
Application of Design Combinatorial Theory to Scenario-Based Software
Architecture Analysis

Chung-Horng Lung
Department of Systems and Computer Engineering

Carleton University, Ottawa, Ontario, Canada
Email: chlung@sce.carleton.ca

Marzia Zaman
Cistel Technology Inc., Ottawa, Ontario

Email: marzia@cistel.com

 Abstract. Design combinatorial theory for test-case
generation has been used successfully in the past. It is
useful in optimizing test cases as it is practically
impossible to exhaustively test any software system.
The same concept can be applied while doing high level
architecture analysis of a software system. In software
architecture analysis, the architect often analyzes
different scenarios that a system may experience during
its lifecycle to ensure that all or most possible scenarios
are covered in the design. Usually, the analysis is
conducted manually in an ad-hoc fashion and scenarios
are executed separately. However, some important use
cases that involve multiple concurrent scenarios may be
overlooked with this approach. Software architecture
analysis is critical, especially for real time
telecommunications systems. More formalis m or
robustness needs to be considered in the evaluation
process, particularly for reliability. This paper
demonstrates application of the design combinatorial
theory based technique and tool to software architecture
reliability analysis of a practical real-time software
system.

1. Introduction

Software architectural analysis [Kazman96, Lung00,
Clements02] is an important step in software
development process. It is critical to ensure all or most
functional and non-functional attributes of the software
to be developed are well defined, captured and
understood by the design team early in the life cycle. If
neglected, major problems may surface at the time of
implementation which may cause tremendous rework in
the later part of the development life cycle. However, it
may not always be possible to design the software as
intended because the requirements may change over

time and the design change may be unavoidable. Also,
one may need to conduct reverse engineering in order to
enhance the reliability or performance of the software,
which is not always built-in. Whether it is done as part
of forward engineering or reverse engineering, the
architectural analysis is something that needs to be
conducted.

Identifying different scenarios is critical and
commonly accepted in the architectural analysis. One
must understand different user and system requirements
to come up with the scenarios. The scenarios may be
triggered by the users and/or some other external or
internal inputs or events. Also, the fact that one scenario
can influence or change the behaviour of some other
scenarios, and multiple scenarios can occur together at
the same time, makes an explosive set of scenarios and
makes the scenario generation challenging.

Traditionally, software architecture analysis is based
on executing scenarios, often separately. But the
analysis is often conducted in an ad-hoc manner and is
heavily dependent on the analyst’s experience. With this
approach, some scenarios, especially, combinations of
scenarios that may happen concurrently in real life may
be missed. For instance, Lung, et al. [Lung98] reported
a case study for performance improvement as a result of
executing multiple concurrent scenarios. The system
behaved well while three scenarios were conducted
independently. However, performance degraded
significantly when these three scenarios happened
simultaneously. The use case where these three
scenarios could happen at the same time was initially
missed, which caused performance problem in a real-
time telecommunications system.

For applications that have a large number of
scenarios and many possible combinations of various
scenarios, a formal or semi -formal approach to scenario
analysis is advocated. Manual effort alone is time
consuming and error prone. In this paper, we

demonstrate how scenarios or multiple scenarios can be
derived in a step by step procedure with the support of
the design combinatorial theory. Although the manual
effort and time will always be needed, the process can
be more formalized. The formal or semi -formal
approach will allow the designers to focus on
identifying the scenarios that are of concern to the
system. However, combination of scenarios is mostly
generated by the design combinatorial technique, which
increases the coverage of multiple scenarios and reduces
the chance of overlooking important cases.

The concept of design combinatorial theory has been
studied intensively. The approach has been applied to
software testing by many researchers and industry
practitioners. Colbrourn [Colbourn04b] and Grinda, et
al. [Grindal04] present a thorough study on this topic. It
is not our intention of this paper to discuss the theory in
detail. Rather, we demonstrate the application of the
theory to software architecture analysis of a real
telecommunications system with emphasis on reliability,
which, to our knowledge, has not been discussed much.
Software architecture analysis can be benefited from
this concept due to its formalism, coverage and
simplicity.

The rest of the paper is organized as follows: Section
2 briefly describes the design combinatorial theory.
Section 3 illustrates an application of the design
combinatorial theory to software architecture reliability
analysis of a real time telecommunications system.
Finally, section 4 gives a summary.

2. Design Combinatorial Theory

Design combinatorial involves experimental design
where statistical techniques are used for planning
experiments such that one can extract maximum
possible information from as few experiments as
possible. This technique has been used extensively in a
wide range of applications from planning medical
experiments to industrial experiments [Cohen94].

Depending on the application, different designs are
proposed in the past [Cochran50]. In this paper, we
focus on the design of pair-wise combinations as it
seems to be very effective in test case generation
[Burr98, Cohen94, Cohen96, Colbourn04a,
Colbourn04b, Dalal99, Grindal04, Kuhn02]. The design
of pairwise combination requires that for any pair of
parameters, all combination of input values must occur
at least once.

Consider a situation with four parameters A,B,C,D;
each having four possible values, say 1, 2, 3, 4. It would
require 44=256 combinations to cover all possible
combinations. The set of exhaustive combination will be

{(1,1,1,1),(1,1,1,2),(1,1,1,3)…(4,4,4,4)}. However, in
practice, most of the combinations are redundant and/or
do not provide any additional value to testing.
Therefore, the same amount effectiveness can be
achieved if there is a way to select the combinations that
are of interest to us. Hand-picking the interesting or
more useful combination from the exhaustive set is not
practical. Even if it is possible for a small system, it is
still rather time-consuming. Pairwise combination, on
the other hand, requires that all pairwise combinations
of the two input values between two parameters are
guaranteed. In this case, an algorithm which constructs
an optimi zed set of all pair-wise combinations would be
useful.

For example, the following set shown in Table 1 has
only 16 combinations that guarantee all pairwise
combinations of input values between any pair of
parameters. In other words, given any two parameters,
say A and C, all combinations of values between these
two parameters, i.e., {(1,1),(1,2),(1,3),…,(4,2),(4,3),
(4,4)} will be covered in the set given below. The
pairwise technique is found to be very useful in many
software testing applications as it has been seen that
most field faults are occurred due to the interaction of
one or two parameters. The design combinatorial
technique attempts to provide a set of combinations such
that it is optimal in size, i.e., the table has optimum
number of rows.

Table 1: Pairwise combinations

A B C D
1 1 1 1 1
2 1 2 2 2
3 1 3 3 3
4 1 4 4 4
5 2 1 2 3
6 2 2 1 4
7 2 3 4 1
8 2 4 3 2
9 3 1 3 4
10 3 2 4 3
11 3 3 1 2
12 3 4 2 1
13 4 1 4 2
14 4 2 3 1
15 4 3 2 4
16 4 4 1 3

In this case, the amount of reduction in number of
combinations would be from 256 to 16. The gain is

Figure 1: System under study

more significant when the number of parameters and
input values per parameter increases.

3. Software Architecture Analysis Using Design
Combinatorial Theory

Software architecture analysis shares similar idea with
testing. In software architecture analysis, scenarios or
use cases are commonly used; while in testing, test cases
are mandatory. Therefore, it is reasonable to believe
that it would be as effective in scenario generation as it
is in test case generation. This section presents a case
study of applying the design combinatorial theory to
generating failure scenarios of a real
telecommunications system. The case study
demonstrates the applicability of design combinatorial
theory in supporting software architecture reliability
analysis.

The approach is applied in identifying scenarios that
are useful in evaluating the robustness aspect of a
telecommunications software system. Reliability is
crucial to telecommunications software. The standard
reliability requirement for this type of systems is
99.999%. Therefore, it is extremely critical to conduct
thorough software architecture reliability analysis for a
product.

3.1. System Under Study

The system under study is a big server in a network. The
server will receive many incoming messages
concurrently from various sources and it has to process
the messages in real-time to satisfy the reliability
requirement. Along with system commands/ messages,
the server is also responsible for receiving user’s query
or update messages to the database. The main
components of the system include the Base, SCS
(Service Control System), SH and RH (Service and
Request Handler), Database, SIBBs (Service
Independent Building Blocks), OA&M (Operation,
Administration, and Management). The Base deals with
external communications of the message. The SH and

RH provide specific services in response to the
incoming messages. The SIBBs are composed of many
reusable software components that can be used to build
a specific service. Database contains millions of
subscriber and support records. OA&M contains many
sub-components to monitor the network and resources,
keep track of the log and raise alarm in the event of
exceptions, and so on.

The system under study is designed to support
various configurations. For example, it can be used with
or without a hot standby system as well as with or
without a mirrored database in both active and standby
system. The system under study is shown partially in the
following Figure 1.

3.2. Classification of faults

To support software architecture analysis, the approach
adopted was similar to traditional approaches
[Kazman96, Lung00, Clements02]. The architecture is
captured with various views [Kruchten95, Lung00,
Nord04]. A list of scenarios are then identified to walk
through the architecture. However, extra efforts are
needed to evaluate the reliability aspect of the target
system, since the system is complicated and the
reliability requirement is extremely high. The evaluation
objective from the reliability perspective is first
identified as:

Reliable software with built-in fault tolerance must
be able to handle faults gracefully.

The first step in this study is to categorize the different
classes of faults that can happen to the system. The
followings show the major different classes of failures:
(i) hardware, (ii) network, (iii) software process and (iv)
resource exhaustion or congested messages .

Next step is to identify different mechanisms by
which the failure can occur under each class. This
includes identifying different locations (e.g. hardware,
software processes) as well as the different types of
failure under each failure class. For instance, the
hardware failures can happen in the active system as
well as in the standby system. The following

Request
Handler
(RH)

Base

OA&M
Request
Handler
(RH)

Base

OA&M

 Active
Stand by

DB
DB

demonstrates some possible scenarios from the
reliability perspective.
1. Hardware failures

1.1 Power failure. The Base encounters a power
outage. This could be either a switch off or an
unexpected outage.
1.2. CPU failure.
1.2.1.CPU failure occurs at the active card.
1.2.2.CPU failure occurs at the hot standby card.

2. Network failures
2.1. Connection between the Base Framework and
the system management fails.
2.2. Connection between the active side and the hot
standby side fails.

3. Software process/thread failures
3.1. A process exceeds the execution time limit.
3.2. A service control block is corrupted.
3.3. high CPU consumption by a non-real-time
process

4. Resource management and other
4.1. Disk space exhaustion.
4.2. Memory exhaustion.
4.3. CPU utilization exceeds the QoS threshold.
As can be seen, it is extremely difficult to handcraft

all realistic scenarios that may concurrently happen. It is
fairly easy though to generate all possible failure
scenarios; however, most of the scenarios may not be
feasible and/or worth considering. Also, the number of
scenarios would be huge. In this case study we have
used the design combinatorial approach to generate the
failure scenarios. It serves two purposes: (i) provides a
formal mechanism for creating scenarios that may have
been omitted if the analysis is conducted manually; (ii)
provides a smaller set of scenarios which is more
effective than all possible combinations and/or any
randomly generated combinations.

3.3. Architectural Analysis Approach

Step 1: For each major class of fault, we have identified
the parameters and different values for each parameter.
The combinations of the values of the parameters will
determine a specific failure scenario. For example, the
hardware failure scenario can be modeled in terms of
the parameters and the values as shown in Table 2. Each
column header of Table 2 represents the parameter and
each line under the column represents a value for that
particular parameter.

The models for all major fault classes are created. It
is worth-mentioning that this step will require
significant domain knowledge about the system. In this
case study, we have created two types of software
failure classes – (i) deals with database operation failure
related to the database record, e.g., record not found,
corrupted and/or exceeds some limit as shown in Table 3

and (ii) related to various software process failures as
shown in Table 4. The failure type in these processes
could be different as well; for example, the process
could be either dead or timed out.
Step 2: Once the individual models are created, some
combined models are created by choosing the various
possible interactions among the various failure classes.
Special attention is given to the quality of service (QoS)
aspect as it plays an important role in reliability. For
example, if the software is involved in credit card
transaction or any transaction that requires database
update, it is critical to handle any failure scenario more
gracefully than if the software is doing some other non-
critical message processing. Table 5 shows the different
message types that may be received The system
configuration may also be of interest in architectural
scenario analysis . The system under study is designed
such a way that it can be configured in a full-duplex
mode meaning with a hot stand-by system with a
mirrored database in both active and stand-by systems

Table 2: Model for generating hardware failure scenarios

Failure Type Card OA&M State
CPU
DISK
MEMORY
General
Communications

Active
Standby

Power off
Out of service

Table 3: Model for generating software failure scenarios - I

Process Failure Types
RH
SIBB
TCB
DB (Database)
OA&M

Dead
Timeout

Table 4: Model for generating software failure scenarios -
II

Record Type Failure Type
Subscriber
Support

NotFound
ExceedsLimit
Corrupted

Table 5: Message types

Message ID Message Type
MSG1 Update
MSG2 Begin
MSG3 End
MSG4 Continue
MSG5 Query

Table 6: System configurations

and/or other combinations of the databases and
active/standby systems. The possible combinations are
shown in Table 6.

Step 3: Using design combinatorial theory smaller set
of failure scenarios are created from the combined
model and the possible configurations. The step is
described using an example in details in the following
section.

3.4. Techniques and Tools Used

As mentioned earlier, the method based on design
combinatorial theory is found to be useful and effective
in generating test cases. Pairwise interaction produces a
reasonable size as well as an effective test set[Cohen94].
The technique used in this study is based on the similar
concept. It is not our focus to compare these methods.
Rather, the main focus is to demonstrate the
applicability of the concept to software architecture
analysis early in the life cycle.

We have developed a prototype tool which generates
pairwise combinations, given a number of parameters
and the possible values for each parameter. The
prototype tool, SmartTC, takes a simple file format as
input where the input, i.e., the data model is given in
terms of parameters and possible values. It is an
important step to come up with a good model and a few
iterations are often required to achieve that [Burr98].
The example presented in this section shows a sample
input data model which is used to analyze the various
scenarios for database related failure. The input data
model, consisting of two concurrent database messages
is shown below:

Model3: SBDatabase
Standby:Yes,No
MirroredActiveDB:No,Yes
MirroredStandbyDB:No,Yes
RHFailure:None,Timeout,Dead
DBMsg1:Query,Update
DBMsg2:Query,Update
ActiveMainDBFailure:None,SubscriberRecordLimi
tExceed,SupportRecordLimitExceed,Timeout,Dead

The output from the tool provides all possible
pairwise combinations between any two parameters as
shown in Table 7 below. As can be seen from the table

below, each row describes a specific scenario. If we
were to generate all possible scenarios for this data
model, as depicted above, we would have ended up with
2 x 2 x 2 x 3 x 2 x 2 x 5 = 480 scenarios. While it is a
paramount task to analyze all these scenarios, it is also
not desirable to simply analyze scenarios in an ad-hoc
manner as one may easily miss critical scenarios. The
pairwise technique is a compromise between ad-hoc and
exhaustive analysis. It can be used to complement the
conventional practices. The scenarios created by this
technique are reasonable in size and they are realistic.
For example, row 20 in Table 7 describes the following
scenario:

• the system has a standby system
• the system has no mirrored databases
• there is no RH (request handler process) failure
• two concurrent database messages are in the queue –

one update and one query
• the DB process is dead

The above scenario is an example of a realistic scenario
and needs to be analyzed to see whether the system can
recover gracefully from this failure situation. From the
user point of view, a query can wait and/or even be
dropped under some circumstances. However, the
update must happen immediately to ensure data
consistency. From our experience, we have found that
there was indeed an issue with database update.
Although the server was designed to update the database
immediately, it did not happen right away as expected
due to the page buffering mechanism supported in the
third party operating system. After the scenario based
analysis, the issue was revealed and notified to the third
party operating system vendor to resolve. It is worth-
mentioning here that we cannot simply use all possible
and/or only pairwise combinations. Pairwise or higher
order combinations can be used as a core optimization
strategy for generating scenarios when the number of all
possible combinations is very high. However, some
adjustments are needed in order to ensure important
scenarios are included as well as some scenarios that are
not feasible or invalid are excluded. The tool has a
feature called ”constraints” to incorporate the domain
knowledge by including and excluding user given
combinations.

4. Summary

Scenarios are commonly used in architectural analysis.
However, scenario generation often is conducted in an
ad-hoc manner based on practitioners’ expertise and
experience. This approach may not work well due to
possible complicated cases. This paper incorporated
more formalism to the architectural analysis process,
which is vital to real-time telecommunications systems

Config ID System Database
CFG1 Both Active &

Standby
Mirror present

CFG2 Both Active &
Standby

Mirror not present

CFG3 Active only Mirror present
CFG4 Active only Mirror not present

Table 7: Generated failure scenarios

with extremely high reliability requirements. The design
combinatorial theory based technique has been
presented in many literatures and found to be useful in
testing late in the life cycle. In the case study, we
demonstrated how the same concept could be used early
in scenario-based architectural analysis with special
attention to the reliability requirements. The technique
helped improve scenario coverage, especially for
multiple concurrent scenarios. The technique when used
with domain expertise can add tremendous value early
in the design.

References

[Burr98] K. Burr and W. Young, “Combinatorial test
techniques: Table-based automation, test generatio and
code coverage”, Proc. of the International Conference on
Software Testing, Analysis, and Review (STAR'98),
October 26-28, 1998, 1998.

[Clements02] P. Clements, R. Kazman, and M. Klein,
Evaluating Software Architectures: Methods and Case
Studies, Addison Wesley, 2002.

[Cochran50] Cochran, Experimental Design, Willey, New
York, 1950.

[Cohen94] D.M. Cohen, S.R. Dalal, A. Kajla, and G.C. Patton,
“The automatic efficient test generator”, Proc. IEEE Int.
Symposium Software Reliability Eng, pp. 303-309, 1994.

[Cohen96] D.M. Cohen, S.R. Dalal, M.L. Fredman, and G.C.
Patton, “The Combinatorial Design Approach to
Automatic Test Generation”, IEEE Software, vol. 13 (5),
pp. 83-89, Sept. 1996.

[Colbourn04a] C.J. Colbourn, M.B. Cohen, and R.C. Turban,
“A Deterministic Density Algorithm for Pairwise
Interaction Coverage”, Proceedings of the IASTED
International Conference on Software Engineering (SE
2004), Feb 2004, pp. 245-252.

[Colbourn04b] C.J. Colbourn, “Combinatorial Aspects of

Covering Arrays”, Le Matematiche (Catania), Sept 2004.
[Dalal99] S.R. Dalal, A. Jain., N. Karunanithi, J.M. Leaton,

C.M. Lott, G.C. Patton, B.M. Horowitz, “Model Based
Testing in Practice”, Proc. of Int’l Conf on Software Eng.

[Grindal04] M. Grindal, J. Offutt, S. Andler, “Combination
Testing Strategies: A Survey”, Technical Report ISE-TR-
05-05, Geroge Mason Univ., July 2004.

[Kazman96] R. Kazman, G. Abowd, L. Bass, and P. Clements,
“Scenario-based analysis of software architecture”, IEEE
Software, Nov 1996.

[Kuhn02] D.R. Kuhn and M.J. Reilly, “An investigation of the
Applicability of Design of Experiments to Software
Testing”, Proceedings of the 27 th NASA/IEEE Software
Engineering Workshop, NASA Goddard Space Flight
Center, 4-6 December, 2002.

[Kruchten95] P. Kruchten, "The 4+1 View Model of
Architecture," IEEE Software, vol. 12 , no, 6, Nov 1995,
pp.42-50

[Lung98] C.-H. Lung, A. Jalnurpukar, and A. El-Rayess,
"Performance-Oriented Software Architecture Analysis",
Proc. of the Int'l Workshop on Software Performance
Eng. (WOSP), pp. 191-196, 1998.

[Lung00] C.-H. Lung and K. Kalaichelvan, “An approach to
quantitative software architecture sensitivity analysis”,
Int'l Journal of Software Eng and Knowledge Eng, vol.
10, no. 1, Feb 2000, pp. 97-114.

[Nord04] R. Nord, W. G. Wood, and P. C. Clements,
Integrating the Quality Attribute Workshop (QAW) and
the Attribute-Driven Design (ADD) Method, Technical
Note, CMU/SEI-2004-TN-017, July 2004.

Standby
Mirror
(Active)

Mirror
(Standby) RHFailure

DBMsg
1

DBMsg
2 DBFailure

1 Yes No No None Query Query None
2 Yes No No None Query Query SubscriberRecordLimitExceed
3 Yes No No None Query Query SupportRecordLimitExceed
4 Yes No No None Query Query Timeout
5 Yes No No None Query Query Dead

…
20 Yes No No None Query Update Dead

…
33 No No No None Query Update SubscriberRecordLimitExceed
34 No No No None Update Query SubscriberRecordLimitExceed
35 No No No Timeout Query Query SubscriberRecordLimitExceed
36 Yes No No None Update Query SupportRecordLimitExceed

