

Architecture-Centric Program Transformation for Distributed Systems

Chung-Horng Lung, Jianning Liu, Xiaoli Ling, Dan Jiang

Department of Systems and Computer Engineering
Carleton University

Ottawa, Ontario, K1S 5B6, Canada
chlung@sce.carleton.ca

Abstract

Software evolution is inevitable due to changes in
requirements and technology. Software quality and
productivity are critical to software evolution.
Architecture-centric evolution has the advantage of
improving quality attributes; however, it does not
directly address the issue of the time needed for
evolution. This paper proposes an architecture-centric
program transformation approach to support both
quality and productivity concerns. The approach
emphasizes the analysis of similarities and differences
among architecture alternatives, which facilities the
tool development for architecture evolution or
evaluation. A tool was constructed to automatically
transform a program to another form based on user’s
selection. The tool currently supports the
transformation of one traditional design to the other
two commonly used architecture patterns in distributed
and concurrent systems.

1. Introduction

Distributed software systems and applications are
common these days in the Internet age and they are
getting more and more complex because of the
development of new requirements and features. As a
result, the evolution of existing distributed software
systems also becomes difficult, time-consuming, and
error prone. In addition, the evolution of software
systems usually occurs at the code level, which in
general is not as effective as that at the architecture
level, because software architecture captures the main
components and their relationships, and the design
rationale of the system. Substantial properties of a
system, such as the quality attributes, are best
described and tackled at the architecture level.
Therefore, software evolution at the architecture level
or architecture-centric evolution will better facilitate
the synchronization of new requirements: either user or
technology requirements, design, and implementation.

However, enterprises also face another challenge–
time-to-market. Software quality attributes–such as
performance, security, reliability, availability, and
modifiability have been advocated as drivers for
architecture-centric design [Barbacci03]. But it often
does not directly or explicitly address the issue of time-
to-market. In fact, time-to-market may play a more
important role in practice in the initial design or the
evolution stage than those quality attributes to
enterprises, especially in highly competitive areas.
From the evolution perspective, the architect may
adopt a new software architecture for non-functional
requirements such as those qualities. Therefore, it is
critically important to support software developers who
attempt to transform an existing system to a new one
with a different architecture and/or new technologies to
reduce the time and improve other qualities.

As stated earlier, distributed systems have become
common these days. However, the design of many
distributed systems has not taken advantage of some
new technologies in this area. For example, two
original systems under study in telecommunications
and wireless applications were developed using the
single-thread (ST) approach. Multi-thread design
alternatives, such as Half-Sync/Half-Async (HS/HA)
and Leader/Followers (LFs) design patterns
[Schmidt00], typically can increase the performance.
In fact, one of the systems under study was converted
from the ST to HS/HA and the other one was
transformed to LFs. Many design patterns in
distributed applications have been captured and
documented [Schmidt00]. Some of the patterns are
lower-level artifacts suitable for detailed design; some,
on other hand, depict the high-level structure or
architecture of a system. Two examples of patterns that
fall into the later category are HA/HA and LFs.

Manual transformation of a legacy system to a new
one using the advanced technology may need a lot of
time or specialized knowledge even though those
patterns have been well-documented. Lung, et al
[Lung04a, Lung04b] reported an empirical study of
transformation from ST to HS/HA for higher

mailto:chlung@sce.carleton.ca

performance and quality-of-service requirements,
which required extensive knowledge and lots of efforts.
Therefore, the objective of this paper is to develop a
tool to facilitate the transformation of distributed
programs using well-documented design patterns. The
focus of this paper at this point is on two commonly
adopted concurrency patterns: HS/HA and LFs.

The program transformation tool was developed
based on analyses of existing systems, including a
generative framework and reusable components
designed using relevant design patterns. The tool was
written in Python to automatically transform an
existing system that is designed using the traditional
ST approach in Java to another Java program that uses
either of the two advanced concurrency design
patterns: HS/HA and LFs. Selection of the design
patterns is made by the user. The existing system can
be transformed with our software tool much more
easily compared to manual transformation. Time spent
on transformation can be greatly reduced and software
quality can also be assured since the tool has been well
tested and verified. In addition, a ST system can be
transformed to HS/HA and LFs using the tool to
support architecture tradeoff [Kazman98] or sensitivity
analysis [Lung00].

The rest of this paper is organized as follows:
Section 2 describes some related work. Section 3
discusses the program transformation approach.
Section 4 presents a program transformation tool and
illustrates a case study using the tool. Finally, section 5
is the summary.

2. Related Work

Design patterns have been well accepted in the
software engineering community because of their
practical and theoretical importance. Design patterns
could be generic to many different domains or specific
to a particular domain. For example, many design
patterns described in [Gamma95] can be applied to
multiple domains, but patterns documented in
[Schmidt00] are specific to distributed and concurrent
systems. This paper focuses on the patterns discussed
in [Schmidt00].

Schmidt, et al [Schmidt00] presented several types
of design patterns in networked and concurrent
systems. They include service access and configuration
patterns, event handling patterns, synchronization
patterns and concurrency patterns. Service access and
configuration patterns mainly deal with effective
application programming interfaces (APIs) to access
and configure services and components in stand-alone
or networked systems. Detailed discussions of those
patterns can be found in [Schmidt00].

Event handling patterns are used to describe how to
initiate, receive, demultiplex, dispatch, and process
events in networked systems. There are four patterns in
this category: reactor, acceptor-connector, proactor,
and asynchronous completion token. The first three
patterns were used in our study. Reusable components
were built based on these three patterns, which are
useful for program transformation.

Concurrency patterns represent the architecture
alternatives of typical communications software. Three
basic architectural alternatives are selected in our paper
from the concurrency management perspective. They
are the traditional ST approach using the Reactor
pattern, HS/HA, and LFs. ST was selected, primarily
due to its simplicity and, more importantly, it was the
style originally used in the existing software under
study. Many legacy systems were also developed using
the ST approach. The other two alternatives are
included mainly due to their acceptance in this field
[Schmidt00]. Both HS/HA and LFs have the potential
to improve system performance.

Lung [Lung03] conducted a preliminary variability
analysis for various architectural alternatives in
communications software. Figure 1 displays three of
these common alternatives at an abstract level. The
thread in the ST approach will handle events via the
select() function and process the incoming message.
However, this approach often leads to scalability
concerns. This problem can be improved using either
the HS/HA or the LFs pattern as the overall
architecture.

In LFs, multiple threads function similarly to that in
the ST example and synchronization of those threads is
provided. However, only one thread at a time—the
leader—waits for a network event to occur. Other
threads—the followers—can queue up, waiting for
their turn to become the leader. Once the leader detects
an event, it promotes one of the followers to be the
leader. It then becomes a service-processing thread.
HS/HA, on the other hand, divides the system into
three layers, as shown in Figure 1(b). The
asynchronous layer reads messages from the network
and stores them in the queue. Multiple worker threads
read messages from the queue and process them.

3. Architecture-Centric Program
Transformation

As illustrated in Section 2, those architecture
alternatives share similarities, but they also have
differences. Each alternative has its pros and cons,
even though HS/HA and LFs in general could have
better performance. Nonetheless, software architecture
may involve complicated operations or behaviours. For
a real case study, we reengineered a network system
from ST to LFs for performance improvement.
However, the system based on the LFs pattern did not
actually perform better than the ST approach as
expected [Alhussaini04]. Using a tool to facilitate
architecture-centric evolution not only can save time,
but also can foster architecture evaluation with working
systems before the actual transformation.

The following describes the approach that we have
adopted to support architecture-centric program
transformation. The approach is built on top of our
previous research of an architecture-centric generative
framework [Lung06]. The development of the
framework consists of the following steps:
1) Define the scope and conduct a variability analysis

at the architecture level.
2) Conduct design recovery of existing robust software

systems.

3) Reengineer existing systems using patterns.
4) Conduct evaluation of architecture alternatives.
5) Construct reusable components and the framework.

Section 2 already highlighted the first step. Step 2

advocated that it is important to reuse existing working
systems rather than building from scratch. We have
studied multiple systems, including a network
prototype system developed by the industry. The
design recovery process provided valuable information
and was very helpful for the subsequent reengineering
effort. We have manually reengineered ST systems
[Alhussaini04, Lung04a, Lung04b] using various
design patterns: Reactor, Acceptor-Connector, HS/HA,
and LFs.

Thorough software architecture evaluation for ST,
HS/HA, and LFs with emphasis on performance was
then conducted [Alhussaini04, Lee04, Lung04b,
Wu03]. The process helped us better understand the
quality attributes of different alternatives. Lastly, a
framework consisting of reusable components–
Dispatcher, Connection Accepter, Connector, Service
Handler, HS/HA, and LFs–was developed. The
framework allows the user to select and instantiate a
system using a particular alternative–ST, HS/HA, or
LFs.

The paper extends the previous work by building a
tool to support automatic program transformation
based on the user’s selection. The approach consists of
the following main tasks:
1) Conduct analysis to identify similarities and

differences among the alternative patterns at the
architecture/design level based on the selected
design patterns and existing systems.

2) Conduct similar analysis at the component level.
3) Conduct similar analysis at the code level.
4) Conduct manual transform from ST to HS/HA or

LFs, and verify the results.
5) Develop a scheme and build a tool to transform the

ST program to either HS/HA or LFs.

Figure 2. Reusable Components Developed Using Design Patterns for a Generative
Framework [Lung06]

Each step will be described in more detail as
follows:

1) Identify similarities and differences at the
architecture or design level
This step is an extension of the variability analysis

in our previous work. The focus here is to be specific
and concrete, since the ultimate goal is to build an
actual tool instead of working only on the high-level
artifact. For this particular case study, not much more
was added other than the results shown in Figure 1.
However, this is the first step that we advocate and we
are also looking at applying the method to other areas
in the future. In addition, we have examined a couple
of systems using different design alternatives

2) Identify similarities and differences at the
component level
The main purpose of this step is similar to that of

the traditional detailed design phase. A set of reusable
components were developed in our previous generative
framework. Figure 2 shows those components which is
not necessary for this step. However, with those
components available, the tool may replace existing
relevant code segments for reengineering or retrieve
them for new systems. The components on the right in
Figure 2 are reusable across all three alternatives with
some modifications needed for specific patterns. The
components on the left in the figure are either used
specifically for HS/HA (component x) or for the
network application layer (component y).

The Dispatcher or component A shown in Figure 2
handles synchronous or asynchronous demultiplexing
usually realized by the Reactor or Proactor,
respectively [Schmidt00]. The Dispatcher component
handles connection completion event, incoming new
connection, incoming data, and readiness of the socket
for writing data. The Connector component, B, is
refined from the Connector design pattern described in
[Schmidt00]. It implements the strategy for actively
establishing a connection and initializing its associated
ServiceHandler. ConnectionAccepter (component C) is
refined from the Acceptor design pattern. The main
function of this component is to passively wait for
connection requests from remote connectors. It then
establishes the connection with the actual host
machine. DataAcceptor (component D) is similar to the
ConnectionAcceptor component, but it receives data
from the Dispatcher when data arrives. ServiceHandler
implements an application-specific service. In this case
study, the application has to with message routing and
forwarding in a network application. ServiceHandler is
mainly used together with the Generator (component y)
to emulate a network routing application for the
application level.

3) Identify similarities and differences at the code
level

The next step is to perform detailed analysis at the
code level. As stated earlier, the goal is to develop a
program translation tool, so it has to be precise.
Therefore, it is required to identify the exact
similarities and differences among the alternatives.
Figure 3 shows an example of some differences
between the HS/HA pattern (on the left) and the ST (on
the right) design.

4) Conduct manual transform from ST to HS/HA or
LFs, and verify the results
Before the tool was developed, we manually

convert the system from the ST design to either the
HS/HA pattern or the LFs pattern. This step is
necessary to ensure that the converted systems will
actually work properly. We have re-engineered the
code and verified the correctness of the results before
building the tool.

5) Develop a scheme and build the tool
The final step is the actual development of the tool,

including design, implementation, and testing. The tool
is written in Python and the target program language is
Java, though we have also analyzed C++ programs.
Section 4 discusses the tool in more detail.

4. Program Transformation Tool

The section describes the approach that we used for the
tool development. The initial version of the tool is
tailored to the generative framework that we used
during the analysis process and the tool focuses on the
transformation from ST to either HS/HA or LFs.
Section 4.1 describes the steps that are involved and
section 4.2 presents more detailed algorithm.

4.1 Transformation Steps
The process of developing the transformation tool

involves three steps: extraction, insert, and re-
composition. Extraction deals with extraction of
classes and methods. In our approach, extraction is
used to extract classes. The insert step adds specific
key lines or methods identified during the difference
analysis phase. Finally, the re-composition step
reconstructs the methods and classes. These three steps
will be elaborated more later in this section.

The software tool also has a library consisting of all
the supporting files for implementing specific design
patterns. Based on the design pattern selected by the
user, the appropriate supporting files will be connected
to the Interfacer class derived from the generative
framework. The Interfacer class is used to instantiate a
specific design option.

The supporting files in the library are used to
construct the basic structure of the LFs pattern or the
HS/HA pattern. The following is a list of the
supporting files in the library used in the
transformation:

• Worker pool
• Worker
• Queuing layer
• Asynchronous layer
• ServiceHandlerThread

The first two files are used for the LFs pattern; while
the next three files are used for the HS/HA pattern.

Extraction reads in the single-thread Interfacer
class and extracts the methods in the class. Note that it
is not necessary to read in the entire source file as the
differences have been identified already.

The insert phase adds new methods. Two methods
are added to the ST method: startLeaderFollower() and
stopLeaderFollower(). In addition, new associations

are established: the association between the
LeaderFollowerInterfacer and WorkerPool, and the
association between WorkerPool and Worker classes.

From ST to HS/HA, one extra method is added:
startServiceHandlers(). New associations, the
association between HSyncHaSyncInterfacer and
ServiceHandlerThread, and the association between
HSyncHaSyncInterfacer and AsynchronousLayer, are
also established.

Re-composition is a process of reconstructing the
code. During the process, the existing system with
newly added methods and re-used components are
reconstructed. A new output file containing the
generated program is produced after this process.

Figure 3. Differences between the HS/HA pattern and the ST Program: an Example

4.2 Detailed Algorithm
This section presents the algorithm used in the tool.

Each tool keeps track of each method in the ST
approach and the differences between the ST approach
and the HS/HA or LFs patterns.

The following shows the algorithm in more detail:
Each method in the ST code is treated as a unit

during the transformation. For each method, the tool
will search the original ST code line by line for
transformation. In addition, the tool stores the changes
(identified previously during the analysis phase
discussed in section 3) needed for each method,
including header files, additional variables, and etc.

Algorithm:
main():
{
 Add additional header files if needed
 Insert additional variables if needed
 Read input file
 Read line
 Repeatedly find the start of a method that needs to be

transformed and do
 {
 Read line until it finds the right line for change(s)

based on keywords or key lines
 Call updateMethod()
 }
}

updateMethod():
{

// Each method keeps track of the number of
// changes that is needed, which is used for the following
// loop
Repeat for all identified changes
{
 look for the key line to transform

// Example: this.serviceHandler in the ST code
// in Figure 3
Replace the “original line” with the corresponding
new line of code and/or insert a new code segment

 // see the example of HS/HA in Figure 3: the change
 // here is this.dataAcceptor for this.serviceHandler.
 // In addition, two additional lines are added to the
 // HS/HA design to start HS/HA
 }
}

A graphical user interface (GUI) in Python
[Python06] was developed for ease-of-use which is an
important feature in practice. Python programs
generally take less time to develop. Python is suited as
a "glue" language and is good for configuration
management. Figure 4 shows the starting GUI of the
tool. The selection of target system really depends on
the user. The general guidelines and pros and cons are
well documented. But it may be useful to compare
them by collecting quantitative or more concrete data
through the executable systems.

The output file contains the generated Java
program. Figures 5 and 6 are snapshots of running a
translated Java program using the HS/HA pattern. The
3 value depicted in Figure 5 is the number of worker
threads.

Figure 4. Starting GUI for Program
Transformation

Figure 5. A Java Application Using the HS/HA
Pattern (I)

5. Conclusions

Quality attributes or non-functional requirements

are important factors in evolution, including
maintainability and productivity. Evolution starting at
the architecture level has better leverage to address
those quality issues. In practice, productivity or
evolution time needed usually has a dominating role
for enterprises. This paper presented an architecture-
centric program transformation approach with an aim
to address both the traditional software quality and
productivity issues. The target application area is
distributed and concurrent systems.

Our initial tool was developed specifically based on
an existing system under study, even though our
analysis was conducted with a much larger scope.
However, the tool can be enhanced for general Java
programs. The concept could also be applied to other
areas where multiple candidate patterns are potential
architecture alternatives and especially the tool can be
reused multiple times.

References:
[Alhussaini04] Alhussaini, A., et al, A., Software

Restructuring and Performance Evaluation, Project
Report 2004, Dept. of Systems & Computer Eng.,
Carleton Univ., Ottawa, Canada.

[Barbacci03] Barbacci, M, et al, Quality Attribute
Workshops (QAW) : 3rd Edition, Technical Report
CMU/SEI-2003-TR-016, 2006.

[Balasubramaniam05] Balasubramaniam, B.,
Elankeswaran, P., Gopalasundaram, U., and
Selvarajah, K., Program Transformation and
Building Reusable Components with Design
Patterns, Project Report 2005, Dept. of Systems &
Computer Eng., Carleton Univ., Ottawa, Canada.

[Gamma95] Gamma, E., Helm, R., Johnson, R.,
Vlissides, J, Design Patterns: Elements of Reusable
Object-Oriented Software, Addison Wesley, 1995.

[Kazman98] Kazman, R., Klein, M., Barbacci, M.,
Longstaff, T., Lipson, H., and Carriere, J., “The
Architecture Tradeoff Analysis Method”, Proc. of
the 4th Int’l Conf. on Engineering of Complex
Computer Systems, Aug. 1998, pp. 68–78.

[Lee04] Lee, J.-C. and Zhang, X., Performance
Investigation of a Network System on Different
Linux Kernels, Project Report 2004, Dept. of
Systems & Computer Eng., Carleton Univ., Ottawa,
Canada.

[Lung00] Lung, C.-H. and Kalaichelvan, K., “A
Quantitative Approach to Software Architecture
Sensitivity Analysis”, Int'l Journal of Software Eng
and Knowledge Eng, vol. 10, no. 1, Feb 2000, pp.
97–114.

Figure 6. A Java Application Using the HS/HA Pattern (II)

[Lung03] Lung, C.-H., “Variability Analysis for

Communications Software”, Proc. of the Int'l
Workshop on Software Variability Management
(SVM), International Conf. on Software Eng., May
2003, pp. 30–33.

[Lung04a] Lung, C.-H., Zhao, Q, Xu, H., Mar, H.,
Kanagaratnam, P., “Experience of Communications
Software Evolution and Performance Improvement
with Patterns”, Proc. of IASTED Software
Engineering, Feb. 2004.

[Lung04b] Lung, C.-H. and Zhao, Q., “Pattern-
Oriented Reengineering of a Network System”,
Journal of Systemics, Cybernetics and Informatics,
volume 2, no. 5, 2004.

[Lung06] Lung, C.-H., Balasubramaniam, B.,
Selvarajah, K., Elankeswaran, P, Gopalasundaram,
U., “Architecture-Centric Software Prototype
Generation: an Experimental Study”, submitted for
publication.

[Python06] The Python Programming Language,
http://www.python.org/, Accessed April 2006.

[Schmidt00] Schmidt, D., Stal, M., Rohnert, H.,
Buschmann, F., Pattern-Oriented Software
Architecture: Patterns for Concurrent and
Networked Objects, Wiley, 2000.

[Wu03] Wu, Pengfei, A Performance Model for a
Network of Prototype Software Routers, MASc
Thesis, Dept. of Systems & Computer Eng.,
Carleton University, Ottawa, Canada, July 2003.

http://www.sce.carleton.ca/faculty/lung/IJSEKE_2000.pdf
http://www.sce.carleton.ca/faculty/lung/IJSEKE_2000.pdf
http://www.sce.carleton.ca/faculty/lung/IJSEKE_2000.pdf
http://www.sce.carleton.ca/faculty/lung/variability_manage_03.pdf
http://www.sce.carleton.ca/faculty/lung/variability_manage_03.pdf
http://www.sce.carleton.ca/faculty/lung/IASTED_SE_04.pdf
http://www.sce.carleton.ca/faculty/lung/IASTED_SE_04.pdf
http://www.sce.carleton.ca/faculty/lung/IASTED_SE_04.pdf
http://www.python.org/

