94.587 Modelling Discrete-Event Systems Using DEVS (2002 Fall)
Assignment1: Alternating Bit Protocol (ABP) Simulator

Tao Zheng 258050

Carleton University
Part I

ABP (Alternating Bit Protocol) is a communication protocol to ensure reliable transmission through unreliable network. The sender sends a packet and waits for an acknowledgement. If the acknowledgement doesn't arrive within a predefined time, the sender re-sends this packet until it receives an expected acknowledgement and then sends the next packet. In order to distinguish two consecutive packets, the sender adds an additional bit on each packet (called alternating bit because the sender uses 0 and 1 alternatively). A DEVS model called “ABP Simulator” is created to simulate the behavior of the Alternating Bit Protocol.

The ABP Simulator consists of 3 components: sender, network and receiver. The network is decomposed further to two subnets corresponding to the sending and receiving channel respectively. (Figure 1)

Figure 1 Structure of ABP Simulator

The behavior of receiver is to receive the data and send back an acknowledgement extracted from the received data after a time period. The subnets just pass the received data after a time delay. However, in order to simulate the unreliability of the network, only 95% of the data will be passed in each of the subnet, i.e. 5% of the data will be lost through the subnet.

The receiver and subnets have two phases: passive and active. They are in passive phase initially. Whenever they receive an input, they will be in active phase, and send out an output (with a probability of 95% in subnet) after a time duration. The state will then be changed back to passive phase. The receiveing_time of the receiver is a constant while the delay in subnets is non-deterministic value expressed by a normal distribution with a mean and deviation.

The behavior of the sender is much more complicated. Its state depends on the following user defined state variables: Alt_bit, sending, ack, and packetNum in addition to phase. The sender changes from initial phase passive to active when a controlIn signal is received. It is then in sending mode to send a packet plus an alternating bit. When a sending_time is elapsed, the packet is assumed to be sent out, and the sender is waiting for the acknowledgement. If the timeout expires, the sender will re-send the previous packet with the alternating bit. If the expected acknowledgement is received before the timeout, the sender will send the next packet. It will change back to passive phase when all packets have been sent out successfully. Output will be generated when a packet is sent out (packeSent, dataOut) or an expected acknowledgment is received (ackReceived). For simplicity, the packet sent out by the sender is just the packet sequence number plus an alternating bit, (e.g. 11 for the first packet, 100 for the 10th packet etc). Thus the packet sequence number (e.g. 1 for the first packet, 10 for the 10th packet etc.) is sent to the packetSent port while the packet sequence number plus the alternating bit (e.g. 11 for the first packet, 100 for the 10th packet etc) are sent to the dataOut port. The controlIn signal is a positive integer indicating how many packets should be sent in a session.

Both the sendint_time and timeout are constants.

Part II

As shown in Figure 1, the ABP Simulator has 1 input and 2 outputs. The controlIn input indicates the number of packets should be sent. The 2 outputs show the time when a packet has been sent out successfully (packetSent) or an expected acknowledgment is received (ackReceived). The ABP Simulator consists of 3 components: sender, Network and receiver. The sender sends packets to the receiver and receives acknowledgements from the receiver through the Network. The Network could be further decomposed into two subnet components which indicate two channels. The two subnets are assumed to have the same behaviors and use the same class Subnet.

Formal Specifications

The formal specifications <S, X, Y, δint, δext, λ, ta> for the atomic models are defined as follows:

Receiver:

S = {passive, active}

X = {in}

Y = {out}

δint (active) = passive

δext (in, passive) = active

δext (in, active) = active

λ(active)

{
send in % 10 to port out

//extract the alternating bit and send back

}

ta(passive) = INFINITY

ta(active) = receiving_time

Subnet:

S = {passive, active}

X = {in}

Y = {out}

δint (active) = passive

δext (in, passive) = active

δext (in, active) = active

λ(active)

{
send data from in to the port out
95%

//pass the data with probability 95%

send nothing to port out

5%

}

ta(passive) = INFINITY

ta(active) = delay (normal distribution)

Sender:

State Variables:

sigma = INFINITY, phase = Passive;

packetNum = 0;
//the packet sequence number. also the message of the packet

totalPacketNumber = 0
//the total packet number that should be sent

Alt_bit = 0;

// the alternating bit

sending = false;
//true: sending packet, false: waiting for acknowledgement

ack =false;

//true: expected acknowledgement is received, false: opposite

Formal specification:

X = {controlIn, ackIn }

Y = {dataOut, packetSent, ackReceived}

S = {{phase, sigma, Alt_bit, packetNum, sending, ack}}

δext (Alt_bit, packetNum, sending, ack, e, x)

{
case phase

passive:

 if x is from controlIn and phase

totalPacketNum = controlIn; //get input

packetNum = 1;

Alt_bit = packetNum % 2; //set initial alternating bit

ack = false;

sending = true;

sigma = sending_time; //transit to the state of sending packet

phase = active;

else

; //It should not be here. Input is ignored.

active:

 if x is from ackIn

if ackIn = = Alt_bit //acknowledgement is expected

{
ack = true;

sending = false;

sigma = 0;
//trigger an internal function immediately

}

else

; //It should not be here. Input is ignored.

}

δint (Alt_bit, packetNum, sending, ack, e, x)

{
case phase

active:

if (ack) //expected acknowledgement is received

{
if (packetNum < totalPacketNum)
//send next packet

{
packetNum ++

Alt_bit = (Alt_bit + 1) % 2;

sending = true;

ack = false;

sigma = sending_time;

}

else // all packets have been sent out successfully

{
phase = passive;

//change back to initial passive state

sigma = INFINITY;

}

}

else if (sending)
//change to waiting mode after sending a packet

{
sending = false;

sigma = timeout;

}

else //time out, re-send the previous packet

{
sending = true;

sigma = sending_time;

}

passive: /*Never happens*/

}

λ(active & sending)

{
send packetNum to the port packetSent

//packet sequence number

send (packetNum * 10 + Alt_bit) to the port dataOut
//message plus alternating bit
}

λ(active & !sending & ack)

{
send Alt_bit to the port ackReceived
//expected acknowledgement

}

The formal specifications <X, Y, D, {Mi}, {Ii}, {Zij}, SELECT > for the coupled model Network and ABP Simulator are defined as follows:

Network:

X = {in1, in2};

Y = {out1, out2};

D = {subnet1, subnet2};

I(subnet1) = self;

I(subnet2) = self;

Z(subnet
1) = self;

Z(subnet2) = self;

SELECT:
({subnet1, subnet2}) = subnet1;

ABP Simulator:

X = {controlIn};

Y = {packetSent, ackReceived};

D = {sender, Network, receiver};

I(sender) = {Network, self};

I(Network) = {sender, receiver};

I(receiver) = {Network};

Z(sender) = Network; Z(sender) = self;

Z(Network) = sender; Z(Network) = receiver;

Z(receiver) = Network;

SELECT:
({sender, Network, receiver}) = sender;

({Network, receiver}) = Network;

Test Strategies

The atomic models and coupled models will be tested using the “black box” testing method. Test cases are created by adding different combinations of inputs to the event file (.ev), run the simulation (.scp) and check whether the outputs in the output file (.out) are what we expected.

Part III

In order to verify the atomic models and coupled models, test cases are created to test these models.

Test Cases and Execution Analysis

Atomic Model receiver:

The input of the receiver is supposed to a positive integer. The last digit of the integer should be 0 or 1 which indicates the alternating bit. Other digits are assumed to be the data of the packet. The output of the receiver (acknowledgment) is the alternating bit extracted from the input. The output is generated after a fixed time duration (e.g. 10 time units) when the input is received. The receiver should only work with one packet at a time. If a new packet arrives while the receiver is processing a packet, the older packet should be discarded. In the test cases, if the time duration between two consecutive inputs is less or equal than the receiver receiving_time, the former input should be discarded, and no output will be generated for that input. The receiver.ev file is created as follows. It contains normal events and consecutive events with time duration less than or equal to the receiving_time (i.e. 10 time units) of the receiver.

00:00:10:00 in 11

00:00:30:00 in 20

00:00:45:00 in 31

00:00:52:00 in 31

00:01:25:00 in 40

00:01:35:00 in 40

00:01:55:00 in 51

The two events with bold fonts should not generate any outputs because the next event comes too fast to make them be discarded. The outputs of other events should be the last digits of the input integers after 10 time units. The output file receiver.out shows the expected results (execute receiver.scp).

00:00:20:000 out 1

00:00:40:000 out 0

00:01:02:000 out 1

00:01:45:000 out 0

00:02:05:000 out 1

Atomic Model subnet:

The input of the subnet is supposed to a positive integer. Both the sending and receiving channels use this model. In the sending channel, the input should be a multi-digit positive integer, and in the receiving channel, the input is 0 or 1. The output of the subnet should be exactly as the input. However, not all the inputs will generate output. The output function of the subnet model generates the output with a probability of 95% according to a random function. It simulates the feature of an unreliable network. The time duration between input and output is a normal distribution (e.g. mean is 3 time units, and deviation is 1 time unit).

The subnet.ev file is created as follows.

00:00:10:00 in 11

00:00:20:00 in 20

00:00:30:00 in 31

00:00:40:00 in 40

00:00:50:00 in 51

00:01:10:00 in 60

00:01:20:00 in 71

00:01:30:00 in 80

00:01:40:00 in 91

00:01:50:00 in 100

00:02:00:00 in 111

00:02:10:00 in 120

00:02:20:00 in 131

00:02:30:00 in 140

00:02:40:00 in 151

00:02:50:00 in 160

00:03:00:00 in 171

00:03:10:00 in 180

00:03:20:00 in 191

00:03:30:00 in 200

The output is not deterministic due to the random function in the subnet model. Probably several inputs will not generate outputs. The following is an example of the output file subnet.out (execute subnet.scp). In this output file, the event with bold fonts is lost in the subnet.

00:00:12:987 out 11

00:00:21:796 out 20

00:00:31:957 out 31

00:00:43:035 out 40

00:00:52:182 out 51

00:01:13:160 out 60

00:01:23:849 out 71

00:01:33:655 out 80

00:01:43:446 out 91

00:01:52:830 out 100

00:02:02:400 out 111

00:02:13:687 out 120

00:02:21:055 out 131

00:02:43:679 out 151

00:02:54:759 out 160

00:03:03:084 out 171

00:03:12:533 out 180

00:03:21:704 out 191

00:03:32:419 out 200

Atomic Model sender:

The sender has two inputs: controlIn and ackIn. The controlIn input should be a positive integer. It indicates how many packets should be sent in a session. Otherwise it will be ignored. The controlIn trigs the sender to send packets if the sender is in passive phase. If the sender is already in active phase, this signal should be ignored either. The ackIn is the acknowledgement received from the receiver. It should be 0 or 1. When the sender receives an acknowledgement from ackIn port, it compares the acknowledgement with its current alternating bit. If they are equal, it generates an output to the ackReceived port immediately and begins to send the next packet. If expected acknowledgement is not received and timeout expires (e.g. 20 time units), the sender begins to re-send the previous packet. After a sending_time (e.g. 10 time units) when the sender begins to send or re-send a packet, an output will be generated to the packetSent port to indicate that a packet has been sent out. The data of the packet plus the alternating bit will be sent to the dataOut port at the same time. When all the packets are sent and received successfully, the sender changes back to passive phase.

The sender.ev file is created as follows. It contains normal events and some illegal events.

00:00:00:00 controlIn -1

00:00:05:00 controlIn 0

00:00:10:00 ackIn 0

00:00:15:00 controlIn 5

00:00:30:00 ackIn 1

00:01:30:00 ackIn 0

00:01:55:00 ackIn 1

00:02:20:00 ackIn 1

00:02:45:00 ackIn 0

00:02:50:00 controlIn 3

00:02:55:00 ackIn 1

In the output file sender.out (execute sender.scp), the events with bold and italic fonts are illegal events that should be ignored. The two events with bold fonts are normal events which would cause the sender to re-send the previous packet. One event (00:01:30:00 ackIn 0) simulates a lost packet, the other event (00:02:20:00 ackIn 1) simulates a wrong acknowledgement. The simulator works as expected.

00:00:25:000 dataout 11

00:00:25:000 packetsent 1

00:00:30:000 ackreceived 1

00:00:40:000 dataout 20

00:00:40:000 packetsent 2

00:01:10:000 dataout 20

00:01:10:000 packetsent 2

00:01:30:000 ackreceived 0

00:01:40:000 dataout 31

00:01:40:000 packetsent 3

00:01:55:000 ackreceived 1

00:02:05:000 dataout 40

00:02:05:000 packetsent 4

00:02:35:000 dataout 40

00:02:35:000 packetsent 4

00:02:45:000 ackreceived 0

00:02:55:000 ackreceived 1

Coupled Model Network:
The coupled model Network consists of two subnet models. The two subnets work independently. The test result is similar to that of the atomic model subnet. The network.ev is created as follows:

00:00:10:00 in1 11

00:00:15:00 in2 1

00:00:20:00 in1 20

00:00:25:00 in2 0

00:00:30:00 in1 31

00:00:35:00 in2 1

00:00:40:00 in1 40

00:00:45:00 in2 0

00:00:50:00 in1 51

00:00:55:00 in2 1

00:01:10:00 in1 60

00:01:15:00 in2 0

00:01:20:00 in1 71

00:01:25:00 in2 1

00:01:30:00 in1 80

00:01:35:00 in2 0

00:01:40:00 in1 91

00:01:45:00 in2 1

00:01:50:00 in1 100

00:01:55:00 in2 0

Due to the random function in the subnet models, the output is not deterministic. Several inputs could be lost in the Network. The following is an example of the output file network.out (execute network.scp). Two events with bold fonts are lost in this test.

00:00:12:987 out1 11

00:00:16:796 out2 1

00:00:21:957 out1 20

00:00:28:035 out2 0

00:00:32:182 out1 31

00:00:38:160 out2 1

00:00:48:655 out2 0

00:00:53:446 out1 51

00:01:12:400 out1 60

00:01:18:687 out2 0

00:01:21:055 out1 71

00:01:28:678 out2 1

00:01:33:679 out1 80

00:01:39:759 out2 0

00:01:43:084 out1 91

00:01:47:533 out2 1

00:01:51:704 out1 100

00:01:57:419 out2 0

Coupled Model ABP Simulator:

The coupled model ABP Simulator is the top model which integrates atomic models sender, receiver and coupled model Network. The packets are sent from the sender to the receiver through subnet1, the receiver then sends back the acknowledgements through subnet2. The unreliable network is simulated by a random function in the subnet models. The sender must re-send some packets to ensure a reliable transmission.

The input of the top model is just controlIn, a positive integer indicating the number of packets needs sending in a session. The outputs indicate when a packet is sent out (packetSent) and when an expected acknowledgement is received (ackReceived).

The abp.ev is very simple, just one line. It requires sending 20 packets in a session.

00:00:10:00 controlIn 20

The following is an example of the abp.out (execute abp.scp). The output is not deterministic due to the randomness in the Network. In this test, packet 5 and packet 13 are sent twice due to the packet loss in the Network.

00:00:20:000 packetsent 1

00:00:34:783 ackreceived 1

00:00:44:783 packetsent 2

00:00:59:775 ackreceived 0

00:01:09:775 packetsent 3

00:01:25:117 ackreceived 1

00:01:35:117 packetsent 4

00:01:52:621 ackreceived 0

00:02:02:621 packetsent 5

00:02:32:621 packetsent 5

00:02:47:851 ackreceived 1

00:02:57:851 packetsent 6

00:03:12:593 ackreceived 0

00:03:22:593 packetsent 7

00:03:39:950 ackreceived 1

00:03:49:950 packetsent 8

00:04:07:793 ackreceived 0

00:04:17:793 packetsent 9

00:04:32:030 ackreceived 1

00:04:42:030 packetsent 10

00:04:57:675 ackreceived 0

00:05:07:675 packetsent 11

00:05:25:269 ackreceived 1

00:05:35:269 packetsent 12

00:05:52:273 ackreceived 0

00:06:02:273 packetsent 13

00:06:32:273 packetsent 13

00:06:48:424 ackreceived 1

00:06:58:424 packetsent 14

00:07:13:151 ackreceived 0

00:07:23:151 packetsent 15

00:07:40:676 ackreceived 1

00:07:50:676 packetsent 16

00:08:06:192 ackreceived 0

00:08:16:192 packetsent 17

00:08:31:364 ackreceived 1

00:08:41:364 packetsent 18

00:08:58:036 ackreceived 0

00:09:08:036 packetsent 19

00:09:22:780 ackreceived 1

00:09:32:780 packetsent 20

00:09:49:638 ackreceived 0

In the top model, if second controlIn input comes before the first controlIn finishes, the second input will be discarded as shown in the sender atomic model. If another controlIn input comes after the first controlIn finishes its session, it will be executed normally. The following is another event file abp2.ev.

00:00:10:00 controlIn 5

00:01:10:00 controlIn 4

00:10:10:00 controlIn 3

The second event (00:01:10:00 controlIn 4) will be discarded while the third event will be executed normally. The output file abp2.out (execute abp2.scp) is listed as follows.
00:00:20:000 packetsent 1

00:00:34:783 ackreceived 1

00:00:44:783 packetsent 2

00:00:59:775 ackreceived 0

00:01:09:775 packetsent 3

00:01:25:117 ackreceived 1

00:01:35:117 packetsent 4

00:01:52:621 ackreceived 0

00:02:02:621 packetsent 5

00:02:18:897 ackreceived 1

00:10:20:000 packetsent 1

00:10:50:000 packetsent 1

00:11:04:733 ackreceived 0

00:11:14:733 packetsent 2

00:11:33:171 ackreceived 1

00:11:43:171 packetsent 3

00:11:58:788 ackreceived 0

The ABP Simulator model simulates the Alternating Bit Protocol and generates the expected results. The behaviors and features of the sender, receiver and network are simulated by the respective models. The data of the packet is simplified as a packet sequence number in this model. The testing cases verify the specifications of models. The ABP Simulator works exactly as we expected according to the specifications.

ackReceived

dataOut

ack

sending

packetNum

Alt_bit

S

Sigma

ackReceived

packetSent

controlIn

ackIn

out

A

P

out

in

in

in

in

out

A

P

out

in

in

out

in

out1

out2

in1

in2

ackIn

dataOut

packetSent

 controlIn

 subnet2

 subnet1

receiver

Network

sender

ABP Simulator

