
Proc. of the 3rd International Software Architecture Workshop (ISAW), 1998, pp.101-104

ng
in
uch
ely
he

s to
ng
ted
of
the
lex
rs.
The
to
h,
s

as

n
e

ing
at
oth
the
ure
ing
tep
the
used
g
re

ins
ue
s of

are
an
an
he
rate
e.

hey

Software Architecture Recovery and Restructuring
through Clustering Techniques

Chung-Horng Lung
Software Engineering Analysis Lab, Nortel

P.O. Box 3511 Station C, Ottawa, Ontario K1Y 4H7, Canada
phone: (613) 765-4820,

email: lung@nortel.ca
1. ABSTRACT
Capturing of software architecture is critical
for maintenance and evolution. However, exist-
ing approaches often are limited only to soft-
ware architecture recovery in the reverse
engineering process. What is needed more is a
systematic and effective approach to help the
designer to restructure or reengineer an archi-
tecture for improvement. This paper presents
an quantitative approach based on clustering
techniques for software architecture restruc-
turing and reengineering as well as for software
architecture recovery. Clustering techniques
are built on top of reverse engineering tools.
The approach has been applied to several
examples at various levels of abstraction. Two
case studies are presented in this paper. One is
an empirical study of a decoupling effort for a
real-time telecommunications system. The
other example shows a research potential to
enforce the designer to improve an architecture
by adopting a design pattern based on the clus-
tering results.

1.1 Keywords
Architecture recovery, restructuring, evolution, clustering,
patterns

2. INTRODUCTION
Software architecture is a critical asset to a project due to the
ever increasing complexity and the demand to reduce
maintenance cost for evolution. One of the areas in software
architecture is architecture recovery through reverse
engineering of existing implementations. Numerous articles
have been published on this topic. More recent papers
include [2,7]. There is little doubt that software architecture

capture or recovery is important. However, most existi
approaches often are limited to this particularly activity
the reverse engineering process only. What is needed m
more is an approach that can systematically and effectiv
support restructuring or reengineering to improve t
architecture based on the stakeholders concerns.

Clustering techniques have been used in many discipline
support grouping of similar objects of a system. Clusteri
analysis is one of the most fundamental techniques adop
in science and engineering. The primary objective
clustering analysis is to facilitate better understanding of
observations and the subsequent construction of comp
knowledge structure from features and object cluste
Examples include botanic species and mechanical parts.
key concept of clustering is to group similar things in
clusters, such that intra-cluster similarity or cohesion is hig
and inter-cluster similar or coupling is low. Coupling ha
great impact on many quality attributes, such
maintainability, verifiability, flexibility, portability,
reusability, interoperability, and expandibility [4]. The mai
objective of clustering is similar to that of softwar
partitioning.

Clustering techniques can be applied to software dur
various life-cycle phases. Lung [8] demonstrated th
clustering techniques can be used to effectively support b
software architecture partitioning at the early phase in
forward engineering process and software architect
recovery of legacy systems in the reverse engineer
process. The objective of this paper is to take one s
further by showing more added values. In other words,
paper shows that the clustering techniques can also be
to effectively facilitate software architecture restructurin
instead of simply being used for software architectu
recovery of existing systems.

This paper is organized as follows. Section 2 briefly expla
the basic clustering concept and the clustering techniq
adopted in this research. Section 3 presents two example
how the clustering technique is used to support softw
architecture restructuring to minimize coupling. One is
empirical study of a legacy system, the other one is
initiative idea of using clustering techniques to support t
adoption of a design pattern. Both examples demonst
significant improvement from the coupling perspectiv
Finally, Section 4 is the summary of this paper.

3. CLUSTERING TECHNIQUES
Many clustering algorithms have been presented, but t

nd
he
n.
and
new
r to

of a
le

sed
e
ses
to
ry.
nts
 the
ause
eral

d,

and

ons
rve

m-
tly

er.

e

comprise the following three common key steps:

• Obtain the data set.

• Compute the resemblance coefficients for the data set.

• Execute the clustering method.

An input data set is an object-attribute data matrix. Objects
are the entities that we want to group based on their
similarities. Attributes are the properties of the objects. A
resemblance coefficient for a given pair of objects shows
the degree of similarity or dissimilarity between these two
objects, depending on the way the data represents.

Several algorithms have been adopted and slightly modified
to calculate resemblance coefficients. The example
presented in this paper are based on the Sorenson algorithm.
Given a resemblance matrix, a clustering method is then
used to group similar objects. A commonly used clustering
algorithm called UPGMA (unweighted pair-group method
using arithmetic averages) is used to cluster the objects. The
algorithms are described in detail in [9].

To apply the clustering techniques to software architecture
recovery and reengineering, the object-attribute data matrix
is modified to object-object data matrix, so that the input
reflects the interconnectivity of components. The clustering
techniques are then used to minimize interconnections
among components [8].

4. APPLICATIONS OF CLUSTERIING
TECHNIQUES IN SOFTWARE ARCHIEC-
TURE REENGINEERING
Two examples are presented in this section. The first one is
a result of a decoupling effort of a legacy system. The
second example shows an application of the clustering
technique to support the identification of a design pattern.

4.1 Empirical Study
Given the fact that software complexity is usually high a
the need for software maintenance is inevitable, t
challenge is how to effectively support software evolutio
This study illustrates how the combination of use cases
clustering techniques help us restructure a system. The
system has much lower coupling index and is much easie
maintain.

The example belongs to one of the major subsystems
real-time telecommunications application. The examp
project comprises about 80,000 lines of C++ code. We u
a third party reverse engineering tool to identify th
dependency or interconnection relationships among clas
and applied the clustering technique to the project
validate the approach for software architecture recove
The result was encouraging. About 80% of the compone
at the class level corresponds the modules partitioned by
subject experts. There are many possible reasons that c
the discrepancies. Based on our observations on sev
projects, the main reasons include:

• Not all interconnections are considered or identifie
because boundaries are needed.

• Reverse engineering tools may not generate precise
complete information.

• Some components may have much more connecti
than other components, e.g., the components that se
as APIs or shared resources.

• Some modules may perform a specific task and the nu
ber of components in these modules are significan
less than other modules.

• The system may not be well partitioned by the design

• The limitations of the clustering techniques.

The main objective of this study is to build on top of th
Figure 1. Initialization and Registration of Protocol Handlers - Existing Design

Text

abc_xyz

xyz_
 Context

Protocol_support

abc_xyz_
protocol_support

abc_
administrator

abc_
message

transaction

X Y Z A B C

global abc_main1

2

3
5

6

8

9 10

abc_transaction_
protocol_table

4

abc_transaction_
mapper

7

Data Complexity: 9
Strength: 0.16
of Operations: 12

rom
4.
m
th,

new

me

k.
 be
ept

heir
and
t are
are
sed

em.
pe

t are

itly
recovery process by decoupling some areas to improve
modularity or support evolution through the clustering
technique. We reduce the complexity by working on smaller
pieces known as use cases or scenarios. Firstly, the critical
use cases are identified and the software architecture are
evaluated with the use cases. Figure 1 shows only relevant
components and connections for a use case of the existing
design, which is the initialization and registration of
protocol handlers. There are a global table and two sub-
systems, XYZ and ABC. For propriety reasons, the prefix of
the components are changed, but the names are consistent
with the real names.

First of all, the approach using file names to clustering the
components does not work well for this example as
discussed in section 3. More importantly, even if most of the
component names in ABC start with abc, but the grouping
of these components does not help much in terms of
restructuring or decoupling. On the other hand, the result of
the clustering analysis based on component
interconnectivity reveals two different groups (5, 7, 2, 1, 3)
and (9, 10, 6, 8, 4). Figure 2 shows the clustering tree or the
dendrogram notation. This diagram reveals that components
5 (abc_xyz_protocol_support) and 7
(abc_transaction_mapper) are more related to subsystem
XYZ than ABC, which is quite different from the design
concept. The difference leads us to conduct further analysis
on the coupling issues of these two components and both
subsystems, ABC and XYZ between the existing design and
the clustering results.

By examining the implementation based on the difference,
we identified the areas that are highly coupled. We then
worked with designers to validate those areas and capture
the semantics behind them. Finally, we moved certain
methods or routines from one class to another. Figure 3
demonstrates the new design. For this example, the changes
included the move of an initialization method from class 2
to class 6, removal of classes 3 and 4 (w.r.t. this specific use
case), and addition of a method call from class 8 to class 7.
The coupling is significantly reduced. Two metrics were

used as measurements. Data complexity [3] is reduced f
9 to 1, while the strength [6] is improved from 0.16 to 0.
In addition, the number of operations is also reduced fro
12 to 10. If this use case deals with a critical execution pa
there could have tremendous performance gains. The
design also provides flexibility to dynamically link new
protocol handlers. Both designs perform the exact sa
functions, but they look significantly different.

Figure 2. Clustering of Components Shown in Figure 1

4.2 An Example of Pattern Identification
Identification of appropriate patterns is not a trivial tas
This section explains how the clustering technique could
used to support the identification of a pattern. The conc
was inspired by C. Alexander’s [1] work on identifying
various styles for a village based on the features and t
interactions. Figure 4 shows an example of components
their interconnections. There are some client classes tha
accessing some subsystem classes. With existing softw
architecture recovery assistants, especially file names ba
approaches, the result may look perfect for the subsyst
In other words, the architecture recovered through this ty
of technique is close to or the same as the modules tha
partitioned by the designer.

However, what are the values added to it besides explic

5 7 2 1 3 9 10 6 8 4

G rou p 1 G roup 2

C om p onen ts

S teps
Figure 3. Initialization and Registration of Protocol Handlers - New Design

Text

protocol_support

abc_xyz_
protocol_support

 abc_
administrator

abc_
message

abc_transaction_
mapper

X Y Z

API

Initialization
 abc_main

A B C

abc_xyz

xyz_
 Context

Data Complexity: 1

Strength: 0.4

of Operations: 10

ring
but
ses
uce
en
s at
re
V

n
ly

ns.

s

or

up-
e

ng,
n.
i
nt

-

ed
capturing the design in a high level architectural diagram?
Certainly, architecture capture is important and valuable.
But we are also concerned with ways to improve the
architecture rather than simply capture it. Besides, in reality,
the directory structures already often reveal the high level
components of a system. Simply capturing a software
architecture at a higher level abstraction often has limited
benefits.

By applying the clustering technique to this example, we get
very different partitions. In fact, the subsystem does not
exist anymore, since many subsystem classes are directly
accessed by or related to client classes. In other words, the
clustering technique reveals that some classes in the
subsystem are more closely related to client classes, which
contradicts the design concept. Ideally, the subsystem
classes should be grouped together as one unit.

Clustering techniques could be used in this type of
situations to enforce the architect to reason ways to keep the
subsystem classes in a more cohesive manner. Figure 5
shows an equivalent design by adopting the Facade design
pattern [5] for the system. Facade pattern provides common
interfaces to subsystem classes and facilitates separation of
concerns. The subsystem classes in the new pattern-based
design are grouped in the same unit according to the
clustering method, which is consistent with the original
design. In this example, the clustering technique helps the
adoption of a design pattern to reduce the coupling between
the subsystem and the clients.

Figure 4. Components and Interactions: an Design Example

Figure 5. Adoption of Facade Design Pattern

5. SUMMARY
This paper presented an approach based on a cluste
technique to not only recovering software architectures,
also improving them to give more added values. Use ca
are used together with the clustering methods to red
complexity. Several clustering algorithms have be
implemented and have been applied to various problem
different levels of abstraction [8]. The results a
encouraging and consistent. A visualization tool, SP
(Software Partition & Visualization) is also being built o
top of the clustering methods to provide a user friend
environment.

Some open issues still lie ahead for further investigatio
The main issues that are currently under study include

• Study the impact of different weights for different type
of connection between components.

• Study and compare various clustering algorithms f
suitability of different applications.

• Study how clustering techniques could be used to s
port the identification of patterns in a more effectiv
way.

6. ACKNOWLEDGEMENTS
Thanks are due to Alex Cachia, Kennedy Ngo, David Wa
and Li Zhang for providing insights of the problem domai
I also would like to thank Anant Jalnapurkar, Kala
Kalaichelvan, and Rama Munikoti for their encourageme
and support.

7. REFERENCES
[1] C. Alexander. Notes on the Synthesis of Form. Harvard

University Press, Cambridge, MA, 1964.

[2] N. Anquentil and T. Lethbridge. Extracting Concepts
from File Names: A New File Clustering Criterion.
Proc. of Int’l Conf on Software Eng., 1998, pp. 84-93.

[3] D.N. Card and R.L. Glass. Measuring Software Design
Quality. Prentice Hall, 1990.

[4] H. Dhama. Quantitative Models of Cohesion and Cou
pling in Software. J. of Systems and Software, vol. 29,
1995, pp. 65-74.

[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides.
Design Patterns Elements of Reusable Object-Orient
Software. Addison Wesley, 1994.

[6] G. Heyliger. Coupling. Encyclopedia of Software Engi-
neering, J. Marciniak (ed.), 1994.

[7] R. Kazman and S. J. Carriere. Playing Detective:
Reconstructing Software Architecture from Available
Evidence. J. of Automated Software Eng., 1998.

[8] C.-H. Lung. Effective Software Partitioning through
Clustering Techniques. Nortel Design Forum, Oct
1997.

[9] H. C. Romesburg. Cluster Analysis for Researchers.
Krieger, Malabar, Florida, 1984.

C lien t
C lasses

Subsystem
C lasses

C1

S3
S4

S1 S2

S5

C3C2

C lien t
C lasses

Subsystem
C lasses

C1

S3
S4

S1 S2

S5

C3C2

Facade

	1. ABSTRACT
	Capturing of software architecture is critical for maintenance and evolution. However, existing a...
	1.1 Keywords

	Architecture recovery, restructuring, evolution, clustering, patterns
	2. INTRODUCTION

	Software architecture is a critical asset to a project due to the ever increasing complexity and ...
	Clustering techniques have been used in many disciplines to support grouping of similar objects o...
	Clustering techniques can be applied to software during various life-cycle phases. Lung [8] demon...
	This paper is organized as follows. Section 2 briefly explains the basic clustering concept and t...
	3. CLUSTERING TECHNIQUES

	Many clustering algorithms have been presented, but they comprise the following three common key ...
	• Obtain the data set.
	• Compute the resemblance coefficients for the data set.
	• Execute the clustering method.
	An input data set is an object-attribute data matrix. Objects are the entities that we want to gr...
	Several algorithms have been adopted and slightly modified to calculate resemblance coefficients....
	To apply the clustering techniques to software architecture recovery and reengineering, the objec...
	4. APPLICATIONS OF CLUSTERIING TECHNIQUES IN SOFTWARE ARCHIECTURE REENGINEERING

	Two examples are presented in this section. The first one is a result of a decoupling effort of a...
	4.1 Empirical Study

	Given the fact that software complexity is usually high and the need for software maintenance is ...
	The example belongs to one of the major subsystems of a real-time telecommunications application....
	• Not all interconnections are considered or identified, because boundaries are needed.
	• Reverse engineering tools may not generate precise and complete information.
	• Some components may have much more connections than other components, e.g., the components that...
	• Some modules may perform a specific task and the number of components in these modules are sign...
	• The system may not be well partitioned by the designer.
	• The limitations of the clustering techniques.
	The main objective of this study is to build on top of the recovery process by decoupling some ar...
	First of all, the approach using file names to clustering the components does not work well for t...
	By examining the implementation based on the difference, we identified the areas that are highly ...
	Figure 2. Clustering of Components Shown in Figure 1
	4.2 An Example of Pattern Identification

	Identification of appropriate patterns is not a trivial task. This section explains how the clust...
	However, what are the values added to it besides explicitly capturing the design in a high level ...
	By applying the clustering technique to this example, we get very different partitions. In fact, ...
	Clustering techniques could be used in this type of situations to enforce the architect to reason...
	Figure 4. Components and Interactions: an Design Example
	Figure 5. Adoption of Facade Design Pattern
	5. SUMMARY

	This paper presented an approach based on a clustering technique to not only recovering software ...
	Some open issues still lie ahead for further investigations. The main issues that are currently u...
	• Study the impact of different weights for different types of connection between components.
	• Study and compare various clustering algorithms for suitability of different applications.
	• Study how clustering techniques could be used to support the identification of patterns in a mo...
	6. ACKNOWLEDGEMENTS

	Thanks are due to Alex Cachia, Kennedy Ngo, David Wang, and Li Zhang for providing insights of th...
	7. REFERENCES
	[1] C. Alexander. Notes on the Synthesis of Form. Harvard University Press, Cambridge, MA, 1964.
	[2] N. Anquentil and T. Lethbridge. Extracting Concepts from File Names: A New File Clustering Cr...
	[3] D.N. Card and R.L. Glass. Measuring Software Design Quality. Prentice Hall, 1990.
	[4] H. Dhama. Quantitative Models of Cohesion and Coupling in Software. J. of Systems and Softwar...
	[5] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns Elements of Reusable Object-...
	[6] G. Heyliger. Coupling. Encyclopedia of Software Engineering, J. Marciniak (ed.), 1994.
	[7] R. Kazman and S. J. Carriere. Playing Detective: Reconstructing Software Architecture from Av...
	[8] C.-H. Lung. Effective Software Partitioning through Clustering Techniques. Nortel Design Foru...
	[9] H. C. Romesburg. Cluster Analysis for Researchers. Krieger, Malabar, Florida, 1984.

	Software Architecture Recovery and Restructuring through Clustering Techniques
	Chung-Horng Lung
	Software Engineering Analysis Lab, Nortel P.O. Box 3511 Station C, Ottawa, Ontario K1Y 4H7, Canad...

	email: lung@nortel.ca
	Figure 1. Initialization and Registration of Protocol Handlers - Existing Design

	Figure 3. Initialization and Registration of Protocol Handlers - New Design
	Figure 1.

