
This document aims to survey three of the currently available and widely used tools, in the field of simulation and modelling of communication systems. The surveys have been written by different team members, hence he difference in style between each tool. Unfortunately the amount of information available is not constant for all of the three tools, which resulted in the non homogenous flow of the document. As questions answered for one tool, will most likely not be the same as the any of the other tools.

The survey is divided into three parts as mentioned before, first we shall examine the Network Simulator (NS) with its current version two, preceding to a look at OPNET a very successful commercial too unlike the other two simulators. And finally OMNET

Network Simulator Version 2:

NS is a publicly available tool for network simulations, built by various researches including LBL, Xerox PARC, UCB, and USC/ISI, and many other contributors as a variant of the “Real Network Simulator”, which is “a network simulator originally intended for studying the dynamic behavior of flow and congestion control schemes in packet-switched data networks” [1:Page 1].

NS is intended to simulate and research computer networks, using a discrete event simulation technique. NS is currently being developed by D.A.R.P.A. (Defense Advanced Research Projects Agency), through the SAMAN project, which aims at making network protocols and operations more susceptible to failure so that protocols and network operations would be analyzed under extreme conditions.
The following survey will attempt to cover the basics of NS without going in great details by answering the following in their stated order. What is the input topology of the simulator (to be analyzed), how is the output of the simulator validated, what protocols does the simulator support, does the public contribute to this research, and how is this contribution performed, does the simulator have any limitations, does the simulator support a parallel distributed environment, and finally what is the future of the simulator
Topology [1:]
Topology is defining an object’s location with respect to another reference point. We are interested in this report in the geography of cyberspace either of ISP’s or even complete images of the current cyberspace.

NS accept converted topologies from the following generators:

· Inet Topology generator

· an Autonomous System (AS) level Internet topology generator
· GT-ITM(Georgia Tech Internetwork Topology Models) topology generator

· A tool that generates graphs modeling the topological structure of internetworks
· Tiers topology generator

· A random topology generator by Mathew Doar
· BRITE(Boston university representative internet topology generator)
· A tool by Boston University, the project aims in creating a universal topology generator [4].
· By hand

· Used for simple and small topologies, mostly aimed at learning the basics of NS, rather than studying specific systems.
Conversion of the previously mentioned topologies is done through separate scripts that are not incorporated in the simulator.
Validation

“Ns is not a polished and finished product, but the result of an on-going effort of research and development. In particular, bugs in the software are still being discovered and corrected. Users of NS are responsible for verifying for themselves that their simulations are not invalidated by bugs” [1:]
The program mainly tests TCP congestion control algorithms; it is also worth mentioning that the current version of the simple validation tools is backward compatible with ns-1.

Other validation methods include:
· THE SACK TCP TESTS

· Comparisons of Tahoe, Reno, and SACK TCP

· NS Simulator Tests for Random Early Detection (RED) Gateways
Since NS is a public project, it relays on an extensive bug report forum for verification and modification purposes. It also supports an extensive database of demos to illustrate the correct usage of each supported protocol.
Supported protocols

Almost all variants of TCP are supported by NS, several forms of multicast, wired networking, several ad hoc routing protocols and propagation models (but not cellular phones), data diffusion, satellite, etc. following is a list presented as it is found on the Ns web site, The list features the layer, protocol, and test library supporting the protocol for verification purposes, if found.
· Application-level:

· HTTP, web caching and invalidation, TcpApp (test-suite-webcache.tcl)

· telnet and ftp sources (test-suite-simple.tcl)

· Constant-Bit-Rate (CBR) sources (test-suite-cbq.tcl)

· On/Off sources (test-suite-intserv.tcl)

· Transport protocols (UDP, TCP, RTP, SRM):

· basic TCP behavior (test-suite-simple.tcl, test-suite-v1{,a}.tcl)

· Tahoe, Reno, New-Reno, and SACK TCP under different losses (test-suite-tcpVariants.tcl)

· FACK TCP (limited validation in test-suite-tcpVariants.tcl)

· TCP vegas (test-suite-vegas-v1.tcl)

· New-Reno TCP (test-suite-newreno.tcl)

· SACK TCP (test-suite-sack{,-v1,v1a})

· full TCP (test-suite-full.tcl), partial validation only.

· TCP initial window behavior (test-suite-tcp.tcl)

· rate-based pacing TCP (test-suite-rbp.tcl)

· RFC-2001 (Reno) TCP behavior (test-suite-rfc2001.tcl)

· RTP (in test-suite-friendly.tcl, not yet added to "validate")

· SRM (in test-suite-srm.tcl)

· Routing:

· algorithmic routing (test-suite-algo-routing)

· hierarchical routing (test-suite-hier-routing.tcl)

· lan routing and broadcast (test-suite-lan.tcl)

· manual routing (test-suite-manual-routing.tcl)

· centralized multicast, DM multicast, not detailedDM, not multicast over LAN (test-suite-mcast.tcl)

· routing dynamics (test-suite-routed.tcl)

· detailed simulation using virtual classifier (test-suite-vc.tcl)

· mixed-mode session-levels simulation (test-suite-mixmode.tcl)

· session-level simulation (test-suite-session.tcl)

· Router Mechanisms (scheduling, queue management, admissions control, etc.):

· FQ (Fair Queueing), SFQ (Stochastic Fair Queuing), DRR (Deficit Round Robin), FIFO (with drop-tail and RED queue management) (test-suite-schedule.tcl)

· CBQ (both in v1 and v2 mode) (test-stuite-cbq{,-v1,-v1a})

· RED queue management (test-suite-red{,-v1,-v1a})

· ECN behavior (and TCP interactions) (test-suite-ecn.tcl)

· admission control algorithms: MS, HB, ACTP, ACTO, parameter-based (in test-suite-intserv.tcl)

· Link-layer mechanisms:

· LANs, with CSMA/CD MAC protocols (in test-suite-lan.tcl)

· snoop

· Other:

· Error Modules (e.g., in test-suite-ecn.tcl, test-suite-tcp-init-win.tcl, test-suite-session.tcl, and test-suite-srm.tcl)
· Invalidated protocols:

· Fack and Asym TCP

· RTCP

· RTP

· LANs with CSMA/CA MAC protocols (tcl/ex/mac-test.tcl), with MultihopMac (mac-multihop.cc)and with 802.11 (mac-802_11.cc)

· RLM (Receiver Layered Multicast) (tcl/ex/test-rlm.tcl)

· token bucket filters (tcl/ex/test-tbf.tcl)

· trace-generated sources (tcl/ex/tg.tcl)

· delay-adaptive receivers (tcl/ex/test-rcvr.tcl)

· delay modules (delaymodel.cc)

· IVS (ivs.cc)

· emulation mode

Contributions
The network simulator have been around for quite a while, and have been established as an industry standard on the same level as other software (Opnet, and Omnet, etc).

Contributions (in the form of code and add-ons to the simulator) to the project are made by various researchers to serve their own research need, and in effect that of the development of the NS project. Most Contributions however are not tested or validated by the VINT group, and are left to their respected developers to maintain and support.

All contributions made to the project can be found at:
http://www.isi.edu/nsnam/ns/ns-contributed.html however since we are not actually using NS, but rather surveying its abilities and functionality, a study of the contributed code will not be included in this survey, as it would be out of scope.
Limitations
Since a model is a simplified representation of a real system created with the intention of experimentations, Boundaries, rules and even deficiencies arise. A certain and most annoying deficiency faced by the developers is the enormous processing power and memory capacity required as the network size increases. This particular limitation is almost present in all network simulators present today. Other than the simulation size limitation, certain technical limitations are described to be

· TCP one-way

· the lack of a dynamic window advertisement
· segments and ACK calculations are in packets
· No SYN/FIN connection establishment/teardown.
· TCP one-way, ECN (Explicit Congestion Notification)
· Sender doesn’t check if receiver is ECN compliant
· TCP two-way(full TCP)
· no dynamic window advertisement,
· no 2MSL-wait or persist states
· no urgent data or RESET segments
Since this survey is done without actually using the tool, but rather through studying its documentation and supporting materials, it’s predictable that the actual use of NS would shed the light on more limitations related to the design of the software itself. Another limitation is the lack of a GUI built in the package, several open source scripts attempt to draft a GUI over the tool, and however this only result in decreased functionality as the tool wasn’t designed with such an option. It is although worth mentioning the presence of external tools used for viewing networks and threads (NAM: Network Animator).
Parallel distributed NS
As mentioned earlier when discussing the limitations faced by NS, design of large networks using NS proved to be very hard and almost impossible. The reasons for that as stated by the simulator developers are extensive CPU usage and large memory requirements.

These limitations lead to the development of a parallel distributed version of the network simulator. The research is lead by Dr.George Riley and Alfred Park faculty members of the Georgia Institute of Technology, College of Computing. The objective of the PDNS(parallel distributed NS) is to provide means of simulating a network topology on a distributed system of about 8~16 workstations.
The workstations are connected through a “Myrinet” network(packet-communication and switching technology used to interconnect clusters of computers), or a standard Ethernet network using the TCP/IP protocol stack.

Appraoch
Keeping and using the current NS tools was important to make use of future developments in the NS project, therefore a federated simulation approach was used, where separate installations of the NS software are running separatly on different workstations, each simulating a portion or a subnetwork of the system under consideration, with a conservative(blocking based) approach of synchronization. The NS federate approach is assumed not to need a state saving method added to the currently avaialble NS code. The software is developed with the PADS (Parralel and Distributed Simmulation) research group at the georgia institute of technology to provide support for the following Parallel and distributed modes of operation:

· global virtual time management
· group data communications
· message buffer management.
communication interconnects being used are

· shared memory
· Myrinet networks

· TCP/IP networks

Although modification to the NS tool was higly undesirable, however it was necessary to change and later on standarize those changes for future development of the NS tool. Changes to the tool are grouped in the following categories
· Modifications to the ns event processing infrastructure
· Extensions to the NS TCL script syntax for describing simulations

Status and future development of NS
PDNS has been succesfully tested on a total of 128 processors, and a sum of 500,000 nodes network topology. A set of different projects are currently being developed, one is a scenario generator. The function of such a tool would be to translate the output of a topology generator into NS format and will come with a scenario library ,that will have different scenarios to thourougly test the network at hand. Last but not least a facility to inject live trafic from NS and to emulate(i.e: translate live traffic into NS) a network is available, it is usually considered a different project, therefore it was not covered in this survay of NS.
In conclusion NS has been in development in the georgia institue of technology for many years. It has been used as a reliable simulaiton and validation tool by many agencies and organizations, proving its high standars. Although the lack of a built in GUI, the fact that the project is open to the public, made it possible for other researches to contribute to it, adding more functionallity to the simulator. The future of NS is clear to be in the path of parallel and distributed simulations, as the parallel formalism aids in solving large scale networks, which are more and more becoming the normal tybe of networks in an ever developing and changing industry.
OPNET:
A commercial tool by MIL3, Inc., OPNET (Optimized Network Engineering Tools) is an engineering system capable of simulating large communication networks with detailed protocol modeling and performance analysis. Its features include graphical specification of models, a dynamic, event-scheduled Simulation Kernel, integrated data analysis tools and hierarchical, object based modeling. “It is a network simulation tool that allows the definition of a network topology, the nodes, and the links that go towards making up a network. The processes that may happen in a particular node can be user defined, as can the properties of the transmission links. A simulation can then be executed, and the results analyzed for any network element in the simulated network” [4].

· Key features

The key features of OPNET are that, it provides powerful tools that assist the user in the design phase of a modeling and simulation project, i.e., the building of models, the execution of a simulation and the analysis of the output data. OPNET employs a hierarchical structure to modeling, that is, each level of the hierarchy describes different aspects of the complete model being simulated. It has a detailed library of models that provide support for existing protocols and allow researchers and developers to either modify these existing models or develop new models of their own. Furthermore, OPNET models can be compiled into executable code. An executable discrete-event simulation can be debugged or simply executed, resulting in output data. OPNET has three main types of tools - the Model Development tool, the Simulation Execution tool and the Results Analysis tool. These three types of tools are used together to model, simulate and analyze a network.

· The Model Development Tool

The model development tools consist of the Network Editor, the Node Editor, the Process Editor and the Parameter Editor. The Network Editor is used to design the network models, with different nodes connected by point-to-point links, radio links, etc., and may consist of none or more subnets. The Node Editor is used to place the models of the nodes used into the network. A node in OPNET consists of modules, such as a packet generator, connected to other modules such as processors and packet sinks, by packet streams and statistic lines. The Process Editor is used to define the processes that run inside these modules. The processes themselves are designed using State Transition Diagrams along with some textual specifications using Proto-C, an OPNET variant on the C language. The Parameter Editor allows the definition of parameters used in the input for the node modules and process models, such as the packet format, probability density functions, etc [2].

· The Simulation Execution Tool

The simulation execution tools consist of the Probe Editor and the Simulation Tool. The Probe Editor is used to place probes at various points of interest in the network model. These probes can be used to monitor any of the statistics computed during simulation. The Simulation Tool allows the user to specify a sequence of simulations, along with any input and output options, and many different runtime options.

· The Results Analysis Tool

 The results analysis tools consist of the Analysis Tool and the Filter Editor. The Analysis Tool will display the results from a simulation or series of simulations as graphs. The Filter Editor is used to define filters to mathematically process, reduce, or combine statistical data [2].

· Model design Methodology

OPNET defines a model using a hierarchical structure - at the top there is the network level, which is constructed from the node level, which in turn is made from the process level. The network level, node level and process level designs are implemented using the Network Editor, Node Editor and Process Editor respectively. The Network level contains one Top Level Network. This Top Level Network may consist of none or more subnets, and into these subnets there may be any number of further subnets. In this way OPNET can easily represent the hierarchical structure of network such as routing networks, which may consist of Tier-1 network, inside which there is the Tier-2 network of nodes, inside which Tier-3 nodes are connected and so on.

In the Node level the processes that happen inside a node such as a packet is generated and received by a process, which does error checking on the packet and then forwards it to other processes, which may do their own processing on it or discard it. The Process level allows the designer to create the processes required for use in the process models. The processes are defined using state transition diagrams along with some additional textual specifications using Proto-C which is a version of C specialized for protocols and distributed algorithms [3]. Both the state diagrams and the Proto-C code together form what OPNET terms a 'Finite State Machine'. A process model can also spawn other, child process models [3].

· The Network Editor

The Network Editor is used to specify the physical topology of a communications network, which defines the position and interconnection of communicating entities, i.e., nodes and links [2]. The specific capabilities of each node are defined in the underlying node and process models. Each model consists of a set of parameters that can be set to customize the node's behavior and the nodes can be fixed, mobile or satellite. Data can be transferred between the nodes using Simplex or duplex links that connect them. There can also be a bus link that provides a broadcast medium for an arbitrary number of attached devices [3]. Links can also be customized to simulate the actual communication channels. The network models can be very complex due to their size. This complexity is eliminated by an abstraction known as a subnet work as described earlier.

· The Node Editor

Communication devices created and interconnected at the network level need to be specified in the node domain using the Node Editor. Node models are expressed as interconnected modules. These modules can be grouped into two distinct categories [2]. The first set is modules that have predefined characteristics and built-in parameter, for example, packet generators and links, etc. The second group consists of programmable modules, which rely on process model specifications, for example, processors and queues. All nodes are defined via block structured data flow diagrams. Each programmable block in a Node Model has its functionality defined by a Process Model. Packets are transferred between modules using packet streams. Statistic wires could be used to convey numeric signals [3].

· The Process Editor

Process models, created using the Process Editor, are used to describe the logic flow and behavior of processor and queue modules. Communication between processes is supported by interrupts, which are a part of the library kernels available for proto–C. The OPNET Process Editor uses a powerful state-transition diagram approach to support specification of any type of protocol, resource, application, algorithm, or queuing policy. States and transitions graphically define the progression of a process in response to events. Within each state, general logic can be specified using a library of predefined functions and even the full flexibility of the C language. Even process themselves may create child processes to perform sub-tasks [3].
· Running a simulation

After defining all the models of the network system, we can run a simulation in order to study system performance and behavior using the simulation execution tools described earlier. OPNET simulations are obtained by executing a simulation program, which is an executable file in the host computer's file system. In fact, OPNET provides a number of options for running simulations, including internal and external execution, and the ability to configure attributes that affect the simulation's behavior [3]. OPNET simulations can be run independently from the OPNET graphical tool by using the op_runsim utility program. However, you can also run simulations from the Simulation Tool within OPNET, which offers the convenience of a graphical interface. The Simulation Tool provides the following services [3]:

· Specification of simulation sequences consisting of an ordered list of simulations and associated attribute values

· Execution of simulation sequences

· Storage of simulation sequences in files for later use.

The Probe Editor that is a part of the simulation execution tools as mentioned earlier, is used to specify which data to collect. Most OPNET models contain objects that are capable of generating vast amounts of output data during simulations. The output can be statistical or animated by pre-defined or user-customized animations. The selection of the various types of output formats can be done using the probed editor. A probe is defined for each source of data that the user wishes to enable. Probes are grouped into a probe list which, allowing them to be collectively applied to a model when a simulation is executed [3]. Several different probe types are provided by OPNET in order to capture different types of output data [2]. The statistic probe can be applied to predefined, standard statistics sometimes application-specific visualization monitoring characteristics such as bit error rates or throughput. TheAutomatic Animation Probe is used to generate animation sequences for a simulation. TheCustom Animation Probe supports the creation of custom animations. The actual specification of the animation's characteristics is defined within the user's code. Coupled Statistic Probe generates output data as the statistic probe does but, in addition, a primary module and a coupled module need to be defined. Some statistical data is generated at the primary module. This data is only generated when changes to the statistic are due to interactions with the coupled module [2].
· Data observation and collection

After the simulations have been executed, the Results Analysis tools that consist of the Analysis tool and Filter tool are used to observe and collect the data. Simulations can be used to generate a number of different forms of output, as described above. These forms include several types of numerical data, animation, and detailed traces provided by the OPNET debugger [3]. OPNET simulations support open interfaces to the C language, and the host computer's operating system, therefore simulation developers may generate proprietary forms of output ranging from messages printed in the console window, to generation of ASCII or binary files, and even live interactions with other programs [3]. However, the most commonly used forms of output data are those that are directly supported by Simulation Kernel interfaces for collection, and by existing tools for viewing and analysis. These include animation data and numerical statistics [3]. Animation data is generated either by using automatic animation probes or by developing custom animations with the kernel procedures of the Simulation Kernel's Anim package, as well as to view the animations [2]. Similarly, statistic data is generated by setting statistic probes, and/or by the kernel procedures of the Kernel's Stat package. OPNET's Analysis Tool can then be used to view and manipulate the statistical data [2].

The service provided by the Analysis Tool is to display information in the form of graphs. Graphs are presented within rectangular areas called analysis panels. A number of different operations can be used to create analysis panels, all of which have as their basic purpose to display a new set of data, or to transform an existing one [2]. An analysis panel consists of a plotting area, with two numbered axes, generally referred to as the abscissa axis (horizontal), and the ordinate axis (vertical) [2]. The user can also extract data from simulation output files and display this data in various forms. The Analysis Tool also supports several mechanisms for numerically processing the data and generating new data sets that can also be plotted such as computing probability density functions and cumulative distribution functions, as well as generating histograms. The data presented in the Analysis Tool, can also come in use by filters that are constructed from a pre-defined set of filter elements in the Filter Editor [3].

Filter models are represented as block diagrams consisting of interconnected filter elements. Filter elements may be either built-in numeric processing elements, or references to other filter models. Thus, filter models are hierarchical, in that they may be composed of other filter models [2].

· The Graphical User Interface

The GUI for OPNET first presents several options to the user, such as a new project model, node model, process model etc. For example, the user can create a new project model or edit an existing one. The GUI then brings up a world atlas, where they can view the existing network model, add new node models to the existing network or create a new network. There are several options to run existing project models, and options for the different kinds of output as described above. By double-clicking on a node model inside the network model, the user can access the process model inside that node. Inside the node model, there are options for creating packet streams, processors, servers, queues, sinks etc. These are basically, process models, which can be user-defined via state-machines. The properties for each of these models can be set or the user can also pick models from an existing library. Inside the process models, there are state-machines, which consist of proto-c code, which can be edited in order to change their functionality.

· Conclusion

OPNET is a powerful discrete-event simulation tool that is widely used in the industry because of it’s features and the huge set of options embedded in it, that assist in the simulation and modeling of large networks. It consists of libraries of existing simulated models of real-life equipment used in communication networking such as routers, switches and those used in wireless networks. These libraries are used to implement different protocols with varying input, output and behavior. OPNET has a broad portfolio for modeling, design, simulation and real-time assurance in context with detailed insight into infrastructure requirements and is an ideal tool for modeling and simulation.
OMNET:
1. Introduction

OMNeT++ stands for Objective Modular Network Testbed in C++. It is a discrete event simulation tool designed to simulate computer networks, multi-processors and other distributed systems. Its applications can be extended for modelling other systems as well. It has become a popular network simulation tool in the scientific community as well as in industry over the years. The principal author is András Varga, with occasional contributions from a number of people. [5]

2. Components of Omnet++[5]:

· simulation kernel library

· compiler for the NED topology description language (nedc)

· graphical network editor for NED files (GNED)

· GUI for simulation execution, links into simulation executable (Tkenv)

· command-line user interface for simulation execution (Cmdenv)

· graphical output vector plotting tool (Plove)

· utilities (random number seed generation tool, makefile creation tool, etc.)

· documentation, sample simulations, contributed material, etc.

3. Platforms of Omnet++[5]:

OMNeT++ works well on multiple platforms. It was first developed on Linux. Omnet++ runs on most Unix systems and Windows platforms (works best on NT4.0, W2K or XP).

The best platforms used are:

· Solaris, Linux (or other Unix-like systems) with GNU tools

· Win32 and Cygwin32 (Win32 port of gcc)

· Win32 and Microsoft Visual C++
4. Licensing for Omnet++:

OMNeT++ is free for any non-profit use. The author must be contacted if it is used in a commercial project. The GNU General Public License can be chosen on Omnet++. [5]

5. Simulation Modeling in Omnet++[5]
The following are types of modeling that can be used:

· communication protocols

· computer networks and traffic modeling

· multi-processor and distributed systems

· administrative systems

· ... and any other system where the discrete event approach is suitable. “

5.1 Library Modules[5]
Object libraries can be made using simple modules. The best simple modules to be used for library modules are the ones that implement:

· Physical/Data-link protocols: Ethernet, Token Ring, FDDI, LAPB etc.

· Higher layer protocols: IP, TCP, X.25 L2/L3, etc.

· Network application types: E-mail, NFS, X, audio etc.

· Basic elements: message generator, sink, concentrator/simple hub, queue etc.

· Modules that implement routing algorithms in a multiprocessor or network

· ...

5.2 Network Moduling

A model network consists of “nodes” connected by “links. The nodes representing blocks, entities, modules, etc, while the link representing channels, connections, etc. The structure of how fixed elements (i.e nodes) in a network are interconnected together is called topology. [5]

Omnet++ uses NED language, thus allowing for a more user friendly and accessible environment for creation and editing. It can be created with any text-processing tool (perl, awk, etc). It has a human-readable textual topology. It also uses the same format as that of a graphical editor. It also supports submodule testing. Omnet++ allows for the creation of a driver entity to build a network at run-time by program. [5]

Organization of Network Simulation[5]:

Omnet++ follows a hierarchical module structure allowing for different levels of organization.

· Physical Layer:

1. Top-level network

2. Subnetwork (site)

3. LAN

4. node

· Topology within a node:

1. OSI layers. The Data-Link, Network, Transport, Application layers are of greater importance.

2. Applications/protocols within a layer.

5.3 Network Description (NED)
Modular description of networks is given in NED language. The network description consists of a number of component descriptions such as channels, simple and compound module types. These component descriptions can be used in various network descriptions. Thus, it is possible for the user to customize his or her personal library of network descriptions.

The files containing the network descriptions should end with a .ned suffix. The NEDC compiler translates the network descriptions into C++ code. Then, it is compiled by the C++ compiler and linked into executable simulation. [5]

Components of a NED description[4]

A NED description can contain the following components, in arbitrary number or order:

· import statements

· channel definitions

· simple and compound module declarations

· system module declarations

6. User interfaces

The Omnet++ user interface is used with the simulation execution. Omnet++’s design allows the inside of model to be seen by the user. It also allows the user to initiate and terminate simulations, as well as change variable inside simulation models. These features are handy during the development and debugging phase of modules in a project. Graphical interface is a user friendly option in Omnet++ allows access to the internal workings of the model. [5]

The interaction of the user interface and the simulation kernel is through a well defined interfaces. Without changing the simulation kernel, it is possible to implement several types of user interfaces. Also without changing the model file, the simulation model can run under different interfaces. The user would test and debug the simulation with a powerful graphical user interface, and finally run it with a simple and fast user interface that supports batch execution. [5]

The user interfaces are a form of interchangeable libraries. When linking into a created simulation executable, the user can choose the interface libraries they would like to use. [5]

Currenly, two user interfaces are supported[5]:

· Tkenv: Tk-based graphical, windowing user interface (X-Window, Win95, WinNT etc..)

· Cmdenv: command-line user interface for batch execution

Simulation is tested and debugged under Tkenv, while the Cmdenv is used for actual simulation experiments since it supports batch execution.

6.1 Tkenv

Tkenv is a portable graphical windowing user interface. Tracing, debugging, and simulation execution is supported by Tkenv. It has the ability to provide a detailed picture of the state of the simulation at any point during the execution. This feature makes Tkenv a good candidate in the development stage of a simulation or for presentations. A snapshot of a Tkenv interface is shown in figure 1. [5]

Important feaures in Tkenv[5]:

· separate window for each module's text output

· scheduled messages can be watched in a window as simulation progresses

· event-by-event execution

· execution animation

· labelled breakpoints

· inspector windows to examine and alter objects and variables in the model

· graphical display of simulation results during execution. Results can be displayed as histograms or time-series diagrams.

· simulation can be restarted

· snapshots (detailed report about the model: objects, variables etc.)

It is recommended for testing and debugging when used with gdb or xxgdb. Tkenv provides a good environment for experimenting with the model during executions and verification of the correct operation during the simulation program. This is possible since we are able to display simulation results during execution.

6.2 Cmdenv

Cmdenv is designed primarily for batch execution. It is a portable and small command line interface that is fast. It compiles and runs on all platforms. Cmdenv uses simply executes all simulation runs that are described in the configuration file.

Figure 1. Example of a Tkenv User Interface in Omnet++.

[image: image1.png]OMHeT++/Tkenv [[o1x]
Eile gmuide Irace |nspect View Qptions Help

swp | B> | Fastos | Bavesrs | Uit |

Run #1: token Event #23

0090602936 (9ms) | Mext: #7 token.comp[1]mac

Pox Event #2z, 1=0,0052538180 { ns)., Hodule #7 “token,conp[1].nac’ .
Jox Event #24, T=0.0061202135 { Bns)., Hodule #4 “token,conp[0] gen’.
lgen[01: Generated new msg: "0-->2"

fox Evere w2, T=0_00B122135 ¢ &
IHACLOT: New nsg From higher Laer:
IHACLOT: = adding to send-queue
[ox Event #2€, 1=0,0085533833 { ns). Module #12 “token,conpl2].gen”,
lgen[21: Generated new nsg: "2-->0"

fox Event %27, 1=0,0085533833 (_ 8ns). Hodule #11 “token,conp2].nac”,

IHACL21: New mog From hisher Layers "2—30"

HACL21: - adding to send-queue

Jox Event #2£, 1=0,0030802965 { Sns). Hodule #3 “token,conp[1].gen’. J

dule 2 “token.connC0].nac”.

lgen[11; Generated new nsg: "1-->2"

7. Expected Performance of Omnet++

One of the most important factors in any simulation the is the programming language. The common languages used are C/C++ based. Omnet performance is of a particular interest since it reduces the overhead costs associated with GUI simulation library debugging and tracing. The drawback found in Omnet++ was its simulations were 1.3 slower than it C counterpart.
Reference:

[1] The Network Simulator- ns-2. available: http://www.isi.edu/nsnam/ns/, last updated: 19/06/2003
[2] OPNET online manual

[3] Network Simulations with OPNET, Chang

[4] http://www.ee.ucl.ac.uk/dcs/commercial/opnet/opnet.html
[5] OMNET++ User Manual: http://whale.hit.bme.hu/omnetpp/
Page 1 of 15

