94.587 Assignment 1

Modeling and Simulation of a Load Balancing System with CD++

Changshuang Lin

#100275796

clin@sce.carleton.ca
Part 1: System and Model

1.1 System Description
A simplified load balancing system is to be simulated in this assignment. The system contains one load balancer, three servers and one database server. The balancer receives jobs from clients and dispatches them to the servers for processing using a round-robin selection algorithm. The dispatching takes fixed time for each incoming job. A server will process a job coming from the balancer for a period of time, which is exponentially distributed, and then send the job to the database server for processing and wait for the response from the database server. The database will take a fixed time processing each job and return the response back the originating server. Once the server receives the response from the database server, the job is said to be finished. A job will be queued if the balancer, server or the database server is busy. A job will be also queued if the server is waiting for a response from the database server.
1.2 Model Structure

[image: image1.emf] out

The model generator is included in the toolkit, and is used to represent the clients generating jobs to the load balancing system.

Part 2: Formal Specification and Testing Strategy
2.1 Atomic Model: balancer

X = {job-id}

Y = {job-id}

S = { {phase, sigma, job-queue, current-job-id} }

External-function (job-id) {

add(job-id, job-queue);

if (job-queue has only one job)

holdIn(active, dispatch-time);

 }

Output-function () {

current-job-id = get(job-queue);

if (current-job-id mode 3 = 0) {

out-port = out1;

}

else if (current-job-id mode 3 = 1) {

out-port = out2;

}

else {

out-port = out3;

}

send current-job-id to the port out-port

}

Internal-function () {

If (job-queue not empty)

holdIn(active, dispatch-time);

 else

passivate();
 }

2.2 Atomic Model: server
X = {job-id}

Y = {server-id}

S = { {phase, sigma, job-queue, current-job-id} }

External-function (job-id) {

If (input-port = in)

add(job-id, job-queue);

if (job-queue has only one job and not-waiting)

holdIn(active, processing-time);

else if (input-port = done and waiting)

holdIn(active, zero-time);

}

Output-function () {

if (waiting)

send current-job-id to the port out

else

current-job-id = get (job-queue);

send server-id to the port db;

}

Internal-function () {

change waiting state from waiting to not-waiting or from not-waiting to waiting

if (job-queue is not empty and not-waiting)
holdIn(active, processing-time);

 else

passivate();

 }

2.3 Atomic Model: dbserver
X = {server-id}

Y = {server-id}

S = { {phase, sigma, job-queue, current-server-id} }

External-function (server-id) {

add(server-id, job-queue);

if (job-queue has only one job)

holdIn(active, processing-time);

}

Output-function () {

current-server-id = get(job-queue);

if (server-id=1)

send current-server-id to the port out1

else if (server-id=2)

send current-server-id to the port out2

else if (server-id=3)

send current-server-id to the port out3

}

Internal-function () {

if (job-queue is not empty)

holdIn(active, processing-time);

 else

passivate();

 }

2.4 Coupled Model: LBS

LBS = < X, Y, {balancer, server1, server2, server3, dbserver}, EIC, EOC, IC, SELECT >
X = { in }
Y = { out }
EIC = { (in, balancer.in) }

EOC = { (server1.out, LBS.out), (server2.out, LBS.out), (server3.out, LBS.out) }
IC = { (balancer.out1, server1.in), (balancer.out2, server2.in), (balancer.out3, server3.in), (server1.db, dbserver.in), (server2.db, dbserver.in), (server3.db, dbserver.in), (dbserver.out1, server1.done), (dbserver.out2, server2.done), (dbserver.out3, server3.done) }

SELECT : ({balancer, server1, dbserver}) = dbserver

({balancer, server2, dbserver}) = dbserver

({balancer, server3, dbserver}) = dbserver

({balancer, server1}) = server1

({balancer, server2}) = server2

({balancer, server3}) = server3

2.5 Coupled Model: TOP

TOP = < X, Y, {generator, LBS}, EIC, EOC, IC, SELECT >

X = { }

Y = { out }

EIC = { }

EOC = { (LBS.out, out) }
IC = { (generator.out, LBS.in) }

SELECT : ({generator, LBS}) = LBS

2.6 Testing Strategy
For each model, an input even file and script have been provided. The basic strategy is that the input events cover different conditions for each model, and the traces of execution results on each test are to be verified to make sure the correctness of the model developed.
Part 3: Building and Testing

All the above mentioned models have been build and tested. Partial execution results for each model are included in the appendices of this report. The testing results have been verified and the models are all shown to be working correctly. Running of the top model of the load balancing system produces results shown in following Table.
	Mean (s)
	Number of Jobs Generated
	Number of Jobs Finished
	System Throughput (job/second)

	2
	9031
	1841
	0.102

	5
	3645
	1824
	0.101

	10
	1870
	1755
	0.098

	15
	1157
	1157
	0.064

	20
	811
	811
	0.045

In this table, the mean refers to the mean value of exponentially distributed inter-arrival time for the generator in seconds. The lower the mean, the faster the generator generates jobs. In this test, the dispatching time for the balancer is fixed at 4 seconds, and the processing time for the database server is also fixed at 5 seconds. The processing time for each server is exponentially distributed with a mean of 20 seconds. The simulation time is five hours. The testing results indicate that the system throughput increases as the increase of the job arrival rates (for the means of 20, 15 and 10 seconds). But as the rate increases further (for the means of 5 and 2 seconds), the system throughput remains almost stable because the servers becomes performance bottlenecks when the rate reaches a certain value. Such results are consistent with that of the real load balancing system. Thus, the load balancing system described in part 1 has been successfully modeled and simulated with the tool CD++.
Appendices
1. Execution Results for Balancer
Starting simulation. Stop at time: Infinity.

00:00:01:000 / in / 0.00000

00:00:15:000 / in / 1.00000

00:00:16:000 / in / 2.00000

00:00:29:000 / in / 3.00000

00:00:30:000 / in / 4.00000

00:00:31:000 / in / 5.00000

00:00:01:000
Balancer receives job# 0

00:00:01:000
Balancer starts dispatching job# 0

00:00:11:000
Balancer sends job# 0 to server 1

00:00:15:000
Balancer receives job# 1

00:00:15:000
Balancer starts dispatching job# 1

00:00:16:000
Balancer receives job# 2

00:00:25:000
Balancer sends job# 1 to server 2

00:00:25:000
Balancer starts dispatching job# 2

00:00:29:000
Balancer receives job# 3

00:00:30:000
Balancer receives job# 4

00:00:31:000
Balancer receives job# 5

00:00:35:000
Balancer sends job# 2 to server 3

00:00:35:000
Balancer starts dispatching job# 3

00:00:45:000
Balancer sends job# 3 to server 1

00:00:45:000
Balancer starts dispatching job# 4

00:00:55:000
Balancer sends job# 4 to server 2

00:00:55:000
Balancer starts dispatching job# 5

00:01:05:000
Balancer sends job# 5 to server 3

Simulation ended!

2. Execution Results for Server

Starting simulation. Stop at time: Infinity.

00:00:10:000 / in / 1.00000

00:00:29:000 / in / 2.00000

00:00:40:000 / done / 1.00000

00:00:41:000 / in / 3.00000

00:00:42:000 / in / 4.00000

00:02:00:000 / done / 2.00000

00:05:00:000 / done / 3.00000

00:05:01:000 / done / 4.00000

00:05:10:000 / done / 4.00000

00:00:10:000
Server 1 receives job# 1

00:00:10:000
Server 1 starts processing job# 1

00:00:10:410
Server 1 sends job# 1 to database server.

00:00:29:000
Server 1 receives job# 2

00:00:40:000
Server 1 finishes job# 1

00:00:40:000
Server 1 starts processing job# 2

00:00:41:000
Server 1 receives job# 3

00:00:42:000
Server 1 receives job# 4

00:00:45:962
Server 1 sends job# 2 to database server.

00:02:00:000
Server 1 finishes job# 2

00:02:00:000
Server 1 starts processing job# 3

00:02:01:772
Server 1 sends job# 3 to database server.

00:05:00:000
Server 1 finishes job# 3

00:05:00:000
Server 1 starts processing job# 4

00:05:00:275
Server 1 sends job# 4 to database server.

00:05:01:000
Server 1 finishes job# 4

Simulation ended!

3. Execution Results for DBServer

Starting simulation. Stop at time: Infinity.

00:00:10:000 / in / 1.00000

00:00:29:000 / in / 2.00000

00:00:40:000 / done / 1.00000

00:00:41:000 / in / 3.00000

00:00:42:000 / in / 4.00000

00:02:00:000 / done / 2.00000

00:05:00:000 / done / 3.00000

00:05:01:000 / done / 4.00000

00:05:10:000 / done / 4.00000

00:00:10:000
Server 1 receives job# 1

00:00:10:000
Server 1 starts processing job# 1

00:00:10:410
Server 1 sends job# 1 to database server.

00:00:29:000
Server 1 receives job# 2

00:00:40:000
Server 1 finishes job# 1

00:00:40:000
Server 1 starts processing job# 2

00:00:41:000
Server 1 receives job# 3

00:00:42:000
Server 1 receives job# 4

00:00:45:962
Server 1 sends job# 2 to database server.

00:02:00:000
Server 1 finishes job# 2

00:02:00:000
Server 1 starts processing job# 3

00:02:01:772
Server 1 sends job# 3 to database server.

00:05:00:000
Server 1 finishes job# 3

00:05:00:000
Server 1 starts processing job# 4

00:05:00:275
Server 1 sends job# 4 to database server.

00:05:01:000
Server 1 finishes job# 4

Simulation ended!

4. Execution Results for LBS
Starting simulation. Stop at time: Infinity.

00:00:01:000 / in / 1.00000

00:00:20:000 / in / 2.00000

00:00:21:000 / in / 3.00000

00:00:25:000 / in / 4.00000

00:00:50:000 / in / 5.00000

00:01:00:000 / in / 6.00000

00:01:03:000 / in / 7.00000

00:00:01:000
Balancer receives job# 1

00:00:01:000
Balancer starts dispatching job# 1

00:00:05:000
Balancer sends job# 1 to server 2

00:00:05:000
Server 2 receives job# 1

00:00:05:000
Server 2 starts processing job# 1

00:00:05:820
Server 2 sends job# 1 to database server.

00:00:05:820
DBServer receives a job from server 2

00:00:05:820
DBServer starts processing job from server 2

00:00:10:820
DBServer sends job back to server 2

00:00:10:820
Number of jobs done = 1 *******

00:00:10:820
Server 2 finishes job# 1

00:00:20:000
Balancer receives job# 2

00:00:20:000
Balancer starts dispatching job# 2

00:00:21:000
Balancer receives job# 3

00:00:24:000
Balancer sends job# 2 to server 3

00:00:24:000
Balancer starts dispatching job# 3

00:00:24:000
Server 3 receives job# 2

00:00:24:000
Server 3 starts processing job# 2

00:00:25:000
Balancer receives job# 4

00:00:28:000
Balancer sends job# 3 to server 1

00:00:28:000
Balancer starts dispatching job# 4

00:00:28:000
Server 1 receives job# 3

00:00:28:000
Server 1 starts processing job# 3

00:00:31:544
Server 1 sends job# 3 to database server.

00:00:31:544
DBServer receives a job from server 1

00:00:31:544
DBServer starts processing job from server 1

00:00:32:000
Balancer sends job# 4 to server 2

00:00:32:000
Server 2 receives job# 4

00:00:32:000
Server 2 starts processing job# 4

00:00:32:551
Server 2 sends job# 4 to database server.

00:00:32:551
DBServer receives a job from server 2

00:00:35:924
Server 3 sends job# 2 to database server.

00:00:35:924
DBServer receives a job from server 3

00:00:36:544
DBServer sends job back to server 1

00:00:36:544
Number of jobs done = 2 *******

00:00:36:544
DBServer starts processing job from server 2

00:00:36:544
Server 1 finishes job# 3

00:00:41:544
DBServer sends job back to server 2

00:00:41:544
Number of jobs done = 3 *******

00:00:41:544
DBServer starts processing job from server 3

00:00:41:544
Server 2 finishes job# 4

00:00:46:544
DBServer sends job back to server 3

00:00:46:544
Number of jobs done = 4 *******

00:00:46:544
Server 3 finishes job# 2

00:00:50:000
Balancer receives job# 5

00:00:50:000
Balancer starts dispatching job# 5

00:00:54:000
Balancer sends job# 5 to server 3

00:00:54:000
Server 3 receives job# 5

00:00:54:000
Server 3 starts processing job# 5

00:01:00:000
Balancer receives job# 6

00:01:00:000
Balancer starts dispatching job# 6

00:01:03:000
Balancer receives job# 7

00:01:04:000
Balancer sends job# 6 to server 1

00:01:04:000
Balancer starts dispatching job# 7

00:01:04:000
Server 1 receives job# 6

00:01:04:000
Server 1 starts processing job# 6

00:01:08:000
Balancer sends job# 7 to server 2

00:01:08:000
Server 2 receives job# 7

00:01:08:000
Server 2 starts processing job# 7

00:01:22:630
Server 2 sends job# 7 to database server.

00:01:22:630
DBServer receives a job from server 2

00:01:22:630
DBServer starts processing job from server 2

00:01:23:330
Server 1 sends job# 6 to database server.

00:01:23:330
DBServer receives a job from server 1

00:01:27:630
DBServer sends job back to server 2

00:01:27:630
Number of jobs done = 5 *******

00:01:27:630
DBServer starts processing job from server 1

00:01:27:630
Server 2 finishes job# 7

00:01:32:630
DBServer sends job back to server 1

00:01:32:630
Number of jobs done = 6 *******

00:01:32:630
Server 1 finishes job# 6

00:03:04:417
Server 3 sends job# 5 to database server.

00:03:04:417
DBServer receives a job from server 3

00:03:04:417
DBServer starts processing job from server 3

00:03:09:417
DBServer sends job back to server 3

00:03:09:417
Number of jobs done = 7 *******

00:03:09:417
Server 3 finishes job# 5

Simulation ended!
TOP

Figure � STYLEREF 1 \s �Error! No text of specified style in document.��� SEQ Figure * ARABIC \s 1 �1�

out

balancer

server3

server2

server1

generator

out

in

dbserver

done

db

out1

done

db

in

out2

done

db

out3

�

Figure � STYLEREF 1 \s �Error! No text of specified style in document.��� SEQ Figure * ARABIC \s 1 �3�

in

out2

in

out11

in

out31

out

out

LBS

Figure � STYLEREF 1 \s �Error! No text of specified style in document.��� SEQ Figure * ARABIC \s 1 �3�

PAGE
6

