SYSC-5807 – Methodological aspects of modeling and simulation.

Assignment 1

Student Name: Hesham Saadawi

Student Number: 274490

Part II

Coupled Models:

1. ATM: The top model which represents the operational model of a simple Atuomatic Teller Machine.

Input Ports: IN

Output Ports: CARD OUT, CASH OUT

In Ports: in

Out Ports: Cash_out, Card_out

ATM Formal specifications:

ATM = <X,Y,D,EIC,EOC,IC,SELECT>

X = {Card}

Y = {Card, Cash_out}

D={Card_reader, Cash_Dispenser, Authorization}

EIC = {(ATM.in, Card_Reader.Card_in}

EOC = {(Card_Reader.Card_out,ATM.Card_out),

 (Cash_Dispenser.out,ATM.Cash_out)}

IC = { (Card_Reader.CardNo_out, Authorization.in),

(Authorization.Amnt_out, Cash_Dispenser.in),

(Authorization.Eject,Card_Reader.Eject) }

SELECT :{Card_Reader, Cash_Dispenser} = Cash_Dispenser

 { Authorization, Cash_dispenser} = Cash_Dispenser

Testing can be done by inputting one or more events at the input port and observing the output:

Input

00:00:10:000 in 1

00:00:19:000 in 1

00:00:30:000 in 1

output: we expect to get value of 1 at the card out, and cash out value between 0 and 999. In case the transaction doesn’t go through, we should only get the card out.

2. Authorization: A submodel which gets the PIN and Amount to be withdrawn, and valdiates both. In our simplified ATM model, PIN and amount are generated internally according to a statistical distribution to simulate user entries.

Input Ports: in

Output Ports: EJECT, AMNT_out

Authorization Formal specifications:

Authorization = <X,Y,D,EIC,EOC,IC,SELECT>

X = {Card#}

Y = {Amnt, Eject}

D={ Balance​Verifier, PIN​​_Verifier, User_Interface }

EIC = {(Authorization.in, User_Interface.CARDNO }

EOC = {(Balance_Verifier.Amnt_out, Authorization.Amnt_out),

 (PIN_Verifier.Eject, Authorization.Eject)}

IC = {(PIN_Verifier.Get_PIN, User_Interface.Get_PIN) ,

(User_Interface.PIN_out, PIN_Verifier.PIN_IN),

(PIN_Verifier.Get_Amnt, User_Interface.Get_Amnt),

(User_Interface. AMNT_out, Balance_Verifier.Amnt_in),

(Balance_Verifier.Get_Amnt_out,

User_Interface.Get_Amnt) }

SELECT: Priority order (Descending) : Balance_Verifier ,

PIN_Verifier, User_Interface.

Testing can be done by inputting one or more events at the input port and observing the output:

Input:

00:00:10:000 in 750

00:00:19:000 in 497

00:00:30:000 in 687

Output: If the transaction is successful, we get the amount between 0 and 999, and an Eject card signal out. If the transaction fails for 3 times with generated wrong PIN, we get the Eject signal out with no amount.

Atomic Models:

Each of the atomic models would have a random processing time according to a selected distribution in their .MA files.

1. Balance Verifier: Which verifies that the required amount is covered in balance. This would simulate this by generating a random number with uniform distribution between 0.0 and 1.0, in which from 0.0 to 0.8 is considered a valid amount, and invalid amount for otherwise.

Input Port: AMNT_in

Output Ports: AMNT_out, GET_AMNT_out

Formal specifications for Balance Verifier = <X, Y, S, δint, δext, λ, ta>

X = {Amnt_in | Amnt_in is a positive Real number}

Y = {Get_Amnt , Amnt_out}

S = { Phase, sigma, Amnt, balance_OK}

δext (S,e,X) {

Case Phase

Passive:

 Sigma = generate random Processing Time;

 Phase = busy;

 Amnt = X.value;

 RandNo = Generate random number;

 If RandNo <= 0.8

balance_OK = 1; //Set balance_OK to true

 Else

balance_OK = 0; //Set balance_OK to false

 busy:

 // Ignore the request;

}

λ (S) {

case phase

busy:

If balance_OK

//if the balance is fine, send the required amount as

//
 approved amount

Send (AmntOut_port, Amnt);

Else

// Ask to repeat the amount entry.

Send (GetAmnt_port, 1);

Passive: // Should not happen.

}

δint (Amnt_in) {

case phase

busy:

phase = passive;

sigma = infinity;

passive: //never happens

}

Testing can be done by inputting one or more events at the input port and observing the output:

Input:

00:00:10:000 Amnt_in 750

00:00:19:000 Amnt_in 497

00:00:30:000 Amnt_in 687

Output: We expect to get the same amount at input at the output either at a first iteration, or only get a flag at Get_Amnt port with value of 1, and then we get the amount at next iteration(s).

2. PIN Verifier: Which verifies the entered PIN for correctness. It would simulate this by generating a random number with uniform distribution in which 90% of cases it would be considered to math stored PIN.

Input Ports: PIN_IN

Output Ports: GET_AMNT, GET_PIN, EJECT

Formal specifications for PIN Verifier = <X, Y, S, δint, δext, λ, ta>

X = {PIN, | PIN is 3-digit positive Integer numbers}

Y = {Get_Amnt , Get_PIN, Eject}

S = { Phase, sigma, PIN, PIN_OK, No_of_trials}

δext (S,e,X) {

Case Phase

Passive:

 Sigma = generate random Processing Time;

 Phase = busy;

 RandNo = Generate random number;

 No_of_trials = No_of_trials
+ 1;

 If RandNo <= 0.9

PIN_OK = 1; //Set PIN_OK to true

No_of_trials = 0;

 Else

PIN_OK = 0; //Set PIN_OK to false

 busy:

 // Ignore the request;

}

λ (S) {

case phase

busy:

If PIN_OK

//if the PIN is fine, ask the user Interface to

//
 get the amount

Send (GetAmnt_port, 1);

Else

If No_of_trials < 3

// Ask to repeat the PIN entry.

Send (GetPIN_port, 1)

Else

// ask to Eject Card

Send (Eject_port, 1);

Passive: // Should not happen.

}

δint (PIN_in) {

case phase

busy:

phase = passive;

sigma = infinity;

passive: //never happens

}

Testing can be done by inputting one or more events at the input port and observing the output:

Input:

00:00:10:000 PIN 750

00:00:19:000 PIN 497

00:00:30:000 PIN 687

Output: We expect to get one of three outputs:

1- Get_PIN flag set to 1 at GET_PIN port in case generated PIN

Is rejected according to our random variable.

2- Eject flag is set to 1 at EJECT port, if we try 3 times for the PIN

and get wrong PIN each time.

3- GET_AMNT flag is set to 1 at GET_AMNT port if PIN is correct.

3. User Interface: Generates the required PIN and amount to simulate a user entering these values. These values would be generated according to a uniform distribution.

Input Ports: GET_PIN, GET_AMNT, CARDNO

Output Ports: AMNT_out, PIN_out

Formal specifications for User Interface = <X, Y, S, δint, δext, λ, ta>

X = {Get_PIN, Get_Amnt | are Boolean values with 0 as False and 1 as

True}

Y = { Amnt , PIN}

S = { Phase, sigma, PIN, Amnt, PIN_entered, Amnt_entered}

δext (S,e,X) {

Case port

 GET_PIN:

Case Phase

Passive:

 Sigma = generate random Processing Time;

 Phase = busy;

 PIN = Generate random number between 000 and 999;

 PIN_entered = 1; // set it to True

 Amnt_entered = 0; // set it to False

 busy:

 // Ignore the request;

 GET_AMNT:

Case Phase

Passive:

 Sigma = generate random Processing Time;

 Phase = busy;

 Amnt = Generate random number between 000 and 999;

 Amnt_entered = 1; // set it to True

 PIN_entered = 0; // set it to False

 busy:

 // Ignore the request;

}

λ (S) {

case phase

busy:

If PIN_entered

//if the PIN is generated, send it to out

Send (PIN_port, PIN);

Else

// the Amnt must have been generated

Send (Amnt_port, Amnt);

Passive: // Should not happen.

}

δint (S) {

case phase

busy:

phase = passive;

sigma = infinity;

passive: //never happens

}

Testing can be done by inputting one or more events at the input port and observing the output:

Input:

00:00:10:000 GET_PIN 1

Output:

 We should get a number between 0 and 999 at PIN_out port

Input:

00:00:10:000 GET_AMNT 1

Output:

 We should get a number between 0 and 999 at AMNT_out port

4. Card reader: reads the card number from its input port.

Input Ports: CARD_IN, EJECT

Output Ports: CARD_OUT, CARD_NO_out

Formal specifications for Card reader = <X, Y, S, δint, δext, λ, ta>

X = { Card | has an integer card number, Eject | value of 0 means don’t

eject card or 1 which means eject card}

Y = { Card , Eject}

S = { Phase, sigma, Card_no_stored, Card_entered, Eject_requested,

empty_reader}

δext (S,e,X) {

Case port

 CARD_IN:

Case Phase

Passive:

 Sigma = generate random Processing Time;

 Phase = busy;

 Card_no_stored = Generate random number between 0

and 999;

 Card_entered = 1; // set it to True

 Eject_requested = 0; // set it to False

 busy:

 // Ignore the request;

 EJECT:

Case Phase

busy:

 Sigma = generate random Processing Time;

 Card_entered = 0; // set it to True

 Eject_requested = 1; // set it to False

 Passive:

 // Ignore the request;

}

λ (S) {

case phase

busy:

If Card_entered

 // send Card_no_stored to out

 Send (CardNo_port, Card. Card_no_stored);

Else

 // an Eject must have been requested

 Send (CardOut_port, Card. Card_no_stored);

Passive: // Should not happen.

}

δint (S) {

case phase

busy:

sigma = infinity;

If Eject_requested = 1 and not empty_reader

 phase = passive;

passive: //never happens

}

Testing can be done by inputting one or more events at the input port and observing the output:

Input:

00:00:10:000 CARD_IN 1

00:00:10:000 EJECT 1

Output:

 Card number between 0 and 999at CARD_NO_out port

 Value of 1 at CARD_OUT port

5. Cash Dispenser: Dispenses the required amount of cash to its output port.

Input Ports: IN

Output Ports: OUT

Formal specifications for Card reader = <X, Y, S, δint, δext, λ, ta>

X = { Amnt | Amnt is a 3-digit positive Integer numbers }

Y = { Cash Out}

S = { Phase, sigma, Amnt}

δext (S,e,X) {

Case Phase

Passive:

 Sigma = generate random Processing Time;

 Phase = busy;

 busy:

 // Ignore the request;

}

λ (S) {

case phase

busy:

// send Cash to out

Send (Out_port, Amnt)

Passive: // Should not happen.

}

δint (S) {

case phase

busy:

phase = passive;

sigma = infinity;

passive: //never happens

}

Testing can be done by inputting one or more events at the input port and observing the output:

Input:

00:00:10:000 IN 200

Output:

 200 at OUT port

Balance Verifier

Eject

PIN Verifier

Amnt?

Amnt OK

Card#

PIN

User Interface

Authorization

PIN?

Amnt

Card#

Amnt

Balance Verifier

Eject

ATM

Card

Cash Out

Card

Amnt in

Amnt out

Amnt?

PIN Verifier

Amnt?

PIN?

Eject

PIN

Card#

PIN?

Amnt?

PIN

User Interface

Amnt

Eject

Card

Card reader

Card#

Card

Amnt

Cash Dispenser

Cash Out

