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Abstract 
Program restructuring or refactoring is often required 
when a function becomes too large or is involved in 
multiple activities and therefore exhibits low cohesion. A 
critical factor in restructuring is to increase cohesion and 
decrease coupling. There are many existing methods 
which measure cohesion and coupling but do not provide 
much information as to how to restructure the program, 
while some other methods exist which only deals with 
restructuring the functions. The paper presents a simple 
but effective approach to function restructuring based on 
the experimental research on cohesion and coupling. 
Measure for software cohesion could be the first step of 
reengineering a software system to identify the functions 
with low cohesion. The next step is to restructure the 
identified functions. A clustering technique is presented in 
this paper which can assess the cohesiveness of a function 
and also gives indicaiton as to how to decompose a  
function to multiple high-cohesive functions. Several 
examples are presented to demonstrate the concept. 

1. Introduction 
Software inevitably evolves over time due to changes in 

technologies and requirements. As a result, a program may 
become large or complex, and consist of multiple functions 
or features. Consequently, the program is difficult to 
maintain. Program restructuring or refactoring [16] can be 
used to transform such programs  or poorly-designed ones  
to another form that is better organized and easier to 
understand, without changing the behavior of the 
programs. The new software will usually be smaller, easier 
to change, and less costly  for further evolution. More 
importantly, a desirable restructuring should achieve high 
cohesion and low coupling, so that all the elements in one 
component are closely related for the realization of a certain 
function, and changes made to that component will have as 
little impact as possible on other components. 

Cohesion refers to a component’s internal strength, that 
is, the strength that holds the internal elements in a 
component together to perform a certain functionality. 
While cohesion is an intra-component property, coupling 
measures the interdependence among components. 
Alexander [1] also postulated that the major design 
principle which is common to all engineering disciplines is 

the relative isolation of one component from other 
components.  Partitioning plays a crucial role in system 
design and is highly related to cohesion and coupling. In 
fact, the most important partitioning heuristics is to 
minimize external coupling and maximize internal cohesion 
[28]. Partitioning is to decompose a system into lower level  
components from the top down. Clustering, on the other 
hand, is a bottom-up method. With clustering, similar 
components are grouped together to form clusters or 
subsystems. Those clusters or subsystems are partitions 
which consistitute a system. The main objective of 
partitioning and clustering is the same.. 

Clustering techniques have been used successfully in 
many areas to assist grouping of similar components and 
support partitioning of a system. The technique can 
facilitate better understanding of the observations and the 
subsequent construction of complex knowledge structures 
from features and component clusters. The key concept of 
clustering is to group similar things together to form a set 
of clusters, such that intra-cluster similarity (cohesion) is 
high and inter-cluster (coupling) similarity is low. The 
objective – high cohesion and low coupling – is similar in 
software design. In fact, clustering of components has 
been discussed extensively in the software engineering 
literature to support software restructuring and 
reengineering  [4,5,10,12,14,16,22,23,25,26,32,33,34, 36] 

Lung et al, [27] borrow some clustering ideas from 
established disciplines, and tailor them to support software 
architecture partitioning, recovery, and restructuring. The 
approach is based on numerical taxonomy or agglomerative 
hierarchy. There are several reasons for adopting numerical 
taxonomy. First, the method is conceptually and 
mathematically simple, as will be demonstrated in Section 2. 
Secondly, although the concept is simple, no scientific 
study has shown that numerical taxonomy is inferior to 
other more complex multiversity methods [31]. Thirdly, the 
approach can be applied to various levels of abstraction 
(architecture, design, and maintenance) and can be used in 
round-trip engineering (e.g., both forward engineering and 
reverse engineering). 

This paper focusses on how clustering technique can 
be used to measure the cohesiveness of a program as well 
as to assist the restructuring activity at the function level 
by dividing a large or low-cohesive program into cohesive 
functions. The approach adapts  our previous work on 
software clustering to functions. As stated above, a 
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program or a function often becomes loosly cohesive over 
time. As a result, the system becomes difficult to maintain,  
understand, and/or change. Restructuring,  although, could 
be very challenging and difficult, may be unavoidable. 

The work presented in this paper does not attempt to 
automatically restructure a function. As reported in [10], 
there are problems assoicated with automatic restruturers. 
It is also the authors’ belief that there is risk using 
automatic restructurers. A program, if incorrectly translated 
into a different representation, will create more problems 
than the original form. There are cases where low-cohesion 
might be required to meet specific requirements, e.g., 
performance. The approach presented in this paper is used 
to provide some indications as to (i) whether a function 
exhibits low cohesion; and (ii) if it does, how to improve the 
function by restructuring and dividing it  into cohesive 
functions. We have developed a prototype tool which will 
aid in the process of restructuring. However, designer’s 
involvement in this process is recommended to validate the 
results from the tool and make the final decision.  

The rest of paper is organized as follows: Section 2 
presents an overview of the clustering technique and 
discusses the method adopted for this research and the 
rationale behind it. Section 3 demonstrates how this 
technique relates to the standard cohesion types as 
suggested in [35]. Section 4 discusses the implemention of 
the method and experimental observations. Section 5 
highlights some related work. Finally, section 6 presents 
the summary and discusses future directions. 

2. Clustering 
This section first briefly describes the general concept 

behind the numerical taxonomy clustering.  Following that, 
we will discuss the method adopted in this research. 

 
2.1 General Clustering Concepts 
Many clustering methods have been presented 

[2,15,31,36] and many applications of clustering analysis 
can be found in various disciplines.  In this paper, we focus 
on numerical taxonomy or agglomerative hierarchical 
approaches. Those approaches comprise the following 
three common key steps: 
§ Obtain the data set. 
§ Compute the resemblance coefficients. 
§ Execute the clustering method. 
An input data set is a component-attribute data matrix. 

Components are the entities that we want to group based 
on their similarities. Attributes are the properties of the 
components. For example, the components could be 
software modules; the attributes, a set of features. 

In this paper, a resemblance coefficient for a given pair 
of components indicates the degree of similarity between 
these two components . For instance, the data may be 

represented by means of a binary variable. A 1 value 
indicates that the component has the property. A resem-
blance coefficient could be qualitative or quantitative. The 
simplest form of qualitative value is binary representation; 
e.g., the value is either 0 or 1. Qualitative attributes can also 
be multistate such as red/blue/green. A quantitative 
coefficient measures the literal dis tance between two 
components when they are viewed as points in a two-
dimensional array formed by the input attributes. 

There are many different methods to calculate the 
resemblance coefficients. This  paper does not dis cuss 
those in detail. Rather, we briefly illustrate one algorithm 
that is closely related to our work. The algorithm is based 
on qualitative input data. Table 1 shows three components 
with eight attributes. A 1 entry indicates that the attribute 
is present in the corresponding component and 0 means 
that it is absent. Component x in Table 1 consists of 
attributes 1, 3, 4, and 8; component y is positive to 
attributes 1, 2, 3, and 7. Components x and y share two 
common attributes 1 and 3, or these two components have 
two 1-1 matches. In other words, a 1-1 match means that the 
same attribute is coded 1 for both components. Similarly, 
there are 1-0, 0-1, and 0-0 attribute matches between two 
components. Let a, b, c, and d represent the number of 1-1, 
1-0, 0-1, and 0-0 matches between two components. 

Table 1 Input Data Matrix: an Illustration 

 

 

1 2 3 4 5 6 7 8 

x 1 0 1 1 0 0 0 1 

y 1 1 1 0 0 0 1 0 

z 0 1 1 0 1 0 1 0 

Therefore, based on the definition, we obtain for 
components x and y that a = 2, b = 2, c = 2, and d = 2. 
Similarly, for components x and z, we obtain that a = 1, b = 
3, c = 3, and d = 1; components y and z, a = 3, b = 1, c = 1, 
and d = 3. 

To ascertain the similiarity between two components, 
we calculate the proportion of relevant matches between 
the two components. In other words, the more relevant 
matches there are between two components, the more 
similar the two components are. There are different 
methods to count relevant matches and there exist many 
algorithms to calculate the similarity. Some heuristics are 
presented as to how to choose a particular algorighm [31]. 
Here, we only illustrate the Sorenson algorithm. Let cxy  be 
the resemblance coefficient for components x and y.  
Sorrenson coefficient is defined as cxy  = 2a / (2a + b + c). 
Note that d is not used in the fomula. 

By applying the Sorenson matching coefficient to the 
example in Table 1, we get cxy  = (2 x 2) / (2 x 2 + 2 + 2) = 1/2.  

attri 
comp 
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Likewise, cxz = 1/4 and cy z = 3/4. This procedure is repeated 
for each component pair in order to obtain the resemblance 
matrix. For this particular data representation, the higher a 
coefficient, the more similar the two corresponding 
components represent. Hence, components y and z in this 
example are the most similar pair, since the resemblance 
coefficient cy z is the largest.  

Given a resemblance matrix, calculated from either 
quantitative or qualitative data, a clustering method is then 
used to group similar components. In essence, a clustering 
method is a sequence of operations that incrementally 
groups similar components into clusters. The sequence 
begins with each component in a separate cluster. At each 
step, the two clusters that are closest to each other are 
merged and the number of clusters is reduced by one. Once 
these two clusters have been merged, the resemblance 
coefficients between the newly formed cluster and the rest 
of the clusters are updated to reflect their closeness to the 
new cluster. An algorithm called UPGMA (unweighted pair-
group method using arithmetic averages) [31] is commonly 
used to find the average of the resemblance coefficients 
when two clusters are merged.  

For the example shown in Table 1, components y and z 
are first grouped as a new cluster (y, z), since cy z is the 
largest resemblance coefficient. Recall that cxy  and cxz are 
1/2 and 1/4, respectively. The resemblance coefficient 
between the new cluster (y, z) and component or cluster x is 
then the average of cxy  and cxz, which is (1/2 + 1/4) / 2 = 3/8. 
The process repeats until all clusters are exhausted or a 
pre-defined threshold value has been reached. 

Figure 1 illustrates the concept. In this example, the 
clustering steps are (a, c), (b, d), ((a, c), e), and finally ((a, c, 
e), (b, d)). The dendrogram grasps the relative degree of 
similarity among components or clusters .  In general, the 
lower the level, the more similar the components or clusters .  

  

 
     Figure 1. An Example of a Dendrogram 
 
2.2 Input Data Set and Resemblance 

Coeffcient for Function Restructuring 

This paper adopts the concept of qualitative clustering, 
as described above, and tailors it to accommodate different 
types of dependance appeared in software. The input data 
is obtained by parsing a program at the function level, and 
mapping of the logical statements in that function and its 

data dependance and/or scope in that function. The idea 
will be explained in detail later in this section. 

We have started with the Sorenson coefficient for 
software clustering [25,26]. Although the Sorenson method 
was also successfully used to classify a number of 
simulation models  into a set of generic models [24,27], we 
have made some changes to the calculation for 
restructuring purpose. Specifically, statements are viewed 
as components and variables are considered as attributes. 
Also, scope of variables (i.e., if, else, loop) are also taken 
into account from the control aspect. They were treated like 
variables but with less weight. The input data set is then a 
representation of statement-variable/scope data matrix. 
Statements are the entities that we want to group based on 
their similarities in terms of their variable uses (data 
dependance) as well as the scope of their useages. All 
statements are considered with few exceptions, e.g., 
statements where a local variable is incremented (e.g., a 
statement like i++) in a loop are igonred.  

Modifiction to the Sorenson method is conducted to 
accommodate different possible association of function 
statement with the data and control. Therefore, multistate 
qualitative data (4/3/2/1/0) are used for input, where each 
value represents a different type of cohesion or 
association. A value of 4 or 3 represents direct data 
dependency, but 4 is adopted when a variable is updated, 
whereas 3 is chosen when a variable is only used. For 
instance, a 4 value will be entered for varialbe sum, but a 3 
value is used for variable num, in the statement: sum = sum 
+ num. A 2 value represents an indirect control 
dependancy of a statement on a variable. For example, a 
statement under a loop is dependent on the upper limit of 
the loop. Finally, a 1 value represents control dependency 
in a statement being under a decision making block (if/else 
block) or inside an iterative loop (for, while, do etc.). 

We have chosen five different types of associations or 
matches (a, b, c, d, e, f) and give them different weights 
when calcualting the coefficients. The matches between 
two components are defined as: a is the total numbers of 4-
4 matches; b, total numbers of 4-3 and 3-3 matches; c, total 
number of 2-2 matches; d, the total number 1-1 matches, e, 
total number of 4-2, 2-4, 3-2 or 2-3 matches; and f, total 
number of mismatches (i.e., patterns 4-0, 0-4, 3-0, 0-3, 2-0, 0-
2, 1-0, 0-1) between two statements.  Higher weights are 
given for direct data dependency and lower weights are 
used for indirect control dependency. 

The resemblance cofficient is modified as follows: 
      (waa+wbb+wcc+wdd+wee)/(waa+wbb+wcc+wdd+wee+f) 
where wa, wb, wc, wd are the weights. The weights used in 
this paper are primarily obtained from experiments. 
Specially, wa = 16, wb = 8, wc = 2, wd = 1, and we = 2.  

Once the input data matrix is generated and the initial 
resemblance coefficients are calculated, the clustering 
method is used as mentioned in the previous section. As 

  a     c     e      b     d 

step 
  4 

  3 

  2 

  1 

 
Coefficients 

0.2  
 

0.4  
 

0.6  
 

0.8  
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the clustering progresses, the statements of a function are 
grouped together and the resemblance coefficients are re-
calculated in each step. The coefficients will drop as the 
clustering progresses. A considerable drop would be an 
indication as to whether there is multiple functionalities 
within a single function. The process will also create 
several groups of statements where each group of 
statements would generally map to a new function. The 
result of such method when combined with designer’s 
input can produce effective restructuring of a function. 

3. Cohesion Types and Resemblance 
Coefficients  
This section demonstrates the concept with examples 

based on cohesion types  [35]. This paper considers each 
statement in a function as the processing element. The 
dependence relation of a statement is obtained from its 
variables and the scope within a module. The “statement” 
level is chosen because our final goal is to provide further 
retructuring options as we measure cohesion. Using 
statements also reduces the chance of introducing errors. 
In addition, the approach presented here for gathering the 
input data does not involve generating the dependance 
graph, which could be complex and time consuming. 
Rather, a simple script is used to parse the module of 
interest to get the information required. The entire process 
is simple, repititive and easily modifiable in case the 
weights of the association types need to be changed.  

In order to validate the effectiveness of our clustering 
technique, we use the sample programs which depict the 
different cohesion types from [20] and obtain the input data 
matrix to be used for clustering. The example code for 
coincidental, logical, procedural, and communicational 
cohesion types can be easily decomposed into two 
cohesive functions. For sequential and functional cohesion 
types, the result depits one strongly related cluster. Due to 
the page limit, only some of the cohesion type and the 
results are presented in Figures 2 and 3. 
 The example in Figure 2 shows the computation of the 
sum of first m numbers if the flag is true, else the product of 
first n numbers. In the input data shown in Figure 2(b), 
artifical variables, such as if and loop, are introduced to 
represent association due to the control dependency. For 
instance, both lines 6 and 8 have a 1 entry for if (column 2), 
since both of them belong to the same if-then block. Line 8 
has a 2 entry under variable m, since sum is indirectly 
associated with m due to the loop control dependency. 
Note also that the input shown in Figure 2(b) does not 
contain variables (e.g., i in lines 5, 9, 13, ad 17) that are used 
as loop count, neither does it have a row entry for the if, 
while or for statements (e.g., lines 4, 7, and 15).  

It is shown in Figure 2(c) that lines 6 and 8 have a high 
cohesion value (0.89); similarly lines 14 and 16 are closely 
related. However, these two clusters, (6,8) and (14,16), are 

independent (the associated resemblance coefficient is 0). 
This also explains why the loop variables are not 
considered in the clustering. If the second while loop also 
uses variable  i as the counting variable, then these two 
while loops will reveal some false resemblance. 

 
1 procedure sum_or_product (m,n,flag:  

    integer; var sum,prod: integer); 
2 var i,j: integer; 
3 begin 
4  if flag = 1 then begin 
5     i := 1; 
6     sum := 0; 
7     while i <= m do begin 
8        sum := sum + i; 
9        i := i + 1 
10    end 
11 end 
12 else begin 
13    j := 1; 
14    prod := 1; 
15    while j <= n do begin 
16       prod := prod * j; 
17       j := j + 1 
18    end 
19 end 
20 end 

 

 

 

 

 

Figure 2. (a) A module computing the sum of first m 
numbers or product of first n numbers; (b) input data 
matrix; (c) dendrogram and resemblance coefficients. The 
module represents logical cohesion.  

We have applied the technique to all the examples in 
[20] and the results are encouraging but are not presented 
here due to page limit. Figure 3 shows another sample of 
non-cohesive code [23]. For simplicity, the input data matrix 
is not presented. 

line# if loop 
1 

m else loop 
2 

n sum prod 

6 1 0 0 0 0 0 4 0 
8 1 1 2 0 0 0 4 0 
14 0 0 0 1 0 0 0 4 
16 0 0 0 1 1 2 0 4 

(b) 

(a) 

6   8 
         (c) 

14   16 

0 
0.89 
0.89 
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The dendrogram and the associated resemblance 
coefficients clearly show three groups: (14, 16, 11, 18), (10, 
13, 19), and (7). The coefficient between (14,16,11,18) and 
(7) is very small, so they belong to two different clusters. In 
other words, the program can be decomposed into the three 
sub-functions based on those three clusters. The following 
shows those three procedures  (for brevity, variable 
declarations are not shown here): 
 

procedure read_input: 
begin 
   i := 0; 
   while i < days do begin 
      i := i + 1; 
      readln (sale[i]); 
   end; 
end; 

 
procedure compute_avg_pay: 
begin 

   total_pay := 0; 
   for i := 1 to days do begin 
      total_pay := total_pay + 0.1 * sale[i]; 
      if (sale[i]) > 1000) then 
         total_pay := total_pay + 50; 
   end; 
   pay := total_pay / days + 100; 
end; 
 
Figure 4. Restructured program.  

4. Implementation and Experiments  
A prototype tool was built for concept evaluation and 

demonstration. The tool consists of three modules. Module 
1 is a parser for C programs written in Perl, which generates 
the input data matrix. Module 2 performs the clustering. 
Module 3 draws the dendrogram. 

This approach is primarily experimental research. The 
multistate values and weights were chosen based on 
experiments on various examples. The main idea is to devise 
a sheme that distinguishes different association types using 
different weights. The results were encouraging, as 
demonstrated in the previous section. We have applied the 
approach to many functions of a C parser and a 
telecommunication system developed in industry, and some 
concurrent programs  written by students .  Generally, we 
have achieved our goal – transforming low-cohesive 
functions into smaller and cohesive ones.  

5. Related Work 
 Numerious papers have discussed cohesion and 
coupling at different levels (e.g., design vs. code) 
[6,7,11,13,17] or for different paradigms (procedural vs. OO 
languages) [9]. Most of those papers focus on measurement 
of cohesion and coupling. The idea of restructuring is to 
transform a system or a progrma into more organized form to 
support evolution. 
Lakhotia and Deprez [22,23] provided a thorough discussion 
on related work. Readers are referred to read their papers for 
a review of this area. The objective of their approach is 
identical to ours. However, their restructuring technique 
computes pairwise cohesion between output variables of a 
function using rule-based measure of cohesion. Our 
approach is a variation of the numeric clustering technique. 
The method or tool can be easily adapted if the definition of 
the weighing policy is modified. 
The clustering idea is also related to program slicing. Each 
column or a collection of columns of the input data matrix is 
similar to a program slice. The clustering algorithm is then 
used to find closeness among the slices. 

6. Conclusions and Futurre Work 
We presented a conceptually simple clustering 

technique and adapted it to program restructuring The 
result of the clustering can provide useful feedback to 

1 procedure sale_pay_profit (days: integer; 
cost:float; var sale: int_array; var pay: 
float; var profit: float; process: Boolean);   

2  var i: integer; total_sale, total_pay: 
float; 

3  begin 
4  i := 0; 
5  while i < days do begin 
6     i := i + 1; 
7     readln (sale[i]); 
8  end; 
9  if process = True then begin 
10    total_sale := 0; 
11    total_pay := 0; 
12    for i := 1 to days do begin 
13      total_sale:=total_sale + sale[i]; 
14      total_pay:=total_pay+0.1*sale[i]; 
15      if (sale[i] > 1000) then 
16        total_pay := total_pay + 50; 
17    end; 
18    pay := total_pay / days + 100; 
19    profit := 0.9 * total_sale – cost; 
20 end; 
21 end; 

Figure 3. Sample non-cohesive code and the  
dendrogram output. 

0.20 
0.24 
0.73 
0.80 
0.85 
0.85 
0.91 

   14   16   11  18   7    10    13    

procedure compute_profit: 
begin 
   total_sale := 0; 
   for i := 1 to days do begin 

 total_sale := total_sale + sale[i]; 
   end; 
   profit := 0.9 * total_sale – cost; 
end; 
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convert a large or low-cohesive code segment into smaller 
and cohesive functions, without changing its behavior. A 
tool was developed to assist the parsing, clustering, and 
drawing. We demonstrated the concept with examples of 
different cohesion types. The concept can be easily 
tailored to meet other definitions or different calculations. 
The restructuring effort can be automated further, however, 
we advocate human intervention to be involved in the 
restructuring process to avoid errors. More experiments 
need to be conducted to further validate the approach for 
large and complex software systems. 
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