB.standby_out, Light_Group_ CD.standby_in),

(Light_Group_ CD.standby_out, Light_Group_ AB.standby_in)}

· SELECT:

({Light_Group_ AB, Traffic_Light_A})= Light_Group_ AB

({Light_Group_ AB, Traffic_Light_B})= Light_Group_ AB

({Light_Group_ CD, Traffic_Light_C})= Light_Group_ CD

({Light_Group_ CD, Traffic_Light_D})= Light_Group_ CD

2.1.2 Traffic Light Model

We have totally four instances of Traffic Light Model, namely, Traffic_Light_A, Traffic_Light_B, Traffic_Light_C and Traffic_Light_D. We give the formal specifications of Traffic Light Model as following:

Traffic_Light = <X,Y, {{LANEi},Traffic_Collector, Light_Ctrller}, EIC, EOC, IC, SELECT>, where {LANEi} represents a collection of LANE, and 1
[image: image6.wmf]£

 i
[image: image7.wmf]£

num_Lanes

· X={signal}

· Y={throughput, cur_length, ave_length, light}

· EIC={(signal,Light_Ctrller.in)}

· EOC={(Traffic_Collector.throughput,throughput), (Traffic_Collector.curqueuelength.cur_lengh), (Traffic_Collector.avequeuelength,ave_length), (Light_Ctrller.light, light)}

· IC={ (Light_Ctrller.out, LANE1. signal),…, (Light_Ctrller.out, LANEi.signal), …,(Light_Ctrller.out, LANEn.signal),(LANE1.car_out,Traffic_Collector.leaved),…, (LANEi.car_out,Traffic_Collector.leaved),…,(LANEn.car_out,Traffic_Collector.leaved), (LANE1.car_in,Traffic_Collector.entered),…, (LANEi.car_in,Traffic_Collector.entered),…,(LANEn.car_in,Traffic_Collector.entered), (Traffic_Light_Ctrller.out,Light.in) }, where 1
[image: image8.wmf]£

 i
[image: image9.wmf]£

num_Lanes and n is the number of lanes.

· SELECT:

({LANEi, Traffic_Collector})= LANEi
({Light_Ctrller,LANEi, Traffic_Collector})= Light_Ctrller
2.1.3 Lane Model

Lane is also a coupled model and represented as following:

Lane= <X, Y, {Gen, Lane_queue, Intersection}, EIC, EOC, IC, SELECT>

· X={in_signal}

· Y={car_out, car_in}

· EIC={(signal,Intersection.stop)}

· EOC={(Intersection.out, car_out), (Gen.out,car_in)}

· IC={(Gen.out,Lane_queue.in),(Lane_queue.out,Intersection.in),(Intersection.next,Lane_queue.done),(Intersection.block,Lane_queue.stop_out)}

· SELECT=:

({Gen, Lane_queue, Intersection})=Gen

 ({Lane_queue, Intersection})=Intersection

2.1.4 Intersection Model

The specifications of Intersection model is:

Intersection = <X, Y, {Intersection_queue, Intersection_Ctrller}, EIC, EOC, IC, SELECT>

· X={in, stop}
· Y={next, block,car_out}
· EIC={(in, Intersection_queue.in), (stop, Intersection_queue.stop_in)}
· EOC={(Intersection_queue.next, next), (Intersection_queue.block, block),(Intersection_Ctrller.out, car_out)}
· IC={(Intersection_queue.out,Intersection_Ctrller.in),(Intersection_Ctrller.busy,Intersection_queue.stop_out),(Intersection_Ctrller.out, Intersection_queue.done)}
· SELECT:
({Intersection_queue,Intersection_Ctrller)}= Intersection_queue

Starting from the next sub-section, we give the specifications for each of the atomic models.

2.1.5 Lights Group Control Model

The specifications of Light Group or Light Group Control is:

Lights_Group_Ctrl=<S,X,Y,
[image: image10.wmf]int

d

,
[image: image11.wmf]ext

d

,
[image: image12.wmf]l

, ta>

· X={standby_in}, where standby_in means red_overlapping
· Y={standby_out,lights
[image: image13.wmf]Î

{Green, Yellow, Red}}

· S={light_state
[image: image14.wmf]Î

{Green, Yellow, Red_Overlapping(stand_by), Red}}
· Ta(Red)=INFINITY
· Ta(Green)=green_light_ time
· Ta(Yellow)=yellow_light_time
· Ta(Red_Overlapping) = red_overlapping_time
·
[image: image15.wmf]int

d

(light_state,e)

{

// pseudo code

 switch(light_state)

 {

case GREEN:

set current_state as YELLOW;

phase = active;

sigma = yellow_time;

break;

case YELLOW:

set current_state as RED;

phase = passive;

break;

case STANDBY:

set current_state as GREEN;

phase = active;

sigma = green_time;

break;

case RED:

throw an exception;

break; }

}

·
[image: image16.wmf]ext

d

 (light_state,e, x(type: activate))

{

//pseudo code

 if(current_state is not RED)

 {

 // the states of two set of lights are not synchronized correctly.

 Throw an exception;

 return;

 }

 set current_state as STANDBY(red overlapping);

 Hold in “active” for standby_time time;

}

·
[image: image17.wmf]l

(light_state)

{

// pseudo code:

switch(current_state)

{

 case GREEN:

output YELLOW at lights port;

break;

case YELLOW:

output RED at lights port;

output RED at standby_out port;

break;

case STANDBY:

output GREEN at lights port;

break;

case RED:

throw an exception;

break;

}

}

2.1.6 Traffic Generator Model

The model Gen from CD++ package is reused.

2.1.7 Traffic Collector Model

Collector=<S, X, Y,
[image: image18.wmf]int

d

,
[image: image19.wmf]ext

d

,
[image: image20.wmf]l

, ta>

· X= {leaving_vehicle, entering vehicle}
· Y={throughput, curqueuelength, avequeuelength}

· S={{phase, sigma}}

· Ta(PASSIVE)=INFINITY
· Ta(ACTIVE)=sample_frequency
·
[image: image21.wmf]int

d

(e)

{

// pseudo code

hold in active state for frequency time.

}

·
[image: image22.wmf]ext

d

 (e)

{

// pseudo code

if(the state is passive)

{

hold In active for frequence time;

}

else // if(the state is active)

{

if(the event is from entered port)

{

enterCount++;

}

else // if(the event is from leaved port)

{

leaveCount++;

}

hold In the active state for the rest of the period (sigma);

}

}

·
[image: image23.wmf]l

(s)

2.1.8 Traffic Light Controller Model

Light_Ctrller=<S,X,Y,
[image: image24.wmf]int

d

,
[image: image25.wmf]ext

d

,
[image: image26.wmf]l

, ta>

· X= { signal
[image: image27.wmf]Î

{Red, Green, Yellow}}
· Y={out
[image: image28.wmf]Î

{enable, disable}, light
[image: image29.wmf]Î

{Red, Green, Yellow}}
· S={light_ctrller_state
[image: image30.wmf]Î

{red, green, yellow}, sigma, phase}
· Ta(red)=INFINITY (passive)
· Ta(green)=INFINITY (passive)
· Ta(yellow)=INFINITY (passive)
· Ta(active) = 0;
·
[image: image31.wmf]int

d

(e)

{

if (current_state is RED and requested state is GREEN)

{

set current_state with requested state;

passivate();

}

else if(current_state is GREEN and requested state is YELLOW)

{

set current_state with requested state;

passivate();

}

else if(current_state is YELLOW and requested state is RED)

{

set current_state with requested state;

passivate();

}

else

{

exception;

}}

·
[image: image32.wmf]ext

d

 (e)

{

//pseudo code

get the requested state;

hold in the active state for a short preparing time;

}

·
[image: image33.wmf]l

(s)

{

//pseudo code

if (current_state is RED && the requested state is GREEN)

{

Output GREEN at light port;

Output 0 at out port; // non-stop

}

else if(current_state is GREEN && the requested state is YELLOW)

{

Output YELLOW at light port;

}

else if(current_state is YELLOW && the requested state is RED)

{

Output RED at light port;

Output 1 at out port; // stop the traffic!

}

else

{

exception;

}

}

2.1.9 Lane Queue Model

Lane_Queue=<S, X, Y,
[image: image34.wmf]int

d

,
[image: image35.wmf]ext

d

,
[image: image36.wmf]l

, ta>

· X= { vehicle_in
[image: image37.wmf]Î

<vehicle_id>, block(stop_out), done, stop_in}
· Y={next, block, vehicle_out}
· S={{phase, sigma, vehicle_queue, vehicle}}
·
[image: image38.wmf]int

d

(vehicle_queue, vehicle, e)

·
[image: image39.wmf]ext

d

 (vehicle_queue, vehicle, e, x(type:vehicle, stop_out))

The simplified and non-completed description of the internal the external functions is shown in Figure 4.

[image: image40.wmf]input_enabled,

output_enabled,

passive

input_disabled,

output_enabled,

passive

input_disabled,

output_disabled,

passive

input_enabled,

output_disabled,

passive

input_disabled,

output_disabled,

active

input_enabled,

output_disabled,

active

input_disabled,

output_enabled,

active

input_enabled,

output_enabled,

active

input_disabled,

output_enabled,

passive

?stop_out

?stop_in=0

?stop_in=1

! xxx

?stop_in=0

?done

?done/

?stop_out=1

Figure 4 State-based Diagram for Lane Queue and Intersection Queue

2.1.10 Intersection Queue Model

Queue=<S, X, Y,
[image: image41.wmf]int

d

,
[image: image42.wmf]ext

d

,
[image: image43.wmf]l

, ta>

· X= { vehicle_in
[image: image44.wmf]Î

<vehicle_id>, block(stop_out), done, stop_in}
· Y={next, block, vehicle_out}
· S={{phase, sigma, vehicle_queue, vehicle}}
·
[image: image45.wmf]int

d

(vehicle_queue, vehicle, e)

·
[image: image46.wmf]ext

d

 (vehicle_queue, vehicle, e, x(type:vehicle, stop_out))

The description of the internal the external functions is shown in Figure 4.

2.1.11 Intersection Controller Model

Intersection_Ctrller=<S, X, Y,
[image: image47.wmf]int

d

,
[image: image48.wmf]ext

d

,
[image: image49.wmf]l

, ta>
· X= {traffic_in}
· Y={busy(the intersection is full),traffic_out}
· S={{phase, sigma, action
[image: image50.wmf]Î

{busy, outputing}}}
·
[image: image51.wmf]int

d

(action, e)

{

 // pseudo code

if(the controller is BUSYING)

{

clear BUSYING state;

set the state as OUTPUTING; // we gonna output the input vehicle.

Hold In active state for a period of time; // now it is 0

}

else if(the controller is OUTPUTING)

{

clear the state;

passivate();

}

else

{

report error;

passivate();

}

}

·
[image: image52.wmf]ext

d

 (e, x(type: traffic_in))

{

// pseudo code

if(the state is passive)

{

// we gonna be busy

action |= BUSYING;

hold in the state for responseTime time;

set the serviceTime;

}

else

{

// now busy

discard any input; // for the lane queue is supposed to be blocked.

}

}

·
[image: image53.wmf]l

(s)

{

// pseudo code

if(action & BUSYING)

{

Output busy info at busy_port;

}

else if(action & OUTPUTING)

{

Output an out at out_port.

}

else

{

report error;

}

}

2.2 Testing Strategies

Three-stage-testing strategy is used: unit test for atomic models, unit test for simple coupled model and the integration test for the system.

For each atomic model, we perform unit test to check its correctness and robustness. The test cases for correctness or conformance testing are created in accordance with the experimental frames that are derived from the stated assumptions in Part I. Obviously, the test cases for robustness testing are created so as to feed invalid data for a specific unit (atomic model) and make sure this unit can still run without any uncaught exceptions. However, because some atomic models’ features depends on other models’ output data, the testing for these features is deferred and performed in the coupled model testing.

The conformance and robustness test cases for atomic models are expanded and reused in coupled model, as well as integration testing. All of them cover the conformance and robustness testing in the coupled and integration level, respectively.

2.2.1 Traffic Generator Model

The generator model in CD++ is reused in our system and hence it is not necessary to perform any unit test with it.

2.2.2 Light Group Control Model

Test Case #: 1

The purpose of this model is to output correct, at least non-harmful signals to the traffic that it controls all the time. For example, outputting green light signal when the model is in the passive state is obviously harmful and unacceptable for the local traffic control system.

The following has been tested:

· The model outputs the green light signal when there is a standby signal input with the value of 1.

· The model outputs the green, yellow, red signal based on the predefined time schedule when it is active.

· The model outputs the standby control signal to its counterpart when it changes from the state of Red_overlapping to Red.

2.2.3 Lights Group A-B and C-D

Test Case #: 1

Because of the importance of the two models, and the likelihood of deadlock between them, we put them together and do the unit test for a certain period of time. The expected output signals produced from them are:

· Either of the model performs correctly in accordance with the predefined time schedule for Green, Yellow, red overlapping and red.

· When one of the two models is in the state of either green or yellow, another must be red.

The test cases stated in 2.2.2 are reused here.

2.2.4 Traffic Collector Model

Test Case #: 7

We have tested:

· The model receives one vehicle at the entered port and increases the current length counter by 1.

· The model receives one vehicle at the leaved port and decreases the current length counter by 1.

· The model outputs throughput, current length and average length correctly.

Please note that in this test case, we use two generators to feed the entered and leaved port of the collector model respectively, because two generator’s rate is different and Poisson function is used, for a certain period of time, the feed rate for the leaved port is great then the one for the entered port, the current length is negative for that time period. Actually, this is how the generic collector works.

2.2.5 Traffic Light Controller Model

Test Case #: 2

For the conformance testing, we need test:

· The model receives a light signal and output a proper control signal to Lane model (either enabled (non-stop) or disabled (stop)).

· The model receives a light signal and output a proper light control signal to Light model timely (red, green and yellow).

For the robustness testing, we need test:

· The model receives invalid light signals and ignores it; it prints an error message too.

2.2.6 Lane Queue Model

Test Case #: 3,4

We have tested:

· The model stop outputting vehicles whenever the traffic control signal is disabled (the intersection may be full or not).

· The model stop outputting vehicles when the traffic control signal is enabled while the intersection is full.

· The model can accommodate any number of vehicles without outputting vehicles, when either the traffic control signal is disable or the intersection is full.

· The model output vehicles based on the proper time schedule, i.e. each vehicle stays the same amount of time before leaving the lane queue.

· Test the above against unlimited-length queue and limited-length queue respectively.

2.2.7 Intersection Queue Model

Test Case #: 5

We have tested:

· The model stop inputting vehicles when the traffic control signal is disabled.

· The model keeps outputting vehicles no matter what the traffic control signal is(enabled or disabled) until the queue becomes empty.

· The model can only accommodate a predefined number of vehicles (e.g. 2), which indicates the capacity of the intersection.

· The model output vehicles based on the proper time schedule, i.e. each vehicle stays the same amount of time before leaving the queue.

2.2.8 Intersection Controller Model

Test Case #: 6

We have tested:

· The model outputs vehicles immediately.

2.2.9 Intersection Model

Test Case #: 5,6,8

This is a coupled model, which is composed of the intersection queue model and the intersection controller model. The test cases for the intersection queue and controller model are combined and reused, i.e. the test cases (conformance and robustness) concerning about in_traffic (vehicles), “intersection full feedback” signal in the intersection queue model, and those about control signal in the intersection controller model. Please refer to 2.2.7 and 2.2.8 for detail.

2.2.10 Lane Model

Test Case #: 9

The lane model is composed of the lance queue, the intersection queue and the intersection controller model. The test cases are mainly combined from the test cases of the lane queue model and the intersection model. That is to say, the test cases for the lane queue model which are concerning about the in_traffic(vehicles) and the test cases for the intersection controller which are concerning about the traffic control signal are put together.

2.2.11 Traffic Light Model

Test Case #: 10

The traffic generator model, traffic light controller and several instances of lane models are combined to perform the testing. Hence, it can be considered as a small integration test.

We have tested:

· The model stops the traffic when the traffic control signal is red; the light output should be red.

· The model moves the traffic when traffic control signal is green or yellow; the light output should be green or yellow, respectively.

· The model discards the duplicated control signal automatically.

· The model works decently and display proper error messages.

2.2.12 Integration Test and Analysis

Test Case #: 0

The whole system is integrated and run for a normal case for a certain period of time, i.e. a regular traffic control scheme is used, e.g. on A-B direction, G: 30 seconds, Y:3 seconds, R_over_lap(stand_by): 2 seconds; while in C-D direction: G:45 seconds, Y:3 seconds, R_over_lap(stand_by): 2 seconds.

In part III, we conduct a result analysis on this test case.

Part III
Execution Result Analysis Report

The result of Test case 0 is analyzed here.

First, we analyze whether the Unit Local Traffic Control model works properly by checking 1). The green, yellow, standby time for AB, CD respectively; 2). The throughput at red light time and green light time.

The following is a segment from the output file:

00:00:02:010 light_a 2

00:00:02:010 light_b 2

00:00:30:000 throughput_a 16

00:00:30:000 curlen_a 1

00:00:30:000 avelen_a 1

00:00:30:000 throughput_b 20

00:00:30:000 curlen_b 1

00:00:30:000 avelen_b 1

00:00:30:000 throughput_c 0

00:00:30:000 curlen_c 10

00:00:30:000 avelen_c 10

00:00:30:000 throughput_d 0

00:00:30:000 curlen_d 9

00:00:30:000 avelen_d 9

00:00:32:010 light_a 3

00:00:32:010 light_b 3

00:00:35:010 light_a 1

00:00:35:010 light_b 1

00:00:37:010 light_c 2

00:00:37:010 light_d 2

00:01:00:000 throughput_a 6

00:01:00:000 curlen_a 7

00:01:00:000 avelen_a 4

00:01:00:000 throughput_b 6

00:01:00:000 curlen_b 8

00:01:00:000 avelen_b 4.5

00:01:00:000 throughput_c 20

00:01:00:000 curlen_c 10

00:01:00:000 avelen_c 10

00:01:00:000 throughput_d 20

00:01:00:000 curlen_d 11

00:01:00:000 avelen_d 10

00:01:22:010 light_c 3

00:01:22:010 light_d 3

00:01:25:010 light_c 1

00:01:25:010 light_d 1

00:01:27:010 light_a 2

00:01:27:010 light_b 2

We can see, at the time “00:00:02:010”, both of light_a and light_b are 2, i.e. green. At the time “00:00:32:010”, they turn into yellow(i.e. 3), so GAB = 30 seconds. At the time “00:00:35:010”, light_a and light_b turn into red (i.e. 1), so YAB = 3 seconds. Please not that at the same time, light_c and light_d starts the standby period; at the time “00:00:37:010”, light_c and light_d turn green, so STANDBYCD = 2 seconds. Similarly, we calculate GCD = 1:22:010 – 00:37:010 = 45 seconds, YCD=01:25:010 - 01:22:010 = 3 seconds and STANDBYAB = 01:27:010 - 01:25:010 = 2 seconds. The results match with the parameters set in the *.ma file completely.

We also notice that when light C and D are red (from 00:00:02:010 to 00:00:37:010), the throughput in CD direction is 0; while after lights C and D become green, the throughputs in C and in D become 20.

Secondly, we analyze how the traffic light time schedule for one direction is affecting its average queue length. In Test Case 0, we know GAB = 30, YAB = 3, STANDBYAB = 2 and GCD = 45, YCD = 3, STANDBYCD = 2, then we can guess in the direction CD, the average length is likely shorter then in the direction AB over a certain period of time. We can verify this by analyzing the output data.

We extract the following data from the output file:

00:14:30:000 avelen_a 62.6552

00:14:30:000 avelen_b 56.7931

00:14:30:000 avelen_c 31.1724

00:14:30:000 avelen_d 27

 :

 :

00:28:00:000 avelen_a 119.304

00:28:00:000 avelen_b 105.732

00:28:00:000 avelen_c 54.1964

00:28:00:000 avelen_d 45.6071

 :

 :

00:36:00:000 avelen_a 151.597

00:36:00:000 avelen_b 135.861

00:36:00:000 avelen_c 68.6944

00:36:00:000 avelen_d 56.4306

 :

 :

00:48:30:000 avelen_a 202.454

00:48:30:000 avelen_b 183.773

00:48:30:000 avelen_c 91.3608

00:48:30:000 avelen_d 75.3814

 :

 :

00:53:00:000 avelen_a 221.038

00:53:00:000 avelen_b 200.953

00:53:00:000 avelen_c 98.5094

00:53:00:000 avelen_d 82.2075

 :

 :

00:57:00:000 avelen_a 237.333

00:57:00:000 avelen_b 216.518

00:57:00:000 avelen_c 104.684

We observe that the average length of traffic queue in AB direction is always longer than in CD direction. More interesting, the lengths of all of the queues are increasing with time. This means either there are too many vehicles for the observed intersection or the traffic capacity of the intersection needs improvement.

lights

lights

standby_in

standby_in

standby_in

standby_in

groupCD

groupAB

light_ab

light_cd

Top

avelength

curlength

throughput

aveQueueLength

curQueueLength

leaved

out

gen2

throughput

entered

out

gen1

traffic collector

Top

light

light

in

out

light_controller

signal

in

Top

done

done

stop_out

stop_in

stop_out

stop_in

block

next

next

block

in

out

lane_queue

out

in

Top

done

done

stop_out

stop_in

stop_out

stop_in

block

next

next

block

in

out

intersection_queue

out

in

Top

value

done

busy

in

out

queue

gen

busy

in

out

Controller

Intersection

server@

timeout

out

Top

stop_in

stop

block

next

block

done

stop_out

busy

out

next

in

in

queue

intersection

in

out

controller

intersection

out

out

Top [Intersection]

car_out

car_in

stop

stop_out

done

out

in

out

next

block

stop_in

lane queue

gen

stop_in

block

done

stop_out

out

next

in

queue

intersection

out

busy

in

out

controller

intersection

stop_in

block

next

in

out

intersection

Top [Lane]

light

avelength

curlength

throughput

aveQueueLength

curQueueLength

throughput

leaved

entered

car_out

car_in

light

in

signal

stop

out

collector

lane

traffic light controller

Top [TrafficLight]

avelength

curlength

throughput

light

avelength_d

curlength_d

throughput_d

light_d

avelength

curlength

throughput

light

avelength_c

curlength_c

throughput_c

light_c

avelength

curlength

throughput

light

avelength_b

curlength_b

throughput_b

light_b

avelength

curlength

throughput

light

avelength_a

curlength_a

throughput_a

light_a

signal

signal

signal

signal

traffic_light_d

traffic_light_c

traffic_light_b

traffic_light_a

lights

lights

standby_in

standby_in

standby_in

standby_in

light_group_controller_cd

light_group_controller_ab

Top

_1128065330.unknown

_1128151935.unknown

_1127990543.unknown

_1127999823.unknown

_1127999551.unknown

_1127999608.unknown

_1127990550.unknown

_1126886207.doc

Traffice Light System

Traffic Light

Controller

lan queue

Lane

Intersection

queue

Intersection

controller

lan queue

Lane

Intersection

queue

Intersection

controller

Traffic Light A

Traffic Light B

signal B

Traffic Light C

signal C

Traffic Light D

signal D

Lights Group

Control

Lights Group

Control

signal A

lights B

lights A

lights D

lights D

Traffic

in of

light A

traffic out

traffic out

traffic out

traffic out

Traffic

in of

light B

Traffic

in of

light C

Traffic

in of

light D

standby

standby

on/off

enable/

disable

Light

