
Parallel simulation Researches survey 

 

Introduction  

The Following survey aims at identifying some of the prominent researches in the 
filed of modeling and simulation, by means of their published papers. The selected researches 
are Richard Fujimoto, David M.Nicol, and Philip A.Wilsey. The following document will 
attempt to summarize some of their latest works in the field of modelling and simulation, as 
for the selection of the topics it was based according to their relativity to our interest in 
parallel simulation of complex networks. 

 
 

1. Richard Fujimoto 
 

Richard Fujimoto is a prominent researcher in the field of Parallel and Distributed and 
Simulation. Currently he is a professor in the College of Computing at Georgia Institute of 
Technology. He got his PhD and MS degrees from the University of California at Berkeley in 
1980 and 1983 respectively. He has been active in research in the area of Parallel and 
Distributed Simulation since 1985. He has given tutorials and delivered lectures on parallel 
simulation in leading conferences around the globe. He is also very active with the D.O.D 
(Department of Defense) research activities; especially recently he is the technical lead for 
time management issues for D.O.D's HLA (High Level Architecture).  

 
Also, he is a contributing member of various IEEE societies including the one on 

Parallel and Distributed Simulation. Besides IEEE, he is an area editor for ACM Transactions 
on Modeling and Computer Simulation, has chaired the steering committee for the Workshop 
on Parallel and Distributed Simulation (PADS) from 1990 to 1998. He was also a member of 
the Conference Committee for the Simulation Interoperability Workshop. In addition to 
numerous conference and journal contributions, he has co-authored books on Parallel and 
Distributed Simulation too. In the past decade he has published research activities in Parallel 
and Distributed Simulation of Communication Networks. 
 
Position Statement of Richard Fujimoto: [10] 
 

Interoperable distributed simulations have been widely used for D.O.D activities but 
this technology is yet to find widespread application for the non-military purposes. Most 
importantly, the feasibility must be sufficiently attractive for a business to invest in the initial 
expenditures in technology. Embedded computing industry provides a good scope for 
modeling and simulation. Embedded computers are used to make “smart” devices. Parallel 
networks of these smart devices will add another dimension i.e. devices will be capable to 
anticipate and adapt to future events. The distributed systems of embedded devices must be 
power efficient and their modeling and simulation process must be automated. 
Interoperability issues amongst components from different or even the same manufacturer 
must be resolved. Permulla et al, 2002 describes a simulation of a military network using ns2 
and GloMoSim. In this case the network models an offshore landing. The network provides 



communication between troops on the land and naval ships. The simulation models actual 
networks. Such a simulation can be modeled for non-military purposes too.  
 
 
 
 
(1)  Experiences Parallelizing a Commercial Network Simulator 
 

Following is an overview of a paper by Dr. Fujimoto, relating to “Experiences 
parallelizing a commercial network simulator”  
 

This paper approaches a methodology which extends sequential simulators to run on 
parallel machines. This methodology will be applied to OPNET simulator. The results show 
that considerable speedup can be obtained for some OPNET models provided proper 
partitioning strategies are implemented and simulation attributes are adjusted appropriately. 
 
 

It is very expensive, time consuming and in some cases impossible to construct real 
models of huge networks.   It is also impractical to deploy new protocols throughout the 
internet. Modeling and simulation of networks over a single processor is often time 
consuming too. Parallel and distributed simulation provides one solution to this problem. 
There have been a number of parallel simulators built over the past decade. In spite of these 
endeavors, sequential simulators are still widely used today. This is due to the overheads in 
transition to new software running on different languages. 
  

The approach in this paper is to parallelize sequential simulators. The methodology is 
to decompose the system being modeled into subsystems, and running the subsystems on 
different processors. The methodology implemented in this research particularly assumes that 
source code of the simulation programs is not available. Hence, there will be minimal 
changes to the original sequential simulator.  
 
Parallel Network Simulation Architecture: 
  

Each federate runs a sub-network. A sequential simulator runs this sub-network. RTI 
provides the communication interface between the sequential simulators running on different 
machines. A proxy model is added to each federate running on a single processor, providing 
an interface between the sequential simulator and the RTI. 
 
Methodology for Parallel Simulation: 
 

1. The whole network is partitioned into sub-networks. 
2. Each sub-network runs on a different processor 
3. Proxy model is responsible for communication of one sub-model with the others 
4. Optimizations must be applied to improve performance 

 
Data flow across federates: 
 
 A network model consists of node objects and link objects. When a big network is 
broken down into sub-nets, some links are broken. So end nodes of some links are not 
available (they are in a different federate). Proxy objects are used to communicate with these 



nodes. Proxy objects make use of the RTI functions too. Another important feature of the 
proxy objects is too translate native simulator message format to a well-known one used by 
the proxies and vice versa. 
 Proxy is divided into two parts. 1. gen_proxy, independent of the protocol, takes care 
of the time and events. 2. pro_proxy, protocol dependent portion to process specific protocol 
packets. Data channels between federates may be uni-directional or bi-directional. These 
channels are implemented based on the HLA publishing/receiving class mechanism.  
 
 
 
 
Simulation Time and Event Management: 
 
 As this is a discrete event simulation, unprocessed events are stored in a queue and 
processed in a time stamp order. Local time of each simulator must be synchronized with the 
others. Synchronization is a challenging problem. It is to be made sure that no federate 
receives an event in its past. Therefore synchronization among federates is an important task. 
For that purpose an LBTS value is maintained and no federate can advance its simulation 
beyond that LBTS value.  
 
Performance Related Issues 
 
 Lookahead is used to improve parallelism and hence performance in the system. The 
larger the value of lookahead, the more the parallelism in the system. When a federate  needs 
information beyond its sub-model, a ghost object is created that models that specific part of 
the network. This results in reduced memory burden as compared to defining the overall 
network in every federate. 
 
Another research in the same filed is related to “a parallel OPNET simulation” 
  
 Kowing that OPNET consists of an event based simulation engine, libraries to write 
models in C, drag and drop style graphical interface and a library of network components. 
 
Implementation: 
 
 FDK (Federated Simulations Development Kit) developed by Fujimoto et al. at 
Georgia Tech was used for this project. An important task is to calculate the propogation 
delays, at the link objects. The proxy model computes real delays. OPNET models heavily 
rely on global state information. To resolve this issue, ghost objects implemented on each 
federate, store information of the whole network. This process is static and not modifiable at 
run-time. OPNET also uses interrupts, that make interaction through RTI very tough, so a 
detailed analysis of the whole network is required to increase the lookahead.  
 
Performance: 
 

1. Performance is increased has lookahead is increased. For this, either the network 
model is partitioned at links with low bandwidth, or distance is increased between 
federates mapped to low bandwidth.  

2. An increase in event density improves performance 
3. An improvement in traffic locality reduces cost and increases performance. 



 
CONCLUSIONS: 
 
 This method is easy if the sequential simulator doesn’t extensively use global state 
information. Problems like zero lookahead and global state make parallelization difficult. 
Recently OPNET has introduced support for HLA. But this technique is superior because it 
allows use of existing network models.  
 
(2) Generic Framework for Parallelization of Network Simulations 
 

Another research by Richard Fugimoto is a study of a Generic Framework for 
Parallelization of Network Simulations. 

 
The goal of the research was to develop and demonstrate a practical, scalable approach to 

parallel and distributed simulation that will enable widespread reuse of sequential discrete 
event simulation models and software. The focus was on an approach to parallelization where 
an existing network simulator was used to build models of subnet works that were composed 
to create simulations of larger networks. 
 

 Simulation tools have not been able to keep up with the rapid increase in the size, 
complexity and speed of modern networks. Which is why an approach that exploits parallel 
and distributed simulations is needed to improve the performance of the simulation of 
networks. The approach used in the paper, was to extend the features of ns, and allow it to be 
interconnected to create parallel simulations. Each simulator will be given the network 
topology and data flow characteristics, which describe only a portion of the network being 
simulated. Interactions between the different simulations were done using a runtime 
infrastructure. A methodology for parallelization was described for simulations run on 
shared-memory, symmetric multiprocessors and via distributed computing on several 
workstations. The basic steps required were: 

 
1. Determine how many processes (threads) will be assigned to run the parallel 

simulation. Ideally, on a system with n-CPUs, the work would be divided into n-
processes. 

2. Divide the state set into n partitions and create a one-to-one mapping between 
partitions and processes. 

3. Maintain a separate event list for each physical process, so each process will be 
concerned with only the events that affect the states in it’s state set. 

4. Distribute events during the execution among the physical processes. 
5. Add a synchronization/communication mechanism to ensure consistent state 

management between the processes. 
6. Perform optimizations 
 

With the above steps a parallel simulation can be constructed on an SMP. However, there are 
several issues concerning distributed simulations on separate workstations. The issues 
concern defining physical and logical connectivity between sub models of a divided 
simulation model. To define connectivity between sub models, such as a source and a sink, 
which reside on different workstations, the IP Address and port number is used. The steps 
needed to create a distributed simulation are to determine routing paths, event time 
management and event communication.  

 



Routing paths can be determined by the simulator run some existing and well known routing 
protocols while the simulation is running in order to exchange dynamic routing information 
between the sub models. Event time management needs to be implemented. This means, that 
each simulator must determine that no other simulator can create events at an earlier time 
before it can be allowed to process it’s most recent event. This can be done using a lower 
bound time-stamp (LBTS). Both event communication and event time management is 
provided with a runtime library such as RTIKIT, which provides these services using a 
multicast group management strategy known as MCAST. 

 

 Optimizations were made to the event communication/management schemes by decreasing 
LBTS overhead and using polling on the listener sockets used for communication only when 
it was sure that it would not block forever. After conducting experiments using an eight-node 
model in a distributed system using the TCP protocol for communication, an increase in 
performance was observed that stated a successful parallel simulation. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
2. David M.Nicol 

 
Next is yet another researches in the field of network simulation .Mr.David M.Nicol,  

who is curretnly a Professor in the Electrical and Computer Engineering, department in the 
univeristy of Illionis. Professor Nicol’s area of research is parallel simulation, of large scale 
networks, either building tools dor analysis or investigation of causes for the precessince of 
certain applications(such as Worm inestation).   

 
(1) A Mixed Abstraction Level Simulation Model of Large-Scale Internet Worm 
Infestations 
 

This paper was a proceeding of the 10th IEEE International Symposium on Modeling, 
Analysis, & Simulation of Computer & Telecommunications Systems written by David Nicol 
along with other authors. The purpose of this paper is to model large-scale worm infestations 
in order to assess their threat levels, evaluate countermeasures and investigate their possible 
influence on the Internet infrastructure. The paper describes the approach of the simulation, 
the collection of data and modeling of certain essential model elements, such as topology, 
population distributions, and scanning traffic.  
 

The method used for modeling Internet-worm infestations is based on a mixed 
abstraction simulation by using selective abstraction through Epidemiological models 
combined with detailed protocol models. The epidemiological model originally developed for 
the study of biological diseases, greatly simplifies modeling the worm propagating in the 
network because it reduces the complexity of the model, and it is a better match for the 
limited available data on the events. The epidemiological model also helps in gathering 
information about worm propagation dynamics and it effect on the routing infrastructure.  
 

To improve the reliability of the simulation, the authors made an assumption that the 
worm scanning traffic induces an increase in BGP (Border Gateway Protocol) routing 
message traffic. Based on this assumption, three models are required for simulation; a model 
of how the worm propagates and infects hosts in the Internet, a traffic model for the scans 
emitted by the worm and a model of how the worm scans induce stress on routers. 
 

Furthermore, in order to study the system at the level of inter-domain routing, the 
system is decomposed spatially into autonomous systems (AS’s). This would help in 
developing a stratified epidemic model for worm propagation such that the host population is 
stratified into AS’s.  
 

The underlying data of the simulation includes both stochastic (chaotic) and 
deterministic versions. Since the population is sufficiently large, the stochastic models are 
approximated by a system of equations based on a continuous state-continuous time 
deterministic model. These equations rest upon AS’s the law of mass action AS’s which 
incorporates the principle of Homogeneous mixing.  
 
 



Unfortunately, due to limited time and memory size, there was a constriction in the 
number of BGP routers used in the mixed abstraction model. As a result the model was down 
scaled to simulating only a few hundred autonomous systems. However, in the future, the use 
of parallel execution techniques and judicious abstraction could make the simulation of a few 
thousand AS's possible. Thus a better interpretation of the model output would be achieved. 
 
(2) Utility Analysis of Parallel Simulation 
 

Another document also published by David M. Nicol carrying the title “Utility 
Analysis of Parallel Simulation”. We shall attmept to summarize the model and partitioning 
analysis part of the original document. The summary section of this document is divided into 
two parts, Model (a summary of the model), and partitioning (a summary of the partitioning 
and analysis section) 
 
1.0 Utility Analysis of Parallel Simulation summary: 
 
1.1 Model: 
 

Recognizing that large problems are user dependent, the approach uses the notation of 
user defined utility. The problem size described by variable m is supposed to be able to be 
characterized into problem units, and µ(m) is used to denote the user utility of simulating a 
problem with size m. Although the size is discreet, using it as a continues quantity wont effect 
the obtained results. The purpose of the model is to capture the notion that the users utility 
grows as the problem size simulated grows. A simple model that expresses a wide rang of 
growth is µ(m) = cm mα, for some positive constant cm. Exponent  α expresses how rabidly 
the utility grows, and turns out to be a key determinant to the optimal system configuration. 
With large problem sizes, and to push the system to equilibrium, the problem must be 
advanced further into simulation time. This implies a trade-off problem, is the added utility 
large enough to offset the added computational cost? 
  

With a parallel machine with N processors, the system might be used in a variety of 
ways to execute the simulation. One extreme is using all processors concurrently to run 
problem not larger than size mx, another extreme is to use the entire machine in parallel to 
simulate one problem of size no grater than Nmx.  
 

A utility rate can be associated with each partition of the system, and can be 
calculated by dividing the utility gained by one experiment of the chosen size by the time 
needed to complete the experiment. The aggregate utility rate can be found by adding all the 
systems partitions utility rates, and can be used to compare different configuration of the 
system. The approach can be extended by adding a cost that varies with the number of used 
processors of the parallel machine.  When approaching optimization problems with a model 
that is dependent on the problem size, and the number of processors used, it shows that the 
maximized aggregate rate is a result of using one of the extremes; fully parallel or not at all. 
“Determination of which extreme is best depends on the rate of utility increase (α) in 
problem size, the rate (Є) at which length of the simulation must grow to reach equilibrium as 
the problem size grows, and the rate of performance increase (β) as additional processors are 
used in the simulation. Of these only α is subjective, and the user’s perception of how utility 
increases in problem size effectively determines which of the extreme configurations 
optimizes the aggregate utility rate.”[1.3] 
 



The cost of using a machine with N processors is supposed to be proportional to the 
execution time multiplied by Nρ, for ρ > 0. for any value for ρ > 0 it is shown that the 
configuration that optimizes utility rate b ρ > 0 per unit cost is an extreme. 
 

The native application behaviors is described be the problem size m, and the length of 
simulation time T(m) needed for interesting run of the problem of size m. The simulation 
length can be either dependent or independent of the problem size. 
 
Two characteristics are used to describe the capabilities of simulation. The first is (γ) the 
average execution time needed to evaluate a unit of problem simulation second on one CPU.  
The dependence of both the simulation length, and the execution time per unit problem can 
be denoted by modeling the execution on processor as  
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the second characteristic describes the ability of the simulation to be parallel. Letting  a(N) be 
the speedup of execution on a parallel system sing N processors, the speedup is let to be a(N) 
= Nβ, for β Є(0, 1), and N Є[1, Nx]. this model accounts for behavior where adding 
processors improves performance.  

Using these concepts the execution time of an application is expressed as    
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Using the utility model  µ(m) the utility rate at which utility is accrued simulating a problem 
of size m, using N processors is  
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1.2 Partitioning: 

For a parallel system, and to employ the systems resources, many partitioning 
possibilities can be used, for example ½ the system can work on one problem, a ¼ on a 
smaller problem, and the remaining ¼ on individual problems. An analysis was conducted 
using the utility function and the utility rat equation on different partitioning scenarios. In the 
analysis the equations were treated as continues although they are discrete to simplify the 
analysis. The analysis was conducted through assuming a number of theories and lemmas and 
proving them, and in all of the lemmas and theories the analysis showed that the optimal 
partitioning is fully parallel or fully serial.   

 



 

 

2.0 Conclusion: 
 

When using parallel systems, partitioning is used to decide whether to run simulations 
using the entire machine in parallel, in serial, or a mix of both. Using a utility function, and a 
utility rate function that was derived using the equations for simulation length, and execution 
time, it was shown that the most optimized solution to maximize the aggregate rate at which 
user’s utility is accrued is an extreme. The two extremes that maximize the aggregate rate 
were either using the machine fully parallel, or using it fully serial. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
3. Philip A. Wilsey 
 

Another promenant researhcer in the filed of network simulation and analysis is Mr. 
Philip A. Wilsey whose work in the area of parallel simulation of complex network has 
greatlly benefeted other researhces in the files. We will attempt to look on his analysis of the 
Active Networking Architecture, in the following overview of his work 

 
Active networking architecture enabled the integration of embedded computational 

abilities, within conventional networks. Therefore increasing efficiency and capacity of 
current networks through incrementing their customization ability for each specific 
computation. However this happened with the added side effect of increased complexity and 
the massive increase in size, thus making conventional analytical methods of modelling, 
simulation and analysis techniques obsolete. The Answer was a discrete event simulation 
technique so as to simplify and parallelize the simulation process so as to maintain maximum 
efficiency.  
 
 The paper at hand by Dhananjai M. Rao and Philip A. Wilsey, describes an integrated 
environment for the modelling and simulation (including parallel mode simulation) of Active 
networks. The Environment “Active Network Simulation Environment” (A.N.S.E.) 
incorporates a synchronized Time warp simulation kernel of WARPED. Thus enabling 
parallel simulation, it also provides support for Packet Language for Active Network 
(P.L.A.N.). In this comprehensive survey we shall attempt to shed the light on the theory 
behind the architecture, and the construction of A.N.S.E. 
  
 Theory behind the Architecture: 

 
A.N.S.E. was created with the intention of parallel simulation in mind from day one, 

this lead to the development of a framework around a general purpose discrete simulation 
kernel, with the use of object oriented rather than a structured infrastructure; this provided us 
with a mush required “separation of concerns”. And the ability to use various simulation 
kernels without need to change the modules already created. 
 
 As mentioned earlier ANSE incorporates a time warp WARPED synchronized kernel. 
WARPED is an API(Application program Interface) with various implementation, one being 
a Time warped optimistic synchronization strategy. This implementation has been used since 
an active network is based on the idea that the nodes constituting the network have a 
customizable computational ability on the datagrams flowing through it. 
Thus enabling Kernel to organize the simulation into asynchronous communicating logical 
processes (LP’s). Communication between various LP’s is done through exchange of virtual-
time stamps, while each process maintains its own Local virtual time (LVT). 
 
 However this mechanism is error prone with errors referred to as straggler events may 
occur. Nevertheless a rollback feature is made available to recover from the causality error. 
Recovery is only for LP’s prior to the error, while those where the error was created in or 
resulted in creating the error are destroyed, and then continue execution of LP’s in their 
previous order. Each LP also maintains a list of input/outputs and another for transitions 



between states to perform efficient rollbacks, discarding events that are no longer needed. 
Finally the Warp kernel provides an Interface to build LP’s according to the Jefferson 
definition of time Warp. Also the ability to create different LP’s with unique state definitions, 
with the clustering nomenclature adding more simplicity to the API, without the hassle of 
having to synchronize clusters, since control is exchanged between the application and the 
simulation Kernel through cooperative use of function calls.  
Overview of the blocks constructing ANSE: 
 

  
We shall attempt to look at each module presented in figure 1, and describe its 

operation, in order to understand the construction of ANSE. 
 
Topology Specification Language (TSL): 
  
The main input of the environment which is to be simulated (the network at hand) is 

given in TSL. The Backus Normal Form (BNF) grammar of TSL specifies a set of 
interconnected topology specifications each consisting of 3 main categories 

1. Object definition section 
Contain module details, which will be used in the simulation 

2. Object instantiation section 
Specifies the various nodes constituting the Topology 

3. The Netlist section 
Defines interconnectivity, between variously instantiated nodes. 

The topology also makes use of labels to define related segments of the code. 
 
TSL Parser: 

   
 The parser is used to convert (Parse) the input topology into an object oriented TSL 
intermediate format (TSL-IF). TSL-IF is implemented in C++ and is a set of cross referenced 
classes. It is available through the Purdue Compiler Construction Tool Set (PCCTS). The 
intermediate Format is accomplished by filling in the references in the various C++ classes 
with appropriate values.   
 
 Static elaborator: 
  
 The Part of the Environment used to reformat specification of large networks for the 
use of smaller sub networks, as “Hierarchical constructs provide convenient techniques to 
specific large networks by reusing the specification for smaller sub networks”. While 



elaboration is defined to be braking down of large hierarchical constructs into their 
constituting components. The Elaborated Topology is in TSL-If. The elaborator traverses the 
user-specified sub-topologies in the model creating and instantiating objects and sub-
topologies, as sub-topologies are instantiated they are then imploded into a major (enclosing) 
topology. Static elaboration is done since we are operating before the code generation 
step(opposite to the choice of dynamic elaboration).   
  

Code Generator: 
 
  Generates a C++ code (simulatable model) from the Elaborated TSL-If 
description, supplied from the Static elaborator. The generated code is compliant with the 
ANSE API. It is also worth mentioning that the Code Generator may be replaced to provide 
compatibility with other frameworks.  
 
 ANSE API and Library: 
 
  As mentioned earlier ANSE provides an interface to define logical processes 
(LP’s). The processes are defined as entities with the ability to send, receive and act upon 
events by applying a set of internal states (internal to the LP). The Lp’s are created using an 
object oriented infrastructure with a class performing the role of a master (Object) class 
which is “NetworkNode”, from which all classes are inherited, and created. The API also 
provides State support through classes such as “NetworkNodeState”, and “ActiveNodeState” 
(baring in mind the role of nodes in creating active network architecture, shows the 
importance of such classes).  
  
 The state classes are used to hold state information for each node/component. This 
enables the simulation kernel (WARPED) to perform rollbacks, thus a recovery mechanism 
from casual violations that might occur due to the optimistic nature of the time warp 
simulation. The discrete event in the system is the Packet represented by the Packet Class. 
Finally it is worth mentioning that the API is created using C++ making use of its robust 
operation. 
  
 PLAN Library: 
   
  “PLAN is a simple, functional programming language based on a subset of 
ML with some added primitives to express remote evaluation” [1]. In active network 
architecture packets can contain PLAN programs, to help customize operation for various 
network operations. Same as the API libraries, PLAN also makes use of an object oriented 
infrastructure enabling the use of Master classes such as ”PacketInjectors” to inject PLAN 
programs or packets into the simulation environment, to give an example.  

As for runtime operation the support of PLAN from The ANSE enables simulation of 
large, complex networks within limited hardware requirements of course to a certain point of 
complexity. 
   

 
Conclusion: 
 
 In conclusion It is the Testimony of the respected researches who have wrote 

this paper that “it is better to have a simple, yet flexible language such as TSL, for modelling 
network Topologies. It is useful to have a clear delineation between the languages for 



developing the software modules for networking components and network modelling 
language.”[1]  

The inter-operability between different types of models, and simulators from my point 
of view is certainly the greatest achievement of the ANSE Project. 

Glossary  
 
Federation:  In HLA, a parallel/distributed simulation. 
 
Federate:  individual simulator. 
 
Lookahead: “In parallel simulation, it is the minimum of the packet delivery delays in all the  
links of a sub-model that cross boundaries of partition” 
 
LBTS: Lower bound on time stamp. 
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