
Parallel simulation Researches survey

Introduction

The Following survey aims at identifying some of the prominent researches in the
filed of modeling and simulation, by means of their published papers. The selected researches
are Richard Fujimoto, David M.Nicol, and Philip A.Wilsey. The following document will
attempt to summarize some of their latest works in the field of modelling and simulation, as
for the selection of the topics it was based according to their relativity to our interest in
parallel simulation of complex networks.

1. Richard Fujimoto

Richard Fujimoto is a prominent researcher in the field of Parallel and Distributed and
Simulation. Currently he is a professor in the College of Computing at Georgia Institute of
Technology. He got his PhD and MS degrees from the University of California at Berkeley in
1980 and 1983 respectively. He has been active in research in the area of Parallel and
Distributed Simulation since 1985. He has given tutorials and delivered lectures on parallel
simulation in leading conferences around the globe. He is also very active with the D.O.D
(Department of Defense) research activities; especially recently he is the technical lead for
time management issues for D.O.D's HLA (High Level Architecture).

Also, he is a contributing member of various IEEE societies including the one on

Parallel and Distributed Simulation. Besides IEEE, he is an area editor for ACM Transactions
on Modeling and Computer Simulation, has chaired the steering committee for the Workshop
on Parallel and Distributed Simulation (PADS) from 1990 to 1998. He was also a member of
the Conference Committee for the Simulation Interoperability Workshop. In addition to
numerous conference and journal contributions, he has co-authored books on Parallel and
Distributed Simulation too. In the past decade he has published research activities in Parallel
and Distributed Simulation of Communication Networks.

Position Statement of Richard Fujimoto: [10]

Interoperable distributed simulations have been widely used for D.O.D activities but
this technology is yet to find widespread application for the non-military purposes. Most
importantly, the feasibility must be sufficiently attractive for a business to invest in the initial
expenditures in technology. Embedded computing industry provides a good scope for
modeling and simulation. Embedded computers are used to make “smart” devices. Parallel
networks of these smart devices will add another dimension i.e. devices will be capable to
anticipate and adapt to future events. The distributed systems of embedded devices must be
power efficient and their modeling and simulation process must be automated.
Interoperability issues amongst components from different or even the same manufacturer
must be resolved. Permulla et al, 2002 describes a simulation of a military network using ns2
and GloMoSim. In this case the network models an offshore landing. The network provides

communication between troops on the land and naval ships. The simulation models actual
networks. Such a simulation can be modeled for non-military purposes too.

(1) Experiences Parallelizing a Commercial Network Simulator

Following is an overview of a paper by Dr. Fujimoto, relating to “Experiences
parallelizing a commercial network simulator”

This paper approaches a methodology which extends sequential simulators to run on
parallel machines. This methodology will be applied to OPNET simulator. The results show
that considerable speedup can be obtained for some OPNET models provided proper
partitioning strategies are implemented and simulation attributes are adjusted appropriately.

It is very expensive, time consuming and in some cases impossible to construct real
models of huge networks. It is also impractical to deploy new protocols throughout the
internet. Modeling and simulation of networks over a single processor is often time
consuming too. Parallel and distributed simulation provides one solution to this problem.
There have been a number of parallel simulators built over the past decade. In spite of these
endeavors, sequential simulators are still widely used today. This is due to the overheads in
transition to new software running on different languages.

The approach in this paper is to parallelize sequential simulators. The methodology is
to decompose the system being modeled into subsystems, and running the subsystems on
different processors. The methodology implemented in this research particularly assumes that
source code of the simulation programs is not available. Hence, there will be minimal
changes to the original sequential simulator.

Parallel Network Simulation Architecture:

Each federate runs a sub-network. A sequential simulator runs this sub-network. RTI
provides the communication interface between the sequential simulators running on different
machines. A proxy model is added to each federate running on a single processor, providing
an interface between the sequential simulator and the RTI.

Methodology for Parallel Simulation:

1. The whole network is partitioned into sub-networks.
2. Each sub-network runs on a different processor
3. Proxy model is responsible for communication of one sub-model with the others
4. Optimizations must be applied to improve performance

Data flow across federates:

 A network model consists of node objects and link objects. When a big network is
broken down into sub-nets, some links are broken. So end nodes of some links are not
available (they are in a different federate). Proxy objects are used to communicate with these

nodes. Proxy objects make use of the RTI functions too. Another important feature of the
proxy objects is too translate native simulator message format to a well-known one used by
the proxies and vice versa.
 Proxy is divided into two parts. 1. gen_proxy, independent of the protocol, takes care
of the time and events. 2. pro_proxy, protocol dependent portion to process specific protocol
packets. Data channels between federates may be uni-directional or bi-directional. These
channels are implemented based on the HLA publishing/receiving class mechanism.

Simulation Time and Event Management:

 As this is a discrete event simulation, unprocessed events are stored in a queue and
processed in a time stamp order. Local time of each simulator must be synchronized with the
others. Synchronization is a challenging problem. It is to be made sure that no federate
receives an event in its past. Therefore synchronization among federates is an important task.
For that purpose an LBTS value is maintained and no federate can advance its simulation
beyond that LBTS value.

Performance Related Issues

 Lookahead is used to improve parallelism and hence performance in the system. The
larger the value of lookahead, the more the parallelism in the system. When a federate needs
information beyond its sub-model, a ghost object is created that models that specific part of
the network. This results in reduced memory burden as compared to defining the overall
network in every federate.

Another research in the same filed is related to “a parallel OPNET simulation”

 Kowing that OPNET consists of an event based simulation engine, libraries to write
models in C, drag and drop style graphical interface and a library of network components.

Implementation:

 FDK (Federated Simulations Development Kit) developed by Fujimoto et al. at
Georgia Tech was used for this project. An important task is to calculate the propogation
delays, at the link objects. The proxy model computes real delays. OPNET models heavily
rely on global state information. To resolve this issue, ghost objects implemented on each
federate, store information of the whole network. This process is static and not modifiable at
run-time. OPNET also uses interrupts, that make interaction through RTI very tough, so a
detailed analysis of the whole network is required to increase the lookahead.

Performance:

1. Performance is increased has lookahead is increased. For this, either the network
model is partitioned at links with low bandwidth, or distance is increased between
federates mapped to low bandwidth.

2. An increase in event density improves performance
3. An improvement in traffic locality reduces cost and increases performance.

CONCLUSIONS:

 This method is easy if the sequential simulator doesn’t extensively use global state
information. Problems like zero lookahead and global state make parallelization difficult.
Recently OPNET has introduced support for HLA. But this technique is superior because it
allows use of existing network models.

(2) Generic Framework for Parallelization of Network Simulations

Another research by Richard Fugimoto is a study of a Generic Framework for
Parallelization of Network Simulations.

The goal of the research was to develop and demonstrate a practical, scalable approach to

parallel and distributed simulation that will enable widespread reuse of sequential discrete
event simulation models and software. The focus was on an approach to parallelization where
an existing network simulator was used to build models of subnet works that were composed
to create simulations of larger networks.

 Simulation tools have not been able to keep up with the rapid increase in the size,
complexity and speed of modern networks. Which is why an approach that exploits parallel
and distributed simulations is needed to improve the performance of the simulation of
networks. The approach used in the paper, was to extend the features of ns, and allow it to be
interconnected to create parallel simulations. Each simulator will be given the network
topology and data flow characteristics, which describe only a portion of the network being
simulated. Interactions between the different simulations were done using a runtime
infrastructure. A methodology for parallelization was described for simulations run on
shared-memory, symmetric multiprocessors and via distributed computing on several
workstations. The basic steps required were:

1. Determine how many processes (threads) will be assigned to run the parallel

simulation. Ideally, on a system with n-CPUs, the work would be divided into n-
processes.

2. Divide the state set into n partitions and create a one-to-one mapping between
partitions and processes.

3. Maintain a separate event list for each physical process, so each process will be
concerned with only the events that affect the states in it’s state set.

4. Distribute events during the execution among the physical processes.
5. Add a synchronization/communication mechanism to ensure consistent state

management between the processes.
6. Perform optimizations

With the above steps a parallel simulation can be constructed on an SMP. However, there are
several issues concerning distributed simulations on separate workstations. The issues
concern defining physical and logical connectivity between sub models of a divided
simulation model. To define connectivity between sub models, such as a source and a sink,
which reside on different workstations, the IP Address and port number is used. The steps
needed to create a distributed simulation are to determine routing paths, event time
management and event communication.

Routing paths can be determined by the simulator run some existing and well known routing
protocols while the simulation is running in order to exchange dynamic routing information
between the sub models. Event time management needs to be implemented. This means, that
each simulator must determine that no other simulator can create events at an earlier time
before it can be allowed to process it’s most recent event. This can be done using a lower
bound time-stamp (LBTS). Both event communication and event time management is
provided with a runtime library such as RTIKIT, which provides these services using a
multicast group management strategy known as MCAST.

 Optimizations were made to the event communication/management schemes by decreasing
LBTS overhead and using polling on the listener sockets used for communication only when
it was sure that it would not block forever. After conducting experiments using an eight-node
model in a distributed system using the TCP protocol for communication, an increase in
performance was observed that stated a successful parallel simulation.

2. David M.Nicol

Next is yet another researches in the field of network simulation .Mr.David M.Nicol,

who is curretnly a Professor in the Electrical and Computer Engineering, department in the
univeristy of Illionis. Professor Nicol’s area of research is parallel simulation, of large scale
networks, either building tools dor analysis or investigation of causes for the precessince of
certain applications(such as Worm inestation).

(1) A Mixed Abstraction Level Simulation Model of Large-Scale Internet Worm
Infestations

This paper was a proceeding of the 10th IEEE International Symposium on Modeling,
Analysis, & Simulation of Computer & Telecommunications Systems written by David Nicol
along with other authors. The purpose of this paper is to model large-scale worm infestations
in order to assess their threat levels, evaluate countermeasures and investigate their possible
influence on the Internet infrastructure. The paper describes the approach of the simulation,
the collection of data and modeling of certain essential model elements, such as topology,
population distributions, and scanning traffic.

The method used for modeling Internet-worm infestations is based on a mixed
abstraction simulation by using selective abstraction through Epidemiological models
combined with detailed protocol models. The epidemiological model originally developed for
the study of biological diseases, greatly simplifies modeling the worm propagating in the
network because it reduces the complexity of the model, and it is a better match for the
limited available data on the events. The epidemiological model also helps in gathering
information about worm propagation dynamics and it effect on the routing infrastructure.

To improve the reliability of the simulation, the authors made an assumption that the
worm scanning traffic induces an increase in BGP (Border Gateway Protocol) routing
message traffic. Based on this assumption, three models are required for simulation; a model
of how the worm propagates and infects hosts in the Internet, a traffic model for the scans
emitted by the worm and a model of how the worm scans induce stress on routers.

Furthermore, in order to study the system at the level of inter-domain routing, the
system is decomposed spatially into autonomous systems (AS’s). This would help in
developing a stratified epidemic model for worm propagation such that the host population is
stratified into AS’s.

The underlying data of the simulation includes both stochastic (chaotic) and
deterministic versions. Since the population is sufficiently large, the stochastic models are
approximated by a system of equations based on a continuous state-continuous time
deterministic model. These equations rest upon AS’s the law of mass action AS’s which
incorporates the principle of Homogeneous mixing.

Unfortunately, due to limited time and memory size, there was a constriction in the
number of BGP routers used in the mixed abstraction model. As a result the model was down
scaled to simulating only a few hundred autonomous systems. However, in the future, the use
of parallel execution techniques and judicious abstraction could make the simulation of a few
thousand AS's possible. Thus a better interpretation of the model output would be achieved.

(2) Utility Analysis of Parallel Simulation

Another document also published by David M. Nicol carrying the title “Utility
Analysis of Parallel Simulation”. We shall attmept to summarize the model and partitioning
analysis part of the original document. The summary section of this document is divided into
two parts, Model (a summary of the model), and partitioning (a summary of the partitioning
and analysis section)

1.0 Utility Analysis of Parallel Simulation summary:

1.1 Model:

Recognizing that large problems are user dependent, the approach uses the notation of
user defined utility. The problem size described by variable m is supposed to be able to be
characterized into problem units, and µ(m) is used to denote the user utility of simulating a
problem with size m. Although the size is discreet, using it as a continues quantity wont effect
the obtained results. The purpose of the model is to capture the notion that the users utility
grows as the problem size simulated grows. A simple model that expresses a wide rang of
growth is µ(m) = cm mα, for some positive constant cm. Exponent α expresses how rabidly
the utility grows, and turns out to be a key determinant to the optimal system configuration.
With large problem sizes, and to push the system to equilibrium, the problem must be
advanced further into simulation time. This implies a trade-off problem, is the added utility
large enough to offset the added computational cost?

With a parallel machine with N processors, the system might be used in a variety of
ways to execute the simulation. One extreme is using all processors concurrently to run
problem not larger than size mx, another extreme is to use the entire machine in parallel to
simulate one problem of size no grater than Nmx.

A utility rate can be associated with each partition of the system, and can be
calculated by dividing the utility gained by one experiment of the chosen size by the time
needed to complete the experiment. The aggregate utility rate can be found by adding all the
systems partitions utility rates, and can be used to compare different configuration of the
system. The approach can be extended by adding a cost that varies with the number of used
processors of the parallel machine. When approaching optimization problems with a model
that is dependent on the problem size, and the number of processors used, it shows that the
maximized aggregate rate is a result of using one of the extremes; fully parallel or not at all.
“Determination of which extreme is best depends on the rate of utility increase (α) in
problem size, the rate (Є) at which length of the simulation must grow to reach equilibrium as
the problem size grows, and the rate of performance increase (β) as additional processors are
used in the simulation. Of these only α is subjective, and the user’s perception of how utility
increases in problem size effectively determines which of the extreme configurations
optimizes the aggregate utility rate.”[1.3]

The cost of using a machine with N processors is supposed to be proportional to the
execution time multiplied by Nρ, for ρ > 0. for any value for ρ > 0 it is shown that the
configuration that optimizes utility rate b ρ > 0 per unit cost is an extreme.

The native application behaviors is described be the problem size m, and the length of
simulation time T(m) needed for interesting run of the problem of size m. The simulation
length can be either dependent or independent of the problem size.

Two characteristics are used to describe the capabilities of simulation. The first is (γ) the
average execution time needed to evaluate a unit of problem simulation second on one CPU.
The dependence of both the simulation length, and the execution time per unit problem can
be denoted by modeling the execution on processor as

() ()
() 21

1 ,*1,

1, 21

εεεγ
γ

ε

εε

+==

∗∗=
+ wheremcmx

mmmcmx

t

t

the second characteristic describes the ability of the simulation to be parallel. Letting a(N) be
the speedup of execution on a parallel system sing N processors, the speedup is let to be a(N)
= Nβ, for β Є(0, 1), and N Є[1, Nx]. this model accounts for behavior where adding
processors improves performance.

Using these concepts the execution time of an application is expressed as

() ()
()

() β

γ
n

mc
nmx

na

mx
nmx

c
t

+

=

=

1**
,

1,
,

Using the utility model µ(m) the utility rate at which utility is accrued simulating a problem
of size m, using N processors is

() ()
()

t

m

C

C
KWhere

NmKnm

nmx

n
nm

*

),(

,

)(
,

1

γ

λ

µλ

µ

βεα
µµ

µ

=

=

=

+−

1.2 Partitioning:

For a parallel system, and to employ the systems resources, many partitioning
possibilities can be used, for example ½ the system can work on one problem, a ¼ on a
smaller problem, and the remaining ¼ on individual problems. An analysis was conducted
using the utility function and the utility rat equation on different partitioning scenarios. In the
analysis the equations were treated as continues although they are discrete to simplify the
analysis. The analysis was conducted through assuming a number of theories and lemmas and
proving them, and in all of the lemmas and theories the analysis showed that the optimal
partitioning is fully parallel or fully serial.

2.0 Conclusion:

When using parallel systems, partitioning is used to decide whether to run simulations
using the entire machine in parallel, in serial, or a mix of both. Using a utility function, and a
utility rate function that was derived using the equations for simulation length, and execution
time, it was shown that the most optimized solution to maximize the aggregate rate at which
user’s utility is accrued is an extreme. The two extremes that maximize the aggregate rate
were either using the machine fully parallel, or using it fully serial.

3. Philip A. Wilsey

Another promenant researhcer in the filed of network simulation and analysis is Mr.
Philip A. Wilsey whose work in the area of parallel simulation of complex network has
greatlly benefeted other researhces in the files. We will attempt to look on his analysis of the
Active Networking Architecture, in the following overview of his work

Active networking architecture enabled the integration of embedded computational

abilities, within conventional networks. Therefore increasing efficiency and capacity of
current networks through incrementing their customization ability for each specific
computation. However this happened with the added side effect of increased complexity and
the massive increase in size, thus making conventional analytical methods of modelling,
simulation and analysis techniques obsolete. The Answer was a discrete event simulation
technique so as to simplify and parallelize the simulation process so as to maintain maximum
efficiency.

 The paper at hand by Dhananjai M. Rao and Philip A. Wilsey, describes an integrated
environment for the modelling and simulation (including parallel mode simulation) of Active
networks. The Environment “Active Network Simulation Environment” (A.N.S.E.)
incorporates a synchronized Time warp simulation kernel of WARPED. Thus enabling
parallel simulation, it also provides support for Packet Language for Active Network
(P.L.A.N.). In this comprehensive survey we shall attempt to shed the light on the theory
behind the architecture, and the construction of A.N.S.E.

 Theory behind the Architecture:

A.N.S.E. was created with the intention of parallel simulation in mind from day one,

this lead to the development of a framework around a general purpose discrete simulation
kernel, with the use of object oriented rather than a structured infrastructure; this provided us
with a mush required “separation of concerns”. And the ability to use various simulation
kernels without need to change the modules already created.

 As mentioned earlier ANSE incorporates a time warp WARPED synchronized kernel.
WARPED is an API(Application program Interface) with various implementation, one being
a Time warped optimistic synchronization strategy. This implementation has been used since
an active network is based on the idea that the nodes constituting the network have a
customizable computational ability on the datagrams flowing through it.
Thus enabling Kernel to organize the simulation into asynchronous communicating logical
processes (LP’s). Communication between various LP’s is done through exchange of virtual-
time stamps, while each process maintains its own Local virtual time (LVT).

 However this mechanism is error prone with errors referred to as straggler events may
occur. Nevertheless a rollback feature is made available to recover from the causality error.
Recovery is only for LP’s prior to the error, while those where the error was created in or
resulted in creating the error are destroyed, and then continue execution of LP’s in their
previous order. Each LP also maintains a list of input/outputs and another for transitions

between states to perform efficient rollbacks, discarding events that are no longer needed.
Finally the Warp kernel provides an Interface to build LP’s according to the Jefferson
definition of time Warp. Also the ability to create different LP’s with unique state definitions,
with the clustering nomenclature adding more simplicity to the API, without the hassle of
having to synchronize clusters, since control is exchanged between the application and the
simulation Kernel through cooperative use of function calls.
Overview of the blocks constructing ANSE:

We shall attempt to look at each module presented in figure 1, and describe its

operation, in order to understand the construction of ANSE.

Topology Specification Language (TSL):

The main input of the environment which is to be simulated (the network at hand) is

given in TSL. The Backus Normal Form (BNF) grammar of TSL specifies a set of
interconnected topology specifications each consisting of 3 main categories

1. Object definition section
Contain module details, which will be used in the simulation

2. Object instantiation section
Specifies the various nodes constituting the Topology

3. The Netlist section
Defines interconnectivity, between variously instantiated nodes.

The topology also makes use of labels to define related segments of the code.

TSL Parser:

 The parser is used to convert (Parse) the input topology into an object oriented TSL
intermediate format (TSL-IF). TSL-IF is implemented in C++ and is a set of cross referenced
classes. It is available through the Purdue Compiler Construction Tool Set (PCCTS). The
intermediate Format is accomplished by filling in the references in the various C++ classes
with appropriate values.

 Static elaborator:

 The Part of the Environment used to reformat specification of large networks for the
use of smaller sub networks, as “Hierarchical constructs provide convenient techniques to
specific large networks by reusing the specification for smaller sub networks”. While

elaboration is defined to be braking down of large hierarchical constructs into their
constituting components. The Elaborated Topology is in TSL-If. The elaborator traverses the
user-specified sub-topologies in the model creating and instantiating objects and sub-
topologies, as sub-topologies are instantiated they are then imploded into a major (enclosing)
topology. Static elaboration is done since we are operating before the code generation
step(opposite to the choice of dynamic elaboration).

Code Generator:

 Generates a C++ code (simulatable model) from the Elaborated TSL-If
description, supplied from the Static elaborator. The generated code is compliant with the
ANSE API. It is also worth mentioning that the Code Generator may be replaced to provide
compatibility with other frameworks.

 ANSE API and Library:

 As mentioned earlier ANSE provides an interface to define logical processes
(LP’s). The processes are defined as entities with the ability to send, receive and act upon
events by applying a set of internal states (internal to the LP). The Lp’s are created using an
object oriented infrastructure with a class performing the role of a master (Object) class
which is “NetworkNode”, from which all classes are inherited, and created. The API also
provides State support through classes such as “NetworkNodeState”, and “ActiveNodeState”
(baring in mind the role of nodes in creating active network architecture, shows the
importance of such classes).

 The state classes are used to hold state information for each node/component. This
enables the simulation kernel (WARPED) to perform rollbacks, thus a recovery mechanism
from casual violations that might occur due to the optimistic nature of the time warp
simulation. The discrete event in the system is the Packet represented by the Packet Class.
Finally it is worth mentioning that the API is created using C++ making use of its robust
operation.

 PLAN Library:

 “PLAN is a simple, functional programming language based on a subset of
ML with some added primitives to express remote evaluation” [1]. In active network
architecture packets can contain PLAN programs, to help customize operation for various
network operations. Same as the API libraries, PLAN also makes use of an object oriented
infrastructure enabling the use of Master classes such as ”PacketInjectors” to inject PLAN
programs or packets into the simulation environment, to give an example.

As for runtime operation the support of PLAN from The ANSE enables simulation of
large, complex networks within limited hardware requirements of course to a certain point of
complexity.

Conclusion:

 In conclusion It is the Testimony of the respected researches who have wrote

this paper that “it is better to have a simple, yet flexible language such as TSL, for modelling
network Topologies. It is useful to have a clear delineation between the languages for

developing the software modules for networking components and network modelling
language.”[1]

The inter-operability between different types of models, and simulators from my point
of view is certainly the greatest achievement of the ANSE Project.

Glossary

Federation: In HLA, a parallel/distributed simulation.

Federate: individual simulator.

Lookahead: “In parallel simulation, it is the minimum of the packet delivery delays in all the
links of a sub-model that cross boundaries of partition”

LBTS: Lower bound on time stamp.

References:

[1] Modeling and simulation of Active Networks, by: Dhananj M. Rao and Philip A. Wilsey,
Experimental Computer Laboratory.

[10] Distributed Simulation and Industry: Potentials and Pitfalls

 Proceedings of the 2002 Winter Simulation Conference

