SYSC-5807.

METHODOLOGICAL ASPECTS OF MODELLING AND SIMULATION
Assignment 1

Joseph Gammal(268520)

Toqeer A Israr(264903)

Oct. 18/ 02

Professor Wainer

Grocery Store Checkout – System Description

This system models a grocery store checkout. The purpose is to determine the average time a customer is expected to spend in the system. In general customers will approach the registers at which time they will select the register with the least number of customers in the queue. There is one express register which will only accept customer with less than eight items. Each customer can have a car or not. The groceries of customers having cars will be sent to the garage via conveyor belt after they have been served at the register. Each set of groceries has a receipt on which is written the customer’s unique number. The customer will retrieve their groceries in the garage with the help of a searcher.

Generator

The generator generates the following: Customer inter-arrival time, the number of items each customer has, a boolean value for each customer that indicates whether or not each customer possesses a car, the time it takes a customer to travel from the registers to the garage, the time for the searcher in the garage to find the groceries for each customer.

State Variables: nextCustId.

Distributor

Uses logic to determine where to send the next customer.

State Variables: A set of four queues with their associated size and customer objects.

Car System

1) Conveyor

State Variables: A queue of slips one per customer, each slip contains the customer id to which the bag belongs.

1) Searcher

State Variables: Current_Slip_number is the number of the slip that the searcher is currently searching for. The searcher has a queue of slips for which to search as soon as the bag for the current slip has been found.

Coupled Models

Top System:

Top System = <X,Y, {Generator, Distibutor, Cash, Traveler, Car}, {II}, {ZIJ},

SELECT >

X = { null }

Y = { bagRemovedId, customerFinished }

I(Generator) = { Distributor }

I(Distributor) = { Generator, Cash }

I(Cash) = {Traveler, Distributor }

I(Traveler) = { Car, self}

I(Car) = { self }

Z(Generator) = { Distributor }

Z(Distributor) = { Generator }

Z(Distributor) = { Cash }

ZCash) = {Traveler }

Z(Cash) = { Distributor }

Z(Traveler) = { Car }

Z(Traveler) = { self }

Z(Car) = { self }

Note: We do not require a select function here because there can not be any tie breaking scenarios or if they do, it doesn’t matter which goes first.

Car System :

Car System = <X,Y, {CONVEYOR-SELECTOR}, {II}, {ZIJ}, SELECT >

X = { CustomerId, bagSearchTime, bagId }

Y = { bagRemovedId, customerFinished }

I(Searcher) = { Conveyor, self }

I(Conveyor) = { self }

Z(Searcher) = Conveyor

Z(Searcher) = self

Z(Conveyor) = self

Note: We do not require a select function here because there can not be any tie breaking scenarios or if they do, it doesn’t matter which goes first.

Atomic Models

Generator:

X = { OkGo ε B, HoldOff ε B }

Y = { SearchTime ε R, TravelTime ε R, NumberOfItems ε N, CarOrNot ε B}

S = { Initial, Running == 1, Running = 0, Done }

δint(Initial) = { Running ==1 }

δint(Initial) = { Done }

δint{ Running ==1 } = { Done }

δext(holdoff, Running == 1) = { Running == 0 }

δext(okgo, Running ==0) = { Initial }

ta(initial) = 0

ta(Running == 1) = Random Customer InterArrival Time

ta(Done) = INFINITY

ta(Running == 0) = INFINITY

((running = 1) = { send SearchTime to the port outputSearchTime,

send TravelTime to the port outputTravelTime,

send OuputNumberOfItems to the port outputNumberOfItems,

send OutputCarOrNot to the port OutputCarOrNot }

**

Distributor

X = {
whichCash Є N, NumberOfItems Є N, SearchTime Є R, TravelTime

Є R, CarOrNot Є B, OneLessCustomer Є B }

Y = { OkGo Є B, HoldOff Є B, whichCash Є N, NumberOfItems Є N,

SearchTime Є R, TravelTime Є R, CarOrNot Є B }

S = {
QueuesFull, OkGoPending ==1, NoCustomerData, GotWhichCash,

GotNumberOfItems, GotSearchItem, GotTravelTime, AllDataReceived,

SendHoldOff }

δint(OkGoPending == 1) = NoCustomerData

δint(AllDataReceived) = NoCustomerData

δint(AllDataReceived) = SendHoldOff

δint(SendHoldOff) = QueuesFull

δext(OneLessCustomer, QueuesFull) = (OkGoPending == 1)

δext(OneLessCustomer, noCustomerData) = (OkGoPending == 1)

δext(WhichCash , noCustomerData) = GotWhichCash

δext(NumberOfItems, GotWhichCash) = GotNumberOfItems

δext(SearchTime, GotNumberOfItems) = GotSearchTime

δext(TravelTime, GotSearchTime) = GotTravelTime

δext(CarOrNot, GotTravelTime) = AllDataReceived

ta(OkGoPending ==1) = 0

ta(SendHoldOff) = 0

ta(AllDataReceived) = 0

ta(noCustomerData) = INFINITY

ta(GotWhichCash) = INFINITY

ta(GotNumberOfItems) = INFINITY

ta(GotSearchTime) = INFINITY

ta(GotTravelTime) = INFINITY

ta(AllDataReceived) = INFINITY

((OkGoPending ==1) = OkGo

((AllDataReceived) = { whichCash, NumberOfItems, SearchTime, TravelTime,

CarOrNot }

((SendHoldOff) = HoldOff

**

Cash

State Variables

amBusy=0 (Boolean)

CurrentCustomer = –1,-1,-1,-1,-1 <whichCash Є N, NumberOfItems Є N, SearchTime Є R, TravelTime Є R, CarOrNot Є B>

CustomerQueue=emtpy (CurrentCustomer*)

sigma=infinity

phase=passive

Formal Specification

X={whichCash Є N, NumberOfItems Є N, SearchTime Є R, TravelTime Є R, CarOrNot Є B}

Y={OneLessCustomer Є B}

S={phase sigma Customer CustomerQueue amBusy}

ExternalFunction(state: amBusy, CustomerQueue, CurrentCustomer, inputs: whichCash,

 NumberOfItems, SearchTime, TravelTime, CarOrNot)

{

set the customer variables depending on the input

(if all the customer variables have been received) {

if(amBusy)

enqueue the customer

else{

amBusy = 1

set the CurrentCustomer with its customer variables

holdin(active, customer.NumberOfItems * TimePerItem)

}

}

}

outputFunction(state: CurrentCustomer, input: currentTime)

{

sendoutput OneLessCustomer to distributor

if (customer has a car){

sendOutput(travelTime,CustomerId) to the traveler

sendOutput(bagSearchTime, bagId) to the CarSystem(conveyor)

} else

send the customer to the finished port of the Top System

}

internalFunction(state: travelTimes, input: currentTime)

{

if there is anymore customer in the queue then {

CurrentCustomer = CustomerQueue.top

busy =1

holdin(active, CurrentCustomer.NumberOfItems * TimePerItem)

} else {

busy = 0

passivate;

}

}

**

Traveler

State Variables

travelTimes=empty (Countdown*)

Countdown Є <customerId Є N,countdownFinish Є hour:minute:second>

travelTime Є R
sigma=∞

phase=passive

Formal Specification

X={travelTime Є , Є N }

Y={customerId customerId Є N}

S={phase sigma travelTimes travelTime}

ExternalFunction(state: travelTime, customerId, travelTimes, inputs: travelTime or customerId, currentTime)

{

if(travelTime received)

store in travelTime

else

{

//customer id was received

if(travelTimes empty)

{

add customerId,travelTime to travelTimes

sigma=travelTime

phase=active

}

else

{

add <customerId,travelTime+currentTime> to travelTimes

determine from travelTimes when the next customer will finish travelling

sigma=when next customer will finish travelling

phase=active

}

}

}

outputFunction(state: travelTimes, input: currentTime)

{

for each entry in travelTimes having countdownFinish = currentTime

send customerIf of that entry to port customerIdOutput

}

internalFunction(state: travelTimes, input: currentTime)

{

for each entry in travelTimes having countdownFinish = currentTime

remove the entry

if there are any entries left in the array travelTimes

{

determine from travelTimes when the next customer will finish travelling

sigma=when next customer will finish travelling

phase=active

}

else

{

phase=passive

sigma=∞

}

}

**

Searcher

State Variables
searchTimes=empty (Countdown*)
Countdown Є <customerId Є N,countdownFinish Є Hour:minute:second>

searchTime Є R
sigma=∞
phase=passive

Formal Specification

X={bagSearchTime Є R, customerId Є N }
Y={customerFinished customerId Є N, removeBag Є N }
S={phase sigma searchTimes searchTime}

ExternalFunction(state: searchTime, searchTimes, inputs: searchTime or customerId, currentTime)
{
if(bagSearchTime received)
store in searchTime
else
{
//customer id was received
if(searchTimes empty)
{
add customerId,searchTime to searchTimes
sigma=0
phase=active
}

}
else
{
add <customerId,searchTime+currentTime> to searchTimes
soonestCompletion=determine from searchTimes when the next bag will be found
sigma=soonestCompletion-currentTime
phase=active
}
}

outputFunction(state: searchTimes, input: currentTime)
{
for each entry in searchTimes having countdownFinish = currentTime
{
send customerId of that entry to port customerFinished
send customerId of that entry to port removeBag
}
}

internalFunction(state: searchTimes, input: currentTime)
{
for each entry in searchTimes having countdownFinish = currentTime
remove the entry

if there are any entries left in the array searchTimes
{
soonestCompletion=determine from searchTimes when the next bag will be found
sigma=soonestCompletion-currentTime
phase=active
}

if the search times array is empty
{
sigma=∞
phase=passive
}
}

Conveyor

State Variables

BagId[] isDefinedAs Arrary of Natural

sigma=infinity

phase=passive

Formal Specification

X={
BagIdToBeRemoved Є N, BagIdToBeAdded

Є N }

Y={BagIdToBeRemoved }

S={phase sigma BagId}

ExternalFunction(state: amBusy, CustomerQueue, CurrentCustomer, inputs: whichCash, NumberOfItems, SearchTime, TravelTime, CarOrNot)

{

If the signal is to add the bag,

add it to the BagId array

else if the signal is to remove the bag {

remove the bag from the bagId array

holdin(active, 0) to send the removed bag to the output of the top

}

}

outputFunction(state: CurrentCustomer, input: currentTime)

{

sendoutput removedBag to the output

}

internalFunction(state: travelTimes, input: currentTime)

passivate();

**

Test Plan

The system will be developed according to the following plan:

Each module must be individually tested to ensure that once integrated into the larger system that it is working correctly. This is called unit testing. For the system under discussion a slightly different form of unit testing will be attempted. The following tests will be performed

a) Create a runnable atomic model containing only the Generator. Connect the output signals of the generator to the top level model to verify that the generator is generating the outputs at the correct times with values in the correct range. This can be verified by checking the store.out file. Once it is shown that the basic function of generating correct values and sending them has been verified it must be verified that the okGo and holdOff functionality works. Use a store.ev file to generate the holdOff signal intermitently to ensure that the generator will stop sending output when this signal is received. After a relatively lang period of time send the okGo signal to see that it starts generating output again. Repeat this process a few time.

b) Create the Distributor and connect it to the Generator. These will compose a new top level model. Connect all generator outputs to the distributor. Connect okGo and holdOff from the distributor to the generator. Connect all remaining distributor outputs to the top level. In the current configuration it is true that there are two atomic models connected and conducting a test on the system at this point is not a unit test of the distributor. The fact is that the generator has already been tested. Any errors that would be realized now must therefore be from the distributor or the interface between the distributor and generator. It is not the most specific type of test but it is sufficient. Run the simulation without using the store.ev file. This will indicate what random values will be generated as the seed does not change. Use this knowledge of the customer interarrival time and the number of items of each of these customers to determine when customers should be completed processing at each of the four cashes had they been part of the system. Usually when a customer is processed by a cash the cash generates the oneLessCustomer signal to the distributor. Create a store.ev file to generate the oneLessCustomer signal at the appropriate time. Generate this signal a few times to ensure that the signal is received correctly by the distributor and that the distributor generates the okGo signal.

c) Create the cash atomic model and integrate it into the system with the distributor and generator. Use 4 cashes. Connect the output of the cashes to the top level. Connect

oneLessCustomer from the cash to the disributor. Connect the outputs of the distributor

that were previously connected to the topLevel and connect them to the distributor. No

.ev file is required. Run the system and verify that for each customer that is produced that either a customerFinished signal is generated at the cash (in that case that the customer does not have a car) or that customerOutput, travelTime and bagSearchTime is

generated.

d) Create the traveler atomic model and integrate it into the system. Connect the customerOutput signal of the cashes to the customerId input of the traveler. Connect the outputTravelTime outputs of the cashes to the travelTimeDistribution input of the traveler.

Set the travel time average to be a large number relative to the customer interarival time and the number of items. This will ensure that there are multiple travelers travelling at the same time.

e) The carsystem will be created now at first without using the conveyor. It is only necessary to determine that each customer that was introduced by the generator has been accounted for. The conveyor should then be added. Another test that will uncover some

errors is to use very high search times to ensure that the cashes become full and that the system reacts correctly to this by not generating more customers.

[(Numberofcustomer >=

MaxNumberofCustomers]

[(running) &&

(Numberofcustomer >=

MaxNumberofCustomers)]

[(running) &&

(Numberofcustomer <

MaxNumberofCustomers)]

OkGo

Running = 0

Generator

CustomerData=WhichCash,NumberOfItems,

 SearchTime, TravelTime,

 CarOrNot

Send(CustomerData)

HoldOff

Send(CustomerData)

[(running) &&

(Numberofcustomer <

MaxNumberofCustomers)]

Done

Initial

Running

== 1, t

Distributor

OneLessCustomer

CustomerData=WhichCash,NumberOfItems,

 SearchTime, TravelTime,

 CarOrNot

Send(CustomerData)

Send(HoldOff)

[QueuesWillFill]

Send(CustomerData)

CarOrNot

TravelTime

SearchItem

NumberOfItems

WhichCash

Send(OkGo)

OneLessCustomer

Send HoldOff

== 1

All Data

Received

Queues Full

Got

SearchItem

OkGO Pending

==1

No Customer

Data

Got

WhichCash

Got

TravelTime

Got

NumberOfItems

Figure 1.

customerOutput

2 ports between Car &

Top

-customerOutput

-bagRemoved

3 ports between Customer & Car

-searchTime

-bagId

-customerId

2 ports between Cash &

Traveler

-travelTime

-customerId

Between Distributor and Cash are the following Outputs

-searchTime

-travelTime

-numberOfItems

-carOrnot

-whichCash

And the input oneLessCustomer

holdOff

okGo

Traveler

TopLevel – Grocery Store Checkout

Car

Generator

Distributor

Cash

Cash

Cash

Cash

Figure 2.

removeBag

customerId

customerOutput

bagRemoved

bagId

Car System

Searcher

Conveyor

