Assignment #1

Project Partners

Khurram Shahzad

khurramsaifi@yahoo.com
Student Id: 100293224

Muhammad Asif

masif@sce.carleton.ca
Student Id: 100629549
Course: SYSC 5807

Part 1

Telephone Switch
Description

A Telephone switch system is a real time system; within an enterprise that switches calls between enterprise users on local lines while allowing all users to share a certain number of external phone lines. The main purpose of a telephone switch is route call to Callers to callees in efficient and effective way.

A brief description of some of the functionality of a telephone switch is following:

· A customer picks up phone Switch sends dial tone

· “Party A” dials number or address Switch looks in the database or directory

· Switch sends call to “Party B” and “Party B” phone is ringing

· If “Party B” picks up phone then switch established the connection

· If either Party hangs up then Switch will terminate the connection

There are lots of other functionalities of switch such as:

· A call can be placed between one to many customers or many to many customers

· Call forwarding

· Call display

· Answering machine

A simple architecture of the telephone switch is

 [image: image1.png]Origination Terminal

Destination Terminal

Fig: Architecture of the Telephone switch:

The state diagram of the Telephone switch can be modeled as

[image: image2.png](except FATLED

I or DISCONNECTED) @
"
(eem :@n o
X o

Fig: State Diagram of telephone switch
[image: image3.png]1/«

Figure: State Diagram of telephone terminal

Part 2

Telephone Switch
After analyzing and redesigning the switch, we come up following structure.

[image: image4]
Atomic Models:

There are fine atomic modules

1. Directory Lookup
2. Line Controller
3. Dialing

4. TouchTone

5. Phone

1. Touch Tone
Send input “tone” from the other atomic module named Phone. This input leads to Touch one module to the TONE state. In TONE state it waits for the keys to be press where the user wants to dial. Touch Tone module take three keys and change its states accordingly. As soon as three keys are received, this module sends those three keys as a destination number to the other module and it goes to the IDLE.

Formal Specification:

DEVS = < S, X, Y, ((int , (ext , (, ta >
X: {key_in, tone}
Y: {out}
S: {IDLE, TONE_IN, KEY_1, KEY_2, KEY_3}
(int(key_in,KEY_3)= IDLE
(ext(tone, IDLE) = TONE_IN
(ext(key_in, TONE_IN) = KEY_1

(ext(key_in, KEY_1) = KEY_2

(ext(key_in, KEY_2) = KEY_3

((KEY_3) = out
ta (IDLE): infinity

ta (for others) = waiting time to press key

Testing:

Send tone input to see that atomic model is in TONE state

Send three key to the key_in port and see after press three keys whether the three concatenated nmbers appears at the output port.

2. Phone
This atomic model will have three instances in final integrated model.

1- Dial Tone

2- Hang Up

3- Callee Pickup

Formal Specification
DEVS = < S, X, Y, ((int , (ext , (, ta >
X: {in}
Y: {out}
S: {Idle, Busy}
(int(Busy): Idle
(ext(in, Idle) = Busy
((Busy) = out
ta (Idle): infinity
ta(busy): processing time

Note: This is simplest atomic model to represent phone functionalities like phone pick up, phone hang up or phone pick up by callee. This model sends output as initiator’s number of this event. For example, if 101 picks up his/her phone to dial, by this model his/her number will be sent on output to inform switch that this person want to make a call. Similarly this is true for other cases like some body hangs up or callee picks up phone to respond. In these cases, we are sending initiator’s number on output.
Testing:
Send different inputs at input of this atomic model and check if same output appears at the output.
3. Dialing
This module takes input number “num” in the Idle state and it goes to the Ringing state. It actually send ring to the destination. If in the limited amount of time Callee pick up the phone then it goes to connected state. If Callee does not picked up phone then after ringingtime a output “No_Pickup” will be sent as output.
Formal Specification:

DEVS = < S, X, Y, ((int , (ext , (, ta >
X: {num, callee_pickUp}
Y: {out, connect}
S: {Idle, Ringing, Connect, No_Pickup}
(int(noPickUp,Ringing)= NoPickup
(ext(num, Idle) = Ringing
(ext(callee_PickUp, Ringing) = Connect
ta (Idle) = waiting time to number (infinity)
ta (Ringing) = ringingTime

ta (Connect) = processingTime

ta (NoPickUp) = processingTime

Testing:

Send num to the module to see that atomic model is in Ringing state

If Callee Pick_Up then Output is in Atomic state

If RingingTime is over then out put will be No_Pickup

Couple Models:

DirLine Lookup

4. Directory Lookup
This model executes following functions

1- Check if the number dialed is valid from directory look up.

2- Check if the number dialed is not busy.

3- Make a number busy if its pick up.

4- Free a number when client hang up phone.

Here is the formal specification of the model.

DEVS = < S, X, Y, ((int , (ext , (, ta >

X: {num, tone, dc, dialing_in, line_in}
Y: {error, out_to_dial, give_line}
S: {IDLE, BUSY, WAITING}
(int:

if BUSY by num input event (WAITING

else (IDLE

 (ext:

in IDLE state, if any input even comes, it is moved to busy state.

(:

give_line (asking line controller to give line to make a call or free line when caller hangs up)

error: if callee is busy or number dialed is invalid or no line free then different outputs on error port (BUSY=-1, INVALID = -2, LINE_NOT_FREE = -3)

out_to_dial: if everything is ok,then it sends no to be dialed on this port for dialing model.
ta (IDLE): infinity

 ta (BUSY) = processing time

 ta(WAITING) = waiting input response from line controller.

Testing:

1- Provide inputs for one call like tone, valid number which is not busy, and check out put of give_line.

2- Provide input of line_in as its coming from line controller and see if there is any output on out_to_dial port.

3- Make a phone connection between two lines, and then check if somebody is try to call one of these busy numbers. See output at error port

4- Now try to connect maximum connections as limit of line controller, and then try to call a valid, and non busy number and see response.

5- Now try to call an invalid number, which is not in the directory lookup, and see out put at error port

6- Now provide events of hanging in (dc) in these tests, and see if line get free on hanging on.

Also add input of dialing_in, and check response.
5. Line Controller
This model controls no of lines of switch. It just keep a counter, and whenever Dialer has to call a number, it asks it to give line. Also when caller hangs up, it frees one line.

Assumption here is that on hang up of caller, line will be free. And Line will be busy as soon, dir lookup validates number that it is valid and not busy and call cam be made.

Here is the formal specification of the model.

DEVS = < S, X, Y, ((int , (ext , (, ta >

X: {give_line}
Y: {out}
S: {IDLE, BUSY}
(int (BUSY) = IDLE

 (ext(give_line,IDLE) = BUSY

(:

If (give_line ==1)

if line is available, then it send out put = 1 else -1.

ta (IDLE): infinity

 ta (BUSY) = processing time

Testing:

1- Provide give_line inputs more than limit, and see how many lines it provides by providing output 1 and then responding in negative as -1.

2- Also add events of hanging up of callee, by providing input of give_line = -1, and see if lines get free.

Now combine above two tests, first ask for more than limit and then hang few lines and then ask again and see if it works or not.
Couple Models
There are 3 coupled modules

1. Top

2. Dialer

3. DLLookUp

1. DLLookUP
This is couple model of DirLookUp and Line Controller.

[image: image5]
DLLookup = <X,Y,{DirLookUp,LineCont},EIC,EOC,IC,SELECT>

X= {num, dc, dialing_in, tone}

Y = {out_to_dial, error}

EIC = {(num,DirLookUp.num), (dc,DirLookUp.dc), (dialing_in,DirLookUp.dialing_in),
(tone,DirLookUp.tone)}

EOC = {(DirLookUp.error_out, error), (DirLookUp.out_to_dial, out_to_dial)}

IC = {(DirLookUp.give_line, LineCont.in), (LineCont.out, DirLookUp.line_in)}

SELECT : ({DirLookUp,LineCont}) = DirLookUp

Testing:
1- Provide inputs for one call like tone, valid number which is not busy, and check out put of couple model.

2- Make a phone connection between two lines, and then check if somebody is try to call one of these busy numbers. See output at error port

3- Now try to connect maximum connections as limit of line controller, and then try to call a valid, and non busy number and see response on error.

4- Now try to call an invalid number, which is not in the directory lookup, and see out put at error port

5- Now provide events of hanging in (dc) in these tests, and see if line get free on hanging on.

6- Also add input of dialing_in, and check response.

2. Dialer

[image: image6]
Dialer = <X,Y,{DirLineLookUp,Dialing},EIC,EOC,IC,SELECT>

X= {num, dc, tone,callee_pickup}

Y = {out, error,connect}

EIC = {(num,DirLineLookUp.num), (dc,DirLineLookUp.dc), (tone,DirLineLookUp.tone), (calle_pickup,Dialing.calle_pickup)}

EOC = {(DirLineLookUp.error_out, error), (Dialing.out, out), (Dialing.connect, connect)}

IC = {(DirLineLookUp.out_to_dial, Dialing.num), (Dialing.out, DirLineLookUp.dialing_in)}

SELECT : ({DirLineLookUp,Dialing}) = DirLineLookUp

Testing:
1- Provide inputs for one call like tone, valid number which is not busy, and check out put of Dialer overall, especially out and connect port.

2- Make a phone connection between two lines, and then check if somebody is try to call one of these busy numbers. See output at error port

3- Now try to connect maximum connections as limit of line controller, and then try to call a valid, and non busy number and see response on error.

4- Now make a call to valid number, and check if callee doesn’t pick up number for a ringing time. See what response of model is.

5- Now try to call an invalid number, which is not in the directory lookup, and see out put at error port

6- Now provide events of hanging in (dc) in these tests, and see if line gets free on hanging on.

3. Top Model
Top Module is the very Top module of the Switch. It directly gets the input from the user and responds accordingly. If user picks up phone then switch gets into dialtone mode. After getting into the dialtone mode switch is ready to accept keys from the user, which are the destination number. Caller presses the keys then Switch collects these keys and sends those key to the Dialer to dial the number. The dialer sends the ring to the destination number. Callee listen the ring and pick up the phone. On receiving the callee pickup phone event, switch makes a connection between Callee and Caller

If callee doen not pick up phone then No_Pickup output is generated. If there is not further line available then Switch sends error report to the output.

Specification

· Top = < X, Y, {Dialing, PickUp, HangUp, Dialtone, Dialer}, {Ii}, {Zij}, SELECT >

· X = {CallerPickedUp, AddressDialed, HangUp, CalleePickedUp}

· Y = {Error, Connect, NotPickedUp}

· I(Dialing) = Dialer;

· I(PickUp) = Dialer;

· I(HangUp)= HangUp

· I(Dialtone)= Dialer

· Z(Dialing) = Dialer;

· Z(PickUp) = Dialer;

· Z(HangUp)= HangUp

· Z(Dialtone)= Dialer

Testing:

· Caller_Picked up phone is the input top Module’s some atomic module is in the tone state.

· Caller dialer the number is the input. And Top module sends the ring to the destination as the on the out port.

· If callee picked up as input then connected output is generated

· If callee does not picked up phone output No_Pick will generated

Part 3

After building one atomic model one by one, and then couple models, we tested them in each step. Below is the test runs on each model and results.

DirLookUp
This atomic model keeps records of all numbers , their busy status and request line controller to give or free a line.

Model file : dirlookup.cm

Event file : dirlookup.ev

Script to run : run_dirlookup.bat

Input: num, tone, dc, dialing_in

Outputs: error_out, out_to_dial, give_line

Assumption: We store valid numbers from 100 to 109 and we are accepting phone number of three digit.

Here is the event file to test it.

//101 is trying to call 103

00:00:10:00 tone 101

00:00:20:00 num 103
//got line

00:00:30:00 line_in 1
//ringing to 103, both are busy now. 103 pick up

00:00:40:00 dialing_in 103
//105 is trying to call 103(which is busy)

00:00:50:00 tone 105

00:01:00:00 num 103
//105 hangs up

00:01::10 dc 105
//105 trying to call 101 (which is busy too)

00:01:15:00 tone 105

00:01:20:00 num 101
//all hangs up, but only 101 hang up will free line

00:01:25:00 dc 105

00:01:30:00 dc 103

00:01:35:00 dc 101
//105 trting to call 103 now

00:01:40:00 tone 105

00:01:45:00 num 103
00:01:50:00 line_in 1

00:01:55:00 dialing_in 103
//101 is trying to call 105(which is busy)

00:02:00:00 tone 101

00:02:10:00 num 105
//all hang up

00:02:20:00 dc 105

00:02:30:00 dc 103

00:02:40:00 dc 101
//101 is tring to call 201 which is invalid no

00:03:40:00 tone 101

00:03:50:00 num 201

00:04:00:00 dc 101

Output of simulation is as follow

00:00:25:000 give_line 1

00:00:35:000 out 103

00:01:25:000 error -1

00:02:15:000 give_line 1

00:02:25:000 out 103

00:02:55:000 error -1

00:03:45:000 give_line 1

00:03:55:000 out 105

00:04:05:000 give_line 0

00:04:25:000 error -2

Line Controller
This keeps tract of lines available. It manages through a counter.

Model file : linecont.cm
Event file : linecont.ev
Script to run : run_linecont.bat
Input: in

Output: out

Tests are simple, trying to get lines upto limit of switch (three in our case). Then hanging up line(s) and then try to get line.
Event file is like this.
00:00:10:00 in 1 //ask for line
00:00:20:00 in 1
//ask for line
00:00:30:00 in 1
//ask for line
00:00:40:00 in 1
//ask for line. But limit is full
00:00:50:00 in 1
//ask for line. But limit is full
00:01:00:00 in 0
//hanging one line
00:01:10:00 in 1
//ask for line again
00:01:20:00 in 0
//hanging one line
00:01:30:00 in 0
//hanging one line
00:01:40:00 in 0
//hanging one line
00:01:50:00 in 1
//ask for line again

Output of this simulation is as follow

00:00:12:000 out 1

00:00:22:000 out 1

00:00:32:000 out 1

00:00:42:000 out -1

00:00:52:000 out -1

00:01:12:000 out 1

00:01:52:000 out 1

DirLineLookUp Couple Model (DLLookup)
This is couple model of DirLookup and Line Controller

Model file : dirlinelookup.cm

Event file : dirlinelookup.ev

Script to run : run_dirlinelookup.bat

Input: num, tone, dc, dialing_in

Outputs: error, out_to_dial
Input event is as follow

//dial 101 to 103

00:00:10:00 tone 101

00:00:20:00 num 103

00:00:30:00 dialing_in 3
//dial 105 to 107

00:00:40:00 tone 105

00:00:50:00 num 107

00:01:00:00 dialing_in 107
//dial 102 to 104

00:01:20:00 tone 102

00:01:30:00 num 104

00:01:40:00 dialing_in 104
//dial 106 to 108, but no line is free now

00:01:50:00 tone 106

00:02:00:00 num 108
//dial to 111, which is invalid number

00:02:10:00 tone 106

00:02:20:00 num 111

Out put is here

00:00:25:000 out_to_dial 103 //dial 103

00:00:55:000 out_to_dial 107 // dial 107

00:01:35:000 out_to_dial 104
//dial 104

00:02:05:000 error -3

//no line is free

00:02:22:000 error -2

//invalid number

Dialing

This atomic model dial a number and ring callee for a certain period of time. If callee picks up the phone, then it connect caller and callee. If not, then it abort ring and generate output to dirlinelookup module to make line free.

Model file : dialing.cm

Event file : dialing.ev

Script to run : run_dialing.bat

Input: num, callee_pickup
Outputs: error, out, connect
Event file to test this is as follow
//call 102

00:00:10:00 num 102
//102 pickup

00:00:30:00 callee_pickup 1
//now call 103, who don’t pickup

00:00:40:00 num 103
And output observer is as follow
00:00:11:000 out 102
//ringing 102

00:00:31:000 connect 1
//102 pick up, so a connection is established

00:00:41:000 out 13
//ringing 103

00:01:41:000 out -13
//after a ringing time, 103 didn’t pick phone,

so a negative output is generated to let

dirlinelookup module know that this no is not

responding and line can be freed again

Dialer
It is couple of DirLineLookup couple model and dialing atomic model

Model file : dialer.cm

Event file : dialer.ev

Script to run : run_dialer.bat

Input: num, tone, dc, callee_pickup
Outputs: error, out, connect
Input event file is like this

//101 making call to 101, 101 picks up

00:00:10:00 tone 100

00:00:20:00 num_in 101

00:00:40:00 callee_pickup 101
//102 is calling 103, connected

00:00:50:00 tone 102

00:01:00:00 num_in 103

00:01:10:00 callee_pickup 103
//104 is calling 105, again connected

00:02:05:00 tone 104

00:02:10:00 num_in 105
//pick up late , so line is disconnected already

00:02:20:00 callee_pickup 105
//106 is calling 107, now line is not free (three line limit)

00:02:25:00 tone 106

00:02:35:00 num_in 107

00:03:00:00 dc 106

00:03:10:00 dc 100

00:03:20:00 dc 101
//106 is trying to call 207, which is not valid number

00:04:30:00 tone 106

00:04:40:00 num_in 207
Output is like this

00:00:26:000 dial_out 101

//ringing 101

00:00:41:000 connect 1

//conncted 100-101

00:01:06:000 dial_out 103

//ringing 103

00:01:11:000 connect 1

//connected

00:02:16:000 dial_out 105

//ringing 105

00:02:21:000 connect 1

//connected

00:02:40:000 error -3

//no line is free now

00:04:42:000 error -2

//invalid number

Touch Tone

This atomic model is to get touch tone keys pressed by caller. Here we are assuming that to call a number, caller has to press 3 keys i.e. three digit numbers.
Model file : touchtone.cm
Event file : touchtone.ev
Script to run: run_touchtone.bat
Input: in tone
Outputs: out
Input event file is as follow

//103 get dialtone and it pressed 3 keys to dial

00:00:10:00 tone 103

00:00:20:00 in 1

00:00:30:00 in 2

00:00:40:00 in 3
//104 get tone, and it presses more than 3 keys, see only first 3 keys are taken

00:01:00:00 tone 104

00:01:10:00 in 2

00:01:20:00 in 3

00:01:30:00 in 4

00:01:40:00 in 6

00:01:50:00 in 5
//105 get tone, and it presses only 2 keys

00:02:00:00 tone 105
00:02:10:00 in 2

00:02:20:00 in 3

Output is as follow. See that there will be no output if user has not pressed all three keys.

00:00:42:000 out 123

00:01:32:000 out 234

Phone
This atomic model will have three instances in final integrated model.

1. Dial Tone

2. Hang Up

3. Callee Pickup
Model file : phone.cm
Event file : phone.ev
Script to run: run_phone.bat
Input: in
Outputs: out

It has very simple functionality; it sends input on the out.

Event file
00:00:10:00 in 123

00:00:30:00 in 223

00:00:50:00 in 122
Output is

00:00:11:000 out 123

00:00:31:000 out 223

00:00:51:000 out 122

Telephone Switch (Final Module)
Model file : switch.cm
Event file : switch.ev
Script to run: run_switch.bat
Input: key_in caller_pickup hangup_in callee_
Outputs: pickuperror connect dial_out
Input event file is as follow

//100 is going to call 101, who will pick and call will be established

00:00:10:00 caller_pickup100

00:00:20:00 key_in 1

00:00:23:00 key_in 0

00:00:26:00 key_in 1

00:00:40:00 callee_pickup 101
//102 is going to call 103, who will pick and call will be established

00:00:50:00 caller_pickup102

00:00:53:00 key_in 1

00:00:56:00 key_in 0

00:00:59:00 key_in 3

00:01:10:00 callee_pickup 103
//104 is going to call 105, who will pick and call will be established and all lines are busy now.
00:02:05:00 caller_pickup104

00:02:07:00 key_in 1

00:02:09:00 key_in 0

00:02:10:00 key_in 5

00:02:20:00 callee_pickup 105
//106 is going to call 107, who will pick and call will be established (no line free)

00:02:22:00 caller_pickup106

00:02:25:00 key_in 1

00:02:26:00 key_in 0

00:02:29:00 key_in 7
//106 hangs up

00:03:00:00 hangup_in 106
//100. 101 hangs up . now line is free

00:03:10:00 hangup_in 101
00:03:20:00 hangup_in 100

//106 is trying to call a number which is busy

00:03:32:00 caller_pickup 106

00:03:45:00 key_in 1

00:03:46:00 key_in 0

00:03:49:00 key_in 2
//106 is trying to call a number which is invalid

00:04:00:00 hangup_in 106
00:04:12:00 caller_pickup 106

00:04:20:00 key_in 2
00:04:26:00 key_in 0

00:04:29:00 key_in 2
Here is the interesting output
00:00:33:000 dial_out 101
//ringing 101

00:00:42:000 connect 1

//101 picks up

00:01:06:000 dial_out 103
//ringing 103

00:01:12:000 connect 1

//connected

00:02:17:000 dial_out 105
//ringing 105

00:02:22:000 connect 1

//connected

00:02:35:000 error -3

//now 106 tried to call, but no line is

free

00:03:52:000 error -1

//106 tried to call a busy number.

00:04:32:000 error -2

//106 tried to call an invalid number.

Note : BUSY = -1 , INVALID = -2 and NO_LINE_FREE = -3
Connected

Hang Up

DirLookUp

Dialer

Receiver PickedUp

Line Controller

tone

out

Invalid Number / Person Busy

DirLookUp

Directory Look Up

Address Dialed

out

error_out

out_to_dial

tone

dialing_in

dc

num

Line Controller

TouchTone

Send Dial Tone

Callee Pick Up

Dial Tone

Receiver Picked Up

dialing_in

dc

num

Line Controller

Dialing

error

line_in

give_line

Hang up

out_to_dial

error_out

out

give_line

line_in

error

Dialing

callee_pickup

out

connect

num

