Parallel smulation Resear ches survey

| ntroduction

The Following survey aims at identifying some c# ffrominent researches in the
filed of modeling and simulation, by means of thmiblished papers. The selected researches
are Richard Fujimoto, David M.Nicol, and Philip Aidéy. The following document will
attempt to summarize some of their latest workbénfield of modelling and simulation, as
for the selection of the topics it was based adogrtb their relativity to our interest in
parallel simulation of complex networks.

1. Richard Fujimoto

Richard Fujimoto is a prominent researcher in tolel fof Parallel and Distributed and
Simulation. Currently he is a professor in the €gd of Computing at Georgia Institute of
Technology. He got his PhD and MS degrees fronuUthigersity of California at Berkeley in
1980 and 1983 respectively. He has been activesmarch in the area of Parallel and
Distributed Simulation since 1985. He has giveoriats and delivered lectures on parallel
simulation in leading conferences around the gléfeeis also very active with the D.O.D
(Department of Defense) research activities; egfigaiecently he is the technical lead for
time management issues for D.O.D's HLA (High LeAmdhitecture).

Also, he is a contributing member of various IEEEisties including the one on
Parallel and Distributed Simulation. Besides IER&js an area editor for ACM Transactions
on Modeling and Computer Simulation, has chairedsteering committee for the Workshop
on Parallel and Distributed Simulation (PADS) fra800 to 1998. He was also a member of
the Conference Committee for the Simulation Interapility Workshop. In addition to
numerous conference and journal contributions,adsedo-authored books on Parallel and
Distributed Simulation too. In the past decade && ppublished research activities in Parallel
and Distributed Simulation of Communication Netwsrk

Position Statement of Richard Fujimoto: [10]

Interoperable distributed simulations have beerelyidsed for D.O.D activities but
this technology is yet to find widespread applicatior the non-military purposes. Most
importantly, the feasibility must be sufficientlitractive for a business to invest in the initial
expenditures in technology. Embedded computingstrgiprovides a good scope for
modeling and simulation. Embedded computers areé iosmake “smart” devices. Parallel
networks of these smart devices will add anotheredision i.e. devices will be capable to
anticipate and adapt to future events. The digeitbgystems of embedded devices must be
power efficient and their modeling and simulationgess must be automated.
Interoperability issues amongst components frofeidiht or even the same manufacturer
must be resolved. Permulla et al, 2002 descrilsamalation of a military network using ns2
and GloMoSim. In this case the network models &shofe landing. The network provides

communication between troops on the land and relupk. The simulation models actual
networks. Such a simulation can be modeled formditary purposes too.

(1) Experiences Parallelizing a Commercial Network Simulator

Following is an overview of a paper by Dr. Fujimotelating to “Experiences
parallelizing a commercial network simulator”

This paper approaches a methodology which extezgisesitial simulators to run on
parallel machines. This methodology will be applie®®PNET simulator. The results show
that considerable speedup can be obtained for &PNET models provided proper
partitioning strategies are implemented and simardatttributes are adjusted appropriately.

It is very expensive, time consuming and in sonsesampossible to construct real
models of huge networks. It is also impracticadléploy new protocols throughout the
internet. Modeling and simulation of networks ogesingle processor is often time
consuming too. Parallel and distributed simulapoovides one solution to this problem.
There have been a number of parallel simulator$ @wer the past decade. In spite of these
endeavors, sequential simulators are still widslgdutoday. This is due to the overheads in
transition to new software running on differentgaages.

The approach in this paper is to parallelize setigiesimulators. The methodology is
to decompose the system being modeled into sulmsgstand running the subsystems on
different processors. The methodology implementettiis research particularly assumes that
source code of the simulation programs is not alskel Hence, there will be minimal
changes to the original sequential simulator.

Parallel Network Simulation Architecture:

Each federate runs a sub-network. A sequentiallabmuruns this sub-network. RTI
provides the communication interface between th@eetial simulators running on different
machines. A proxy model is added to each fedeuairing on a single processor, providing
an interface between the sequential simulator edRrT 1.

M ethodoloqy for Parallel Simulation:

The whole network is partitioned into sub-netikgor

Each sub-network runs on a different processor

Proxy model is responsible for communicatioomé sub-model with the others
Optimizations must be applied to improve perfance

rwpE

Data flow across feder ates:

A network model consists of node objects and tibjects. When a big network is
broken down into sub-nets, some links are brokerer#l nodes of some links are not
available (they are in a different federate). Prokjects are used to communicate with these

nodes. Proxy objects make use of the RTI functioasAnother important feature of the
proxy objects is too translate native simulator sage format to a well-known one used by
the proxies and vice versa.

Proxy is divided into two parts. 1. gen_proxy,apéndent of the protocol, takes care
of the time and events. 2. pro_proxy, protocol aeleat portion to process specific protocol
packets. Data channels between federates may Hhraoiional or bi-directional. These
channels are implemented based on the HLA publigfgoeiving class mechanism.

Simulation Time and Event M anagement:

As this is a discrete event simulation, unprocg&sents are stored in a queue and
processed in a time stamp order. Local time of eaollator must be synchronized with the
others. Synchronization is a challenging probldns fo be made sure that no federate
receives an event in its past. Therefore synchabioiz among federates is an important task.
For that purpose an LBTS value is maintained anfitderate can advance its simulation
beyond that LBTS value.

Performance Related | ssues

Lookahead is used to improve parallelism and heecrmance in the system. The
larger the value of lookahead, the more the paisaten the system. When a federate needs
information beyond its sub-model, a ghost objecré&ated that models that specific part of
the network. This results in reduced memory bu@enompared to defining the overall
network in every federate.

Another research in the same filed is relatedatpdrallel OPNET simulation”

Kowing that OPNET consists of an event based sitiari engine, libraries to write
models in C, drag and drop style graphical intexfad a library of network components.

| mplementation:

FDK (Federated Simulations Development Kit) depelb by Fujimoto et al. at
Georgia Tech was used for this project. An impdrtask is to calculate the propogation
delays, at the link objects. The proxy model coraputal delays. OPNET models heavily
rely on global state information. To resolve tlisue, ghost objects implemented on each
federate, store information of the whole networkisTprocess is static and not modifiable at
run-time. OPNET also uses interrupts, that malkeraation through RTI very tough, so a
detailed analysis of the whole network is requikedthcrease the lookahead.

Perfor mance:

1. Performance is increased has lookahead is sete&or this, either the network
model is partitioned at links with low bandwidthr,distance is increased between
federates mapped to low bandwidth.

An increase in event density improves perforreanc

An improvement in traffic locality reduces casid increases performance.

wnN

CONCLUSIONS:

This method is easy if the sequential simulat@siét extensively use global state
information. Problems like zero lookahead and dlskate make parallelization difficult.
Recently OPNET has introduced support for HLA. Bus technique is superior because it
allows use of existing network models.

(2) Generic Framework for Parallelization of Network Simulations

Another research by Richard Fugimoto is a study Gkneric Framework for
Parallelization of Network Simulations.

The goal of the research was to develop and demad@st practical, scalable approach to
parallel and distributed simulation that will erellidespread reuse of sequential discrete
event simulation models and software. The focusamaan approach to parallelization where
an existing network simulator was used to build ele@f subnet works that were composed
to create simulations of larger networks.

Simulation tools have not been able to keep up thi¢ rapid increase in the size,
complexity and speed of modern networks. Whichhy an approach that exploits parallel
and distributed simulations is needed to improeegérformance of the simulation of
networks. The approach used in the paper, wastéméxhe features of ns, and allow it to be
interconnected to create parallel simulations. Eaectulator will be given the network
topology and data flow characteristics, which diégconly a portion of the network being
simulated. Interactions between the different satiahs were done using a runtime
infrastructure. A methodology for parallelizatiomsvdescribed for simulations run on
shared-memory, symmetric multiprocessors and \&aiduted computing on several
workstations. The basic steps required were:

1. Determine how many processes (threads) willdsegaed to run the parallel
simulation. Ideally, on a system with n-CPUs, trerkwvould be divided into n-
processes.

2. Divide the state set into n partitions and @eabne-to-one mapping between
partitions and processes.

3. Maintain a separate event list for each phygoatess, so each process will be
concerned with only the events that affect theestat it's state set.

4. Distribute events during the execution amongpiigsical processes.

5. Add a synchronization/communication mechanismnsure consistent state
management between the processes.

6. Perform optimizations

With the above steps a parallel simulation candresttucted on an SMP. However, there are
several issues concerning distributed simulationseparate workstations. The issues
concern defining physical and logical connectiigtween sub models of a divided
simulation model. To define connectivity betweeh swdels, such as a source and a sink,
which reside on different workstations, the IP Aekdr and port number is used. The steps
needed to create a distributed simulation are terggne routing paths, event time
management and event communication.

Routing paths can be determined by the simulatosame existing and well known routing
protocols while the simulation is running in orderexchange dynamic routing information
between the sub models. Event time management te&dsmplemented. This means, that
each simulator must determine that no other siraulzdn create events at an earlier time
before it can be allowed to process it's most reegaent. This can be done using a lower
bound time-stamp (LBTS). Both event communicatiod avent time management is
provided with a runtime library such as RTIKIT, whiprovides these services using a
multicast group management strategy known as MCAST.

Optimizations were made to the event communicAtianagement schemes by decreasing
LBTS overhead and using polling on the listenekstsused for communication only when
it was sure that it would not block forever. Afmmducting experiments using an eight-node
model in a distributed system using the TCP prdtiarocommunication, an increase in
performance was observed that stated a successhllgh simulation.

2. David M .Nicoal

Next is yet another researches in the field of nektveimulation .Mr.David M.Nicol,
who is curretnly a Professor in the Electrical &mmputer Engineering, department in the
univeristy of lllionis. Professor Nicol's area @search is parallel simulation, of large scale
networks, either building tools dor analysis orasirgation of causes for the precessince of
certain applications(such as Worm inestation).

(1) A Mixed Abstraction Level Smulation Model of L arge-Scale Internet Worm
| nfestations

This paper was a proceeding of the 10th IEEE lattesnal Symposium on Modeling,
Analysis, & Simulation of Computer & Telecommunicats Systems written by David Nicol
along with other authors. The purpose of this pap&r model large-scale worm infestations
in order to assess their threat levels, evaluatateomeasures and investigate their possible
influence on the Internet infrastructure. The pagescribes the approach of the simulation,
the collection of data and modeling of certain eBaémodel elements, such as topology,
population distributions, and scanning traffic.

The method used for modeling Internet-worm infeéstest is based on a mixed
abstraction simulation by using selective abstoacthrough Epidemiological models
combined with detailed protocol models. The epiddagjical model originally developed for
the study of biological diseases, greatly simgdifeodeling the worm propagating in the
network because it reduces the complexity of thdehand it is a better match for the
limited available data on the events. The epidergichl model also helps in gathering
information about worm propagation dynamics areffeect on the routing infrastructure.

To improve the reliability of the simulation, thethors made an assumption that the
worm scanning traffic induces an increase in BG&x{Br Gateway Protocol) routing
message traffic. Based on this assumption, threselsare required for simulation; a model
of how the worm propagates and infects hosts inrtenet, a traffic model for the scans
emitted by the worm and a model of how the wormrmsagaduce stress on routers.

Furthermore, in order to study the system at thel lef inter-domain routing, the
system is decomposed spatially into autonomougss{AS’s). This would help in
developing a stratified epidemic model for wormgagation such that the host population is
stratified into AS’s.

The underlying data of the simulation includes kxitichastic (chaotic) and
deterministic versions. Since the population igisigintly large, the stochastic models are
approximated by a system of equations based ontmaoous state-continuous time
deterministic model. These equations rest upon A&daw of mass action AS’s which
incorporates the principle of Homogeneous mixing.

Unfortunately, due to limited time and memory siere was a constriction in the
number of BGP routers used in the mixed abstractiodel. As a result the model was down
scaled to simulating only a few hundred autononsyssems. However, in the future, the use
of parallel execution techniques and judiciousraasion could make the simulation of a few
thousand AS's possible. Thus a better interpretatiaghe model output would be achieved.

(2) Utility Analysis of Parallel Simulation

Another document also published by David M. Nicarging the title “Utility
Analysis of Parallel Simulation”. We shall attmeéptsummarize the model and partitioning
analysis part of the original document. The sumnsagtion of this document is divided into
two parts, Model (a summary of the model), andipaning (a summary of the partitioning
and analysis section)

1.0 Utility Analysis of Parallel Simulation summary:
1.1 Moddl:

Recognizing that large problems are user depentengpproach uses the notation of
user defined utility. The problem size described/agiablem is supposed to be able to be
characterized into problem units, gn@n)is used to denote the user utility of simulating a
problem with sizen. Although the size is discreet, using it as aioes quantity wont effect
the obtained results. The purpose of the model eapture the notion that the users utility
grows as the problem size simulated grows. A simpieel that expresses a wide rang of
growth isp(m) = G, m”, for some positive constant. Exponenta expresses how rabidly
the utility grows, and turns out to be a key detaant to the optimal system configuration.
With large problem sizes, and to push the systeegtalibrium, the problem must be
advanced further into simulation time. This impleegade-off problem, is the added utility
large enough to offset the added computationalPcost

With a parallel machine witN processors, the system might be used in a vasfety
ways to execute the simulation. One extreme isguaiiprocessors concurrently to run
problem not larger than sizg, another extreme is to use the entire machine iallpato
simulate one problem of size no grater tham.

A utility rate can be associated with each partitod the system, and can be
calculated by dividing the utility gained by oneperment of the chosen size by the time
needed to complete the experiment. The aggregétg tate can be found by adding all the
systems partitions utility rates, and can be usemimpare different configuration of the
system. The approach can be extended by addinst éhad varies with the number of used
processors of the parallel machine. When approgabptimization problems with a model
that is dependent on the problem size, and the auofiprocessors used, it shows that the
maximized aggregate rate is a result of using drileeoextremes; fully parallel or not at all.
“Determination of which extreme is best dependsharate of utility increasexj in
problem size, the rat€] at which length of the simulation must grow taclk equilibrium as
the problem size grows, and the rate of performameasef) as additional processors are
used in the simulation. Of these onlys subjective, and the user’s perception of hovityti
increases in problem size effectively determinewbf the extreme configurations
optimizes the aggregate utility rate.”[1.3]

The cost of using a machine withprocessors is supposed to be proportional to the
execution time multiplied b, for p > 0. for any value fop > 0 it is shown that the
configuration that optimizes utility ratepo> O per unit cost is an extreme.

The native application behaviors is described keptioblem sizen, and the length of
simulation timeT(m)needed for interesting run of the problem of siz& he simulation
length can be either dependent or independeneqgbrtbblem size.

Two characteristics are used to describe the chygebof simulation. The first isyf the
average execution time needed to evaluate a upitoiem simulation second on one CPU.
The dependence of both the simulation length, hacgkecution time per unit problem can
be denoted by modeling the execution on processor a

x(my) = ¢, (jm*) OmOme

x(m1) = c,y* m* wheres = ¢, +¢,

the second characteristic describes the abilith@simulation to be parallel. Letting Ny(be
the speedup of execution on a parallel systemISipgpcessors, the speedup is let to) a(
= NP, for p €(0, 1), andN €[1, N,]. this model accounts for behavior where adding
processors improves performance.

Using these concepts the execution time of an egpdin is expressed as

x(mn _X(mY)
™= 2
x(m,n):ct*y*m :

Using the utility modelp (m)the utility rate at which utility is accrued sinating a problem
of sizem, usingN processors is

__HM)
Ay(m, n)= X(mn)

— a-(1+e B
A, (mn)=K,m ()N

WhereKﬂ = Sm
y*C,

1.2 Partitioning:

For a parallel system, and to employ the systesmurees, many partitioning
possibilities can be used, for example %2 the sys@mwork on one problem, a %2 on a
smaller problem, and the remaining ¥ on individuablems. An analysis was conducted
using the utility function and the utility rat edioan on different partitioning scenarios. In the
analysis the equations were treated as contintlesugih they are discrete to simplify the
analysis. The analysis was conducted through asguannumber of theories and lemmas and
proving them, and in all of the lemmas and theahesanalysis showed that the optimal
partitioning is fully parallel or fully serial.

2.0 Conclusion:

When using parallel systems, partitioning is useddcide whether to run simulations
using the entire machine in parallel, in serialaanix of both. Using a utility function, and a
utility rate function that was derived using theiations for simulation length, and execution
time, it was shown that the most optimized solutmmaximize the aggregate rate at which
user’s utility is accrued is an extreme. The twtreaxes that maximize the aggregate rate
were either using the machine fully parallel, angst fully serial.

3. Philip A. Wilsey

Another promenant researhcer in the filed of nekvgimulation and analysis is Mr.
Philip A. Wilsey whose work in the area of paraliehulation of complex network has
greatlly benefeted other researhces in the files WM attempt to look on his analysis of the
Active Networking Architecture, in the following ewiew of his work

Active networking architecture enabled the inteigrabf embedded computational
abilities, within conventional networks. Therefamereasing efficiency and capacity of
current networks through incrementing their cusation ability for each specific
computation. However this happened with the addizleffect of increased complexity and
the massive increase in size, thus making convegit@nalytical methods of modelling,
simulation and analysis techniques obsolete. Thevwdnwas a discrete event simulation
technique so as to simplify and parallelize theusation process so as to maintain maximum
efficiency.

The paper at hand by Dhananjai M. Rao and Philig/Asey, describes an integrated
environment for the modelling and simulation (irdihg parallel mode simulation) of Active
networks. The Environment “Active Network Simulati&Environment” (A.N.S.E.)
incorporates a synchronized Time warp simulatiomé&keof WARPED. Thus enabling
parallel simulation, it also provides support facRet Language for Active Network
(P.L.A.N.). In this comprehensive survey we shtimpt to shed the light on the theory
behind the architecture, and the construction of.8.E.

Theory behind the Ar chitectur e

A.N.S.E. was created with the intention of paradiehulation in mind from day one,
this lead to the development of a framework arcaigéneral purpose discrete simulation
kernel, with the use of object oriented rather thatructured infrastructure; this provided us
with a mush required “separation of concerns”. Amelability to use various simulation
kernels without need to change the modules alreeshted.

As mentioned earlier ANSE incorporates a time WAWRPED synchronized kernel.
WARPED is an API(Application program Interface) itarious implementation, one being
a Time warped optimistic synchronization stratéfyis implementation has been used since
an active network is based on the idea that thesiodnstituting the network have a
customizable computational ability on the datagréowing through it.

Thus enabling Kernel to organize the simulatioo @$ynchronous communicating logical
processes (LP’s). Communication between various isPone through exchange of virtual-
time stamps, while each process maintains its oagalvirtual time (LVT).

However this mechanism is error prone with errefsrred to as straggler events may
occur. Nevertheless a rollback feature is maddahlaito recover from the causality error.
Recovery is only for LP’s prior to the error, whiteose where the error was created in or
resulted in creating the error are destroyed, hed tontinue execution of LP’s in their
previous order. Each LP also maintains a list ptittoutputs and another for transitions

between states to perform efficient rollbacks, aliding events that are no longer needed.
Finally the Warp kernel provides an Interface tddUuP’s according to the Jefferson
definition of time Warp. Also the ability to creaddferent LP’s with unique state definitions,
with the clustering nomenclature adding more sioiglito the API, without the hassle of
having to synchronize clusters, since control shaxged between the application and the
simulation Kernel through cooperative use of fumettalls.

Overview of the blocks constructing ANSE:

Overview of LLI;;:’ | AN II
ANSE v . ——

ANSE
Library

Intermediate
TSL Parser [—» Format " Code Generator
(TSL-IF)

Simulation Model
C++ | (ANSE API Compliant)

Network Model
(TSL)

Static
Elaborator

Figure 1. Overview of ANSE

We shall attempt to look at each module presemdigiure 1, and describe its
operation, in order to understand the construaioANSE.

Topology Specification L anquage (TSL):

The main input of the environment which is to bawdated (the network at hand) is
given in TSL. The Backus Normal Form (BNF) gramm&fl SL specifies a set of
interconnected topology specifications each congjsif 3 main categories

1. Object definition section
Contain module details, which will be used in tiraidation
2. Object instantiation section
Specifies the various nodes constituting the Togplo
3. The Netlist section
Defines interconnectivity, between variously insiaed nodes.
The topology also makes use of labels to defirmedlsegments of the code.

TSL Parser:

The parser is used to convert (Parse) the inpatidgy into an object oriented TSL
intermediate format (TSL-IF). TSL-IF is implement@dC++ and is a set of cross referenced
classes. It is available through the Purdue Comf@itsstruction Tool Set (PCCTS). The
intermediate Format is accomplished by filling ne references in the various C++ classes
with appropriate values.

Static elabor ator:

The Part of the Environment used to reformat spetibn of large networks for the
use of smaller sub networks, as “Hierarchical aoass provide convenient techniques to
specific large networks by reusing the specificafr smaller sub networks”. While

elaboration is defined to be braking down of langgrarchical constructs into their
constituting components. The Elaborated Topologg iBSL-If. The elaborator traverses the
user-specified sub-topologies in the model creadimg) instantiating objects and sub-
topologies, as sub-topologies are instantiated éineyhen imploded into a major (enclosing)
topology. Static elaboration is done since we pexating before the code generation
step(opposite to the choice of dynamic elaboration)

Code Generator:

Generates a C++ code (simulatable model) fronictaborated TSL-If
description, supplied from the Static elaboratdre §enerated code is compliant with the
ANSE API. It is also worth mentioning that the Cddenerator may be replaced to provide
compatibility with other frameworks.

ANSE API and Library:

As mentioned earlier ANSE provides an interfacddfine logical processes
(LP’s). The processes are defined as entities tivéhability to send, receive and act upon
events by applying a set of internal states (irstetmthe LP). The Lp’s are created using an
object oriented infrastructure with a class perfiogrthe role of a master (Object) class
which is “NetworkNode”, from which all classes anéerited, and created. The API also
provides State support through classes such asvivelNodeState”, and “ActiveNodeState”
(baring in mind the role of nodes in creating aetivetwork architecture, shows the
importance of such classes).

The state classes are used to hold state infaymédr each node/component. This
enables the simulation kernel (WARPED) to perfootibacks, thus a recovery mechanism
from casual violations that might occur due toapémistic nature of the time warp
simulation. The discrete event in the system idtheket represented by the Packet Class.
Finally it is worth mentioning that the API is cted using C++ making use of its robust
operation.

PLAN Library:

“PLAN is a simple, functional programming langedgased on a subset of
ML with some added primitives to express remotduataon” [1]. In active network
architecture packets can contain PLAN programbetp customize operation for various
network operations. Same as the API libraries, PlaA¢$ makes use of an object oriented
infrastructure enabling the use of Master clasgeb as "Packetlnjectors” to inject PLAN
programs or packets into the simulation environgengive an example.

As for runtime operation the support of PLAN fromeTANSE enables simulation of

large, complex networks within limited hardwareuggments of course to a certain point of
complexity.

Conclusion:
In conclusion It is the Testimony of the respectskarches who have wrote

this paper that “it is better to have a simple,figtible language such as TSL, for modelling
network Topologies. It is useful to have a cledimgation between the languages for

developing the software modules for networking congnts and network modelling
language.”[1]

The inter-operability between different types ofdals, and simulators from my point
of view is certainly the greatest achievement efAINSE Project.

Glossary
Federation: In HLA, a parallel/distributed simulation.
Federate: individual simulator.

L ookahead: “In parallel simulation, it is the minimum of tipacket delivery delays in all the
links of a sub-model that cross boundaries of fhanti

LBTS: Lower bound on time stamp.

References:

[1] Modeling and simulation of Active Networks, b§hananj M. Rao and Philip A. Wilsey,
Experimental Computer Laboratory.

[10] Distributed Simulation and Industry: Poterdiaind Pitfalls
Proceedings of the 2002 Winter Simulation Cagriee

