
Using Clustering Technique to Restructure Programs
 Chung-Horng Lung Marzia Zaman

 Dept. of Systems and Computer Engineering Cistel Technology
Carleton University, Ottawa, Ontario, Canada Ottawa, Ontario, Canada

 chlung@sce.carleton.ca marzia@cistel.ca

Abstract
Program restructuring or refactoring is often required
when a function becomes too large or is involved in
multiple activities and therefore exhibits low cohesion. A
critical factor in restructuring is to increase cohesion and
decrease coupling. There are many existing methods
which measure cohesion and coupling but do not provide
much information as to how to restructure the program,
while some other methods exist which only deals with
restructuring the functions. The paper presents a simple
but effective approach to function restructuring based on
the experimental research on cohesion and coupling.
Measure for software cohesion could be the first step of
reengineering a software system to identify the functions
with low cohesion. The next step is to restructure the
identified functions. A clustering technique is presented in
this paper which can assess the cohesiveness of a function
and also gives indicaiton as to how to decompose a
function to multiple high-cohesive functions. Several
examples are presented to demonstrate the concept.

1. Introduction
Software inevitably evolves over time due to changes in

technologies and requirements. As a result, a program may
become large or complex, and consist of multiple functions
or features. Consequently, the program is difficult to
maintain. Program restructuring or refactoring [16] can be
used to transform such programs or poorly-designed ones
to another form that is better organized and easier to
understand, without changing the behavior of the
programs. The new software will usually be smaller, easier
to change, and less costly for further evolution. More
importantly, a desirable restructuring should achieve high
cohesion and low coupling, so that all the elements in one
component are closely related for the realization of a certain
function, and changes made to that component will have as
little impact as possible on other components.

Cohesion refers to a component’s internal strength, that
is, the strength that holds the internal elements in a
component together to perform a certain functionality.
While cohesion is an intra-component property, coupling
measures the interdependence among components.
Alexander [1] also postulated that the major design
principle which is common to all engineering disciplines is

the relative isolation of one component from other
components. Partitioning plays a crucial role in system
design and is highly related to cohesion and coupling. In
fact, the most important partitioning heuristics is to
minimize external coupling and maximize internal cohesion
[28]. Partitioning is to decompose a system into lower level
components from the top down. Clustering, on the other
hand, is a bottom-up method. With clustering, similar
components are grouped together to form clusters or
subsystems. Those clusters or subsystems are partitions
which consistitute a system. The main objective of
partitioning and clustering is the same..

Clustering techniques have been used successfully in
many areas to assist grouping of similar components and
support partitioning of a system. The technique can
facilitate better understanding of the observations and the
subsequent construction of complex knowledge structures
from features and component clusters. The key concept of
clustering is to group similar things together to form a set
of clusters, such that intra-cluster similarity (cohesion) is
high and inter-cluster (coupling) similarity is low. The
objective – high cohesion and low coupling – is similar in
software design. In fact, clustering of components has
been discussed extensively in the software engineering
literature to support software restructuring and
reengineering [4,5,10,12,14,16,22,23,25,26,32,33,34, 36]

Lung et al, [27] borrow some clustering ideas from
established disciplines, and tailor them to support software
architecture partitioning, recovery, and restructuring. The
approach is based on numerical taxonomy or agglomerative
hierarchy. There are several reasons for adopting numerical
taxonomy. First, the method is conceptually and
mathematically simple, as will be demonstrated in Section 2.
Secondly, although the concept is simple, no scientific
study has shown that numerical taxonomy is inferior to
other more complex multiversity methods [31]. Thirdly, the
approach can be applied to various levels of abstraction
(architecture, design, and maintenance) and can be used in
round-trip engineering (e.g., both forward engineering and
reverse engineering).

This paper focusses on how clustering technique can
be used to measure the cohesiveness of a program as well
as to assist the restructuring activity at the function level
by dividing a large or low-cohesive program into cohesive
functions. The approach adapts our previous work on
software clustering to functions. As stated above, a

 2

program or a function often becomes loosly cohesive over
time. As a result, the system becomes difficult to maintain,
understand, and/or change. Restructuring, although, could
be very challenging and difficult, may be unavoidable.

The work presented in this paper does not attempt to
automatically restructure a function. As reported in [10],
there are problems assoicated with automatic restruturers.
It is also the authors’ belief that there is risk using
automatic restructurers. A program, if incorrectly translated
into a different representation, will create more problems
than the original form. There are cases where low-cohesion
might be required to meet specific requirements, e.g.,
performance. The approach presented in this paper is used
to provide some indications as to (i) whether a function
exhibits low cohesion; and (ii) if it does, how to improve the
function by restructuring and dividing it into cohesive
functions. We have developed a prototype tool which will
aid in the process of restructuring. However, designer’s
involvement in this process is recommended to validate the
results from the tool and make the final decision.

The rest of paper is organized as follows: Section 2
presents an overview of the clustering technique and
discusses the method adopted for this research and the
rationale behind it. Section 3 demonstrates how this
technique relates to the standard cohesion types as
suggested in [35]. Section 4 discusses the implemention of
the method and experimental observations. Section 5
highlights some related work. Finally, section 6 presents
the summary and discusses future directions.

2. Clustering
This section first briefly describes the general concept

behind the numerical taxonomy clustering. Following that,
we will discuss the method adopted in this research.

2.1 General Clustering Concepts
Many clustering methods have been presented

[2,15,31,36] and many applications of clustering analysis
can be found in various disciplines. In this paper, we focus
on numerical taxonomy or agglomerative hierarchical
approaches. Those approaches comprise the following
three common key steps:
§ Obtain the data set.
§ Compute the resemblance coefficients.
§ Execute the clustering method.
An input data set is a component-attribute data matrix.

Components are the entities that we want to group based
on their similarities. Attributes are the properties of the
components. For example, the components could be
software modules; the attributes, a set of features.

In this paper, a resemblance coefficient for a given pair
of components indicates the degree of similarity between
these two components . For instance, the data may be

represented by means of a binary variable. A 1 value
indicates that the component has the property. A resem-
blance coefficient could be qualitative or quantitative. The
simplest form of qualitative value is binary representation;
e.g., the value is either 0 or 1. Qualitative attributes can also
be multistate such as red/blue/green. A quantitative
coefficient measures the literal dis tance between two
components when they are viewed as points in a two-
dimensional array formed by the input attributes.

There are many different methods to calculate the
resemblance coefficients. This paper does not dis cuss
those in detail. Rather, we briefly illustrate one algorithm
that is closely related to our work. The algorithm is based
on qualitative input data. Table 1 shows three components
with eight attributes. A 1 entry indicates that the attribute
is present in the corresponding component and 0 means
that it is absent. Component x in Table 1 consists of
attributes 1, 3, 4, and 8; component y is positive to
attributes 1, 2, 3, and 7. Components x and y share two
common attributes 1 and 3, or these two components have
two 1-1 matches. In other words, a 1-1 match means that the
same attribute is coded 1 for both components. Similarly,
there are 1-0, 0-1, and 0-0 attribute matches between two
components. Let a, b, c, and d represent the number of 1-1,
1-0, 0-1, and 0-0 matches between two components.

Table 1 Input Data Matrix: an Illustration

1 2 3 4 5 6 7 8

x 1 0 1 1 0 0 0 1

y 1 1 1 0 0 0 1 0

z 0 1 1 0 1 0 1 0

Therefore, based on the definition, we obtain for
components x and y that a = 2, b = 2, c = 2, and d = 2.
Similarly, for components x and z, we obtain that a = 1, b =
3, c = 3, and d = 1; components y and z, a = 3, b = 1, c = 1,
and d = 3.

To ascertain the similiarity between two components,
we calculate the proportion of relevant matches between
the two components. In other words, the more relevant
matches there are between two components, the more
similar the two components are. There are different
methods to count relevant matches and there exist many
algorithms to calculate the similarity. Some heuristics are
presented as to how to choose a particular algorighm [31].
Here, we only illustrate the Sorenson algorithm. Let cxy be
the resemblance coefficient for components x and y.
Sorrenson coefficient is defined as cxy = 2a / (2a + b + c).
Note that d is not used in the fomula.

By applying the Sorenson matching coefficient to the
example in Table 1, we get cxy = (2 x 2) / (2 x 2 + 2 + 2) = 1/2.

attri
comp

 3

Likewise, cxz = 1/4 and cy z = 3/4. This procedure is repeated
for each component pair in order to obtain the resemblance
matrix. For this particular data representation, the higher a
coefficient, the more similar the two corresponding
components represent. Hence, components y and z in this
example are the most similar pair, since the resemblance
coefficient cy z is the largest.

Given a resemblance matrix, calculated from either
quantitative or qualitative data, a clustering method is then
used to group similar components. In essence, a clustering
method is a sequence of operations that incrementally
groups similar components into clusters. The sequence
begins with each component in a separate cluster. At each
step, the two clusters that are closest to each other are
merged and the number of clusters is reduced by one. Once
these two clusters have been merged, the resemblance
coefficients between the newly formed cluster and the rest
of the clusters are updated to reflect their closeness to the
new cluster. An algorithm called UPGMA (unweighted pair-
group method using arithmetic averages) [31] is commonly
used to find the average of the resemblance coefficients
when two clusters are merged.

For the example shown in Table 1, components y and z
are first grouped as a new cluster (y, z), since cy z is the
largest resemblance coefficient. Recall that cxy and cxz are
1/2 and 1/4, respectively. The resemblance coefficient
between the new cluster (y, z) and component or cluster x is
then the average of cxy and cxz, which is (1/2 + 1/4) / 2 = 3/8.
The process repeats until all clusters are exhausted or a
pre-defined threshold value has been reached.

Figure 1 illustrates the concept. In this example, the
clustering steps are (a, c), (b, d), ((a, c), e), and finally ((a, c,
e), (b, d)). The dendrogram grasps the relative degree of
similarity among components or clusters . In general, the
lower the level, the more similar the components or clusters .

 Figure 1. An Example of a Dendrogram

2.2 Input Data Set and Resemblance

Coeffcient for Function Restructuring

This paper adopts the concept of qualitative clustering,
as described above, and tailors it to accommodate different
types of dependance appeared in software. The input data
is obtained by parsing a program at the function level, and
mapping of the logical statements in that function and its

data dependance and/or scope in that function. The idea
will be explained in detail later in this section.

We have started with the Sorenson coefficient for
software clustering [25,26]. Although the Sorenson method
was also successfully used to classify a number of
simulation models into a set of generic models [24,27], we
have made some changes to the calculation for
restructuring purpose. Specifically, statements are viewed
as components and variables are considered as attributes.
Also, scope of variables (i.e., if, else, loop) are also taken
into account from the control aspect. They were treated like
variables but with less weight. The input data set is then a
representation of statement-variable/scope data matrix.
Statements are the entities that we want to group based on
their similarities in terms of their variable uses (data
dependance) as well as the scope of their useages. All
statements are considered with few exceptions, e.g.,
statements where a local variable is incremented (e.g., a
statement like i++) in a loop are igonred.

Modifiction to the Sorenson method is conducted to
accommodate different possible association of function
statement with the data and control. Therefore, multistate
qualitative data (4/3/2/1/0) are used for input, where each
value represents a different type of cohesion or
association. A value of 4 or 3 represents direct data
dependency, but 4 is adopted when a variable is updated,
whereas 3 is chosen when a variable is only used. For
instance, a 4 value will be entered for varialbe sum, but a 3
value is used for variable num, in the statement: sum = sum
+ num. A 2 value represents an indirect control
dependancy of a statement on a variable. For example, a
statement under a loop is dependent on the upper limit of
the loop. Finally, a 1 value represents control dependency
in a statement being under a decision making block (if/else
block) or inside an iterative loop (for, while, do etc.).

We have chosen five different types of associations or
matches (a, b, c, d, e, f) and give them different weights
when calcualting the coefficients. The matches between
two components are defined as: a is the total numbers of 4-
4 matches; b, total numbers of 4-3 and 3-3 matches; c, total
number of 2-2 matches; d, the total number 1-1 matches, e,
total number of 4-2, 2-4, 3-2 or 2-3 matches; and f, total
number of mismatches (i.e., patterns 4-0, 0-4, 3-0, 0-3, 2-0, 0-
2, 1-0, 0-1) between two statements. Higher weights are
given for direct data dependency and lower weights are
used for indirect control dependency.

The resemblance cofficient is modified as follows:
 (waa+wbb+wcc+wdd+wee)/(waa+wbb+wcc+wdd+wee+f)
where wa, wb, wc, wd are the weights. The weights used in
this paper are primarily obtained from experiments.
Specially, wa = 16, wb = 8, wc = 2, wd = 1, and we = 2.

Once the input data matrix is generated and the initial
resemblance coefficients are calculated, the clustering
method is used as mentioned in the previous section. As

 a c e b d

step
 4

 3

 2

 1

Coefficients

0.2

0.4

0.6

0.8

 4

the clustering progresses, the statements of a function are
grouped together and the resemblance coefficients are re-
calculated in each step. The coefficients will drop as the
clustering progresses. A considerable drop would be an
indication as to whether there is multiple functionalities
within a single function. The process will also create
several groups of statements where each group of
statements would generally map to a new function. The
result of such method when combined with designer’s
input can produce effective restructuring of a function.

3. Cohesion Types and Resemblance
Coefficients
This section demonstrates the concept with examples

based on cohesion types [35]. This paper considers each
statement in a function as the processing element. The
dependence relation of a statement is obtained from its
variables and the scope within a module. The “statement”
level is chosen because our final goal is to provide further
retructuring options as we measure cohesion. Using
statements also reduces the chance of introducing errors.
In addition, the approach presented here for gathering the
input data does not involve generating the dependance
graph, which could be complex and time consuming.
Rather, a simple script is used to parse the module of
interest to get the information required. The entire process
is simple, repititive and easily modifiable in case the
weights of the association types need to be changed.

In order to validate the effectiveness of our clustering
technique, we use the sample programs which depict the
different cohesion types from [20] and obtain the input data
matrix to be used for clustering. The example code for
coincidental, logical, procedural, and communicational
cohesion types can be easily decomposed into two
cohesive functions. For sequential and functional cohesion
types, the result depits one strongly related cluster. Due to
the page limit, only some of the cohesion type and the
results are presented in Figures 2 and 3.
 The example in Figure 2 shows the computation of the
sum of first m numbers if the flag is true, else the product of
first n numbers. In the input data shown in Figure 2(b),
artifical variables, such as if and loop, are introduced to
represent association due to the control dependency. For
instance, both lines 6 and 8 have a 1 entry for if (column 2),
since both of them belong to the same if-then block. Line 8
has a 2 entry under variable m, since sum is indirectly
associated with m due to the loop control dependency.
Note also that the input shown in Figure 2(b) does not
contain variables (e.g., i in lines 5, 9, 13, ad 17) that are used
as loop count, neither does it have a row entry for the if,
while or for statements (e.g., lines 4, 7, and 15).

It is shown in Figure 2(c) that lines 6 and 8 have a high
cohesion value (0.89); similarly lines 14 and 16 are closely
related. However, these two clusters, (6,8) and (14,16), are

independent (the associated resemblance coefficient is 0).
This also explains why the loop variables are not
considered in the clustering. If the second while loop also
uses variable i as the counting variable, then these two
while loops will reveal some false resemblance.

1 procedure sum_or_product (m,n,flag:

 integer; var sum,prod: integer);
2 var i,j: integer;
3 begin
4 if flag = 1 then begin
5 i := 1;
6 sum := 0;
7 while i <= m do begin
8 sum := sum + i;
9 i := i + 1
10 end
11 end
12 else begin
13 j := 1;
14 prod := 1;
15 while j <= n do begin
16 prod := prod * j;
17 j := j + 1
18 end
19 end
20 end

Figure 2. (a) A module computing the sum of first m
numbers or product of first n numbers; (b) input data
matrix; (c) dendrogram and resemblance coefficients. The
module represents logical cohesion.

We have applied the technique to all the examples in
[20] and the results are encouraging but are not presented
here due to page limit. Figure 3 shows another sample of
non-cohesive code [23]. For simplicity, the input data matrix
is not presented.

line# if loop
1

m else loop
2

n sum prod

6 1 0 0 0 0 0 4 0
8 1 1 2 0 0 0 4 0
14 0 0 0 1 0 0 0 4
16 0 0 0 1 1 2 0 4

(b)

(a)

6 8
 (c)

14 16

0
0.89
0.89

 5

The dendrogram and the associated resemblance
coefficients clearly show three groups: (14, 16, 11, 18), (10,
13, 19), and (7). The coefficient between (14,16,11,18) and
(7) is very small, so they belong to two different clusters. In
other words, the program can be decomposed into the three
sub-functions based on those three clusters. The following
shows those three procedures (for brevity, variable
declarations are not shown here):

procedure read_input:
begin
 i := 0;
 while i < days do begin
 i := i + 1;
 readln (sale[i]);
 end;
end;

procedure compute_avg_pay:
begin

 total_pay := 0;
 for i := 1 to days do begin
 total_pay := total_pay + 0.1 * sale[i];
 if (sale[i]) > 1000) then
 total_pay := total_pay + 50;
 end;
 pay := total_pay / days + 100;
end;

Figure 4. Restructured program.

4. Implementation and Experiments
A prototype tool was built for concept evaluation and

demonstration. The tool consists of three modules. Module
1 is a parser for C programs written in Perl, which generates
the input data matrix. Module 2 performs the clustering.
Module 3 draws the dendrogram.

This approach is primarily experimental research. The
multistate values and weights were chosen based on
experiments on various examples. The main idea is to devise
a sheme that distinguishes different association types using
different weights. The results were encouraging, as
demonstrated in the previous section. We have applied the
approach to many functions of a C parser and a
telecommunication system developed in industry, and some
concurrent programs written by students . Generally, we
have achieved our goal – transforming low-cohesive
functions into smaller and cohesive ones.

5. Related Work
 Numerious papers have discussed cohesion and
coupling at different levels (e.g., design vs. code)
[6,7,11,13,17] or for different paradigms (procedural vs. OO
languages) [9]. Most of those papers focus on measurement
of cohesion and coupling. The idea of restructuring is to
transform a system or a progrma into more organized form to
support evolution.
Lakhotia and Deprez [22,23] provided a thorough discussion
on related work. Readers are referred to read their papers for
a review of this area. The objective of their approach is
identical to ours. However, their restructuring technique
computes pairwise cohesion between output variables of a
function using rule-based measure of cohesion. Our
approach is a variation of the numeric clustering technique.
The method or tool can be easily adapted if the definition of
the weighing policy is modified.
The clustering idea is also related to program slicing. Each
column or a collection of columns of the input data matrix is
similar to a program slice. The clustering algorithm is then
used to find closeness among the slices.

6. Conclusions and Futurre Work
We presented a conceptually simple clustering

technique and adapted it to program restructuring The
result of the clustering can provide useful feedback to

1 procedure sale_pay_profit (days: integer;
cost:float; var sale: int_array; var pay:
float; var profit: float; process: Boolean);

2 var i: integer; total_sale, total_pay:
float;

3 begin
4 i := 0;
5 while i < days do begin
6 i := i + 1;
7 readln (sale[i]);
8 end;
9 if process = True then begin
10 total_sale := 0;
11 total_pay := 0;
12 for i := 1 to days do begin
13 total_sale:=total_sale + sale[i];
14 total_pay:=total_pay+0.1*sale[i];
15 if (sale[i] > 1000) then
16 total_pay := total_pay + 50;
17 end;
18 pay := total_pay / days + 100;
19 profit := 0.9 * total_sale – cost;
20 end;
21 end;

Figure 3. Sample non-cohesive code and the
dendrogram output.

0.20
0.24
0.73
0.80
0.85
0.85
0.91

 14 16 11 18 7 10 13

procedure compute_profit:
begin
 total_sale := 0;
 for i := 1 to days do begin

 total_sale := total_sale + sale[i];
 end;
 profit := 0.9 * total_sale – cost;
end;

 6

convert a large or low-cohesive code segment into smaller
and cohesive functions, without changing its behavior. A
tool was developed to assist the parsing, clustering, and
drawing. We demonstrated the concept with examples of
different cohesion types. The concept can be easily
tailored to meet other definitions or different calculations.
The restructuring effort can be automated further, however,
we advocate human intervention to be involved in the
restructuring process to avoid errors. More experiments
need to be conducted to further validate the approach for
large and complex software systems.

References
[1] Alexander, C., Notes on the Synthesis of Form, Harvard
University Press, Cambridge, MA, 1964.
[2] Anderberg, M.R., Cluster Analysis for Applications,
Academic Press, New York, NY, 1973.
[3] Anquetil, N., Lethbridge, T., “Extracting concepts from
file names: a new file clustering criterion”, Proc. of
International Conf. on Software Eng., 1973, pp. 84-93.
[4] Anquetil, N., Lethbridge, T., “Experiments with
clustering as a software modularization”, Proc. of the 6th
Working Conf on Reverse Engineering, 2000, pp. 235-255.
[5] Arnold, R.S, Software Reengineering, IEEE Computer
Society Press, Los Alamitos, California, 1993.
[6] Bieman, J.M., Ott, L, “Measuring functional cohesion”,
IEEE Trans. Sw. Eng. 20 (8), 1994, pp. 644-657.
[7] Bieman, J.M., Kang, B.-K., “Measuring design-level
cohesion”, IEEE Trans. Sw Eng, 24 (2), 1998, pp. 111-124.
[8] Briand, L., Morasca, S., Basili, “Property-based
software engineering measuremen”, IEEE Trans. on Sw.
Eng, 22, (1), 1996, pp. 68-86.
[9] Briand, L., Devanbu, P., Melo, W., “An investigation
into coupling measures in C++”, Proc. of Int’l Conf on Sw.
Eng, 1997, pp. 412-421.
[10] Calliss, F.W., “Problems with automatic restructurers”,
SIGPLAN Notices 23 (3), 1988, pp. 13-21.
[11] Card, D.N., Glass, R.L., Measuring Software Design
Quality, Prentice Hall, Eaglewood Cliffs, NJ, 1990.
[12] Davey, J., Burd E., “Evaluating the suitability of data
clustering for software remodularization”, Proc. of the 7th
Working Conf. on Reverse Eng, 2000, pp. 268-276.
[13] Dhama, H., “Quantitative models of cohesion and
coupling in software”, J. of Sys & Sw 29, 1995, pp. 65-74.
[14] Dromey, R.G., “Cornering the Chimera”, IEEE
Software, 1996, pp. 33-43.
[15] Everitt, B., Cluster Analysis, Heinemann Educational
Books, Ltd., London, 1980.
[16] Fowler, M., et al., Refactoring: Improving the Design
of Existing Code, Addison Wesley, 1999.
[17] Heyliger, G., “Coupling”, In Encyclopedia of Software
Eng, J. Marciniak (ed.), 1994.
[18] Hutchens, D., Hutchens, Basili, V.R., “System structure
analysis: clustering with data bindings” IEEE Trans. Sw

Eng 11 (8), 1985, pp. 749-757.
[19] Kim, H. S., Kwon, Y. R., Chung, I. S., “Restructuring
programs through program slicing”, Int’l J of Sw Eng and
Knowledge Eng 4 (3), 1994, pp. 349-368.
[20] Lakhotia, A., “Rule-based approach to computing
module cohesion”, Proc. of the 15th Int’l Conf on Software
Eng, 1993, pp.35-44.
[21] Lakhotia, A., “A unified framework for expressing
software subsystem classification techniques”, J. of
Systems and Sw 36, 1997, pp. 211-231.
[22] Lakhotia, A., Deprez, J., “Restructuring programs by
tucking statements into functions” J. of Info and Sw
Technology 40 (11-12), 1998, pp. 677-689.
[23] Lakhotia, A., Deprez, J., “Restructuring functions by
low cohesion”, Working Conf on Reverse Eng, 1999.
[24] Lung, C.-H., Cochran, J.K., Mackulak, G.T., Urban, J.E.,
“Computer simulation software reuse by Generic/Specific
domain modeling approach”, International Journal of Sw
Eng and Knowledge Eng 4 (1), 1994, pp. 81-102.
[25] Lung, C.-H., “Software architecture recovery and
restructuring through clustering techniques”, Proc. of the
3rd Int’l Workshop on Sw Architecture, 1998, pp. 101-104.
[26] Lung, C.-H, Zaman, Z., A. Nandi, “Applying clustering
techniques to software architecture partitioning, recovery
and restructuring”, to appear J. of Sys and Sw.
[27] Mackulak, G.T., Cochran, J.K., “Generic/Specific
modeling: an Improvement to CIM simulation techniques.
in Optimization of Manufacturing Systems Design, D.
Shunk (ed.), Elsevier Science Publishers, ’90, pp. 331-363.
[28] Maier, M.W, Rechtin, E., The Art of Systems
Architecting, 2nd edition. CRC Press, 2000.
[29] Mancoridis, S., Mitchell, B.S., Rorres, C., Chen, Y.,
Gansner, E.R., “Using automatic clustering to produce
high-level system organizations of source code”, Proc. of
Int’l Workshop on Program Comprehension, 2001.
[30] Patel, S., Chu, W., R., Baxer, X, “A measure for
composite module cohesion”, Proc. of Int’l Conf. on Sw
Eng, 1992, pp. 38-48.
[31] Romesburg, H. C., Cluster Analysis for Researchers.
Krieger, Malabar, Florida, 1990.
[32] Sartipi, K., Kontogiannis K., “Component clustering
based on maximal association”, Proc. of the 8th Working
Conf. on Reverse Eng, 2001, pp. 103-114.
[33] Selby, R.W., Reimer, R.M., Interconnectivity analysis
for large software systems, Technical Report, (UCIrv-95-
PROC-CSS-001), 1995, Univ. of California at Irvine.
[34] Snelting, G., “Software reengineeirng based on
concept analysis”, Proc. of the European Conf. on
Software Maintenance and Reeng., 2000, pp. 1-8.
[35] Stevens, W.P., Myers, G.J., Constantine, L.L.,
Sturctured design, IBM Sys J. 13 (2), 1974, pp. 115-139.
[36] Wiggerts, T.A., “Using clustering algorithms in legacy
systems modularization”, Proc. of the Working Conf. on
Reverse Eng, 1997, pp. 33-43.

