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Abstract 
Models can help to understand the performance aspects of 
a computer system from the software architecture and its 
configurations, but ease of model creation is critical. A 
compositional model-building approach is described here, 
in which component submodels are generated from the 
scenarios they participate in. Submodels classes are derived 
from an analysis of behaviour patterns as the scenarios 
traverse the software components. Then submodels are 
instantiated and combined in the overall system model. The 
approach is particularly effective in peer-to-peer systems in 
which subsystems inherit most of their behaviour from a few 
shared patterns, termed “Behaviour-Inheriting Peer” (BIP) 
systems. A model-building algorithm is described, and is 
demonstrated on a prototype emulator for a network of 
routers. The emulator, called CGNet, can be configured for 
its deployment and for traffic patterns and routes. An 
automatic model-generator uses this information to build a 
model which represents the overall system configuration. 
The approach is quite general and can be used to model 
component-based systems in which the components 
themselves are created in many configurations. 
Index Terms—Software performance engineering, Performance 
modeling, Use Case Maps (UCM), Layered Queueing Network 
(LQN), Component-path sub model, Path class, Generative 
modeling, Component sub model, Peer-to-peer systems. 

1. Introduction 
There can be many advantages to modeling the 

performance of a software system, as documented by Smith 
[Smith90, Smith02] and others, however the process of 
building models may be lengthy and expensive. The present 
work sets out to automate the building of models, for a class 
of systems that can be deployed in many different patterns 
and at large or small scales.  

The class of systems has sub-systems which are similar to 
each other, with similar behaviour, such as peer-to-peer 
systems or grid applications. An example which is studied 
here is a network of routers. The class will be called 
"Behaviour-Inheriting Peer" systems because the node 
behaviours are inherited from a small set of behaviour 
classes. Automation is essential for building models of large 
scale systems, because the effort of creating a model 
directly is prohibitive. Automation is valuable also for 

smaller deployments if there are many instances to be 
modeled and compared. 

Performance models for computer system and networks, 
and for software, can be built using various approaches, as 
described in texts by Jain [Jain91], Bolch et al [Bolch98] 
and others. They can be grouped into methods based on 
queueing networks and their extensions, such as layered 
queueing networks [Woodside95a] and methods based 
directly on states and transitions (Markov models) and their 
extensions such as stochastic Petri nets (e.g. SPNP 
[Ciardo89]). They are solved by analytic techniques, 
numerical methods or simulation. Direct simulation without 
a formal modeling framework is a third category of tools. 

Smith advocates an approach to building these models 
based on system behaviour or scenarios, which she calls 
execution graphs [Smith90, Smith02]; other approaches are 
based on structural relationships and summary workload 
statistics [Jain91]. Cortellessa and Mirandola [Cortellessa00] 
describe how to use UML sequence diagrams to derive 
execution graphs and then queueing models. This work 
follows the scenario approach. 

In this paper scenarios expressed by Use Case Maps 
(UCMs) are used to generate Layered Queueing Network 
(LQN) models [Rolia95] [Woodside95a]. Model-building 
directly from UCMs to LQNs was described in [Petriu02], 
however the present work avoids creating a complete UCM. 
Instead it exploits repetitive common behaviours, and 
generates component submodels based on object behaviours 
in the software and local UCM sub-paths in a component. It 
extracts advantages from the use of object-oriented design 
and component-based software. 

Innovations in software such as object-oriented design 
make performance modeling more complex. The 
interactions between objects are numerous and are obscured 
by inheritance, polymorphism, and late binding, making 
them difficult to trace. Also, distributed systems challenge 
performance intuition by introducing middleware layers, 
network latencies and message effects such as blocking 
delays. All these make it difficult to construct performance 
models especially for a large systems with lots of 
interaction and communication. However the re-use of 
behaviour patterns also provides opportunities. 

Component based software systems (e.g. [Szyperski98]) 



are designed to re-use software components, and provide an 
opportunity to model the components and re-use these 
performance sub-models. Strategies for doing this are 
described in [Wu03a] [Bertolino03]. However in many 
systems the components are configurable and do not have a 
single structure or a single performance sub-model. To 
build a performance model from components we must first 
create suitable component submodels for the particular 
application, and that is the role of this research. The 
submodels can be re-used just as the corresponding 
software components are re-used in the system. 

In this paper we begin with the software architecture, and 
we express the scenarios of the system in term of Use Case 
Maps (UCMs) [Buhr96] that show paths and 
responsibilities over components. Then we build sub-
models corresponding to scenario fragments. At last we use 
the compositional strategy to assemble the sub-models into 
a model for the entire system. A modest-sized deployment 
of a system called CGNet [Hobbs01] is used as a case study 
to demonstrate the compositional approach. It reduces the 
complexity of building the performance model so that the 
approach can be scaled up to virtually any size of system. 

The compositional strategy is defined in Section 3 below, 
following some background on the models and notation in 
Section 2, and it is applied to CGNet in Sections 4 and 5. 

 
2. Models and notation 

This work uses Use Case Maps (UCMs) to describe 
scenarios, and Layered Queueing Networks (LQNs) to 
model performance. UCMs are a visual notation for use 
cases [Jacobson92] with additional detail about 
responsibilities and components. They can be used to 
reason about architecture related to Use Cases [Buhr96], 
and to create performance estimates [Petriu02]. An example 
UCM is shown in Figure 1, with a scenario indicated as a 
line from a start point (a filled circle) to an end point (a bar). 
Responsibilities (crosses) indicate operations to be 
performed, and can be refined by a submap. 
Responsibilities are contained in and implemented by 
components, shown as boxes. Components can represent 
any structural unit, from a subsystem with many processors 
down to an object or procedure. Components can be nested 
and in the Figure the inner components with solid lines are 
called “tasks” T1 to T5, and in this case represent processes, 
while the outer components C-A, C-B, C-C are just called 
“components”. Each of these outer components is loaded on 
a different processor P-A, P-B, P-C respectively.  

The performance model used here is a kind of extended 
queueing network called a Layered Queueing Network 
(LQN), with servers to represent processors and other 
devices, and also servers to represent software tasks. 
Layered queueing arises when a software server task has to 
wait for service at its processor, or at another task. Figure 1 
also shows the tasks and the requests for service that are 
implied by the UCM, with one sub-model for each scenario. 
Tasks are indicated by rectangles, divided into a field for 
the task and its properties, and fields for entries which 

provide classes of service. The entries have been named for 
the first responsibility they perform. In S1, entry a makes a 
request to entry b and waits for the reply; this kind of 

 j

g
h

d

eb

c f

a
subcomponent
(task) T1

T2

T3

T4

T5

component
C-A
on processor
     P-A

scenario
S2

scenario
S1

C-B
on P-B

c     T3

a     T1

b     T2

d     T1

e     T2

f     T3

g,h    T4

j     T5

LQN
submodel for

scenario
S1

for S2

request-
reply
interaction

asynchronous
interaction
(after reply)

forwarding
interaction

C-C
on P-C

P-A

P-B
P-C

P-B

P-A

 
 

Figure 1. A Use Case Map with two scenarios, 
and their LQN submodels  

 “synchronous” request is indicated by an arrow style with a 
filled head. Entry b then makes a similar request to entry c. 
In scenario S2, entry d makes a synchronous request to e, 
which forwards it for processing to f and g (the forwarding 
task does not wait for a reply; the reply goes to the 
originator). Forwarding request is indicated by a dashed 
arrow. After the reply from T4, entry g does a further 
operation for responsibility h (this kind of delayed operation 
is called a “second phase”), and then a second phase request 
to entry j. This final request is asynchronous, with no reply, 
indicated by an arrow with an open arrowhead. 

Tasks and processors are both resources; each resource 
has a queue and a discipline, and may be multiple (that is, a 
multiserver such as a multithreaded task or a 
multiprocessor). Each task has a host processor, which 
identifies the physical device that carries out its operations. 
The processors for each of the dashed components in the 
UCM are indicated by ovals attached to each task.  The 
LQN paradigm can model most of the features such as 
multi-threaded processors, devices, locks, communication 
and so on [Franks00]. LQN models can be solved to 
determine throughputs and delays, and the contention for 
software and hardware resources, and to identify 
bottlenecks [Neilson95]. 

 

3. Scenario-based generation and composition 
of submodels 

The model-building approach is based on the distributed 
software objects and on overall scenarios (that is, UCMs) 
describing the end-to-end system behaviour for different 
inputs. Scenarios can be constructed based on the system 
requirements and design. The types of requests can be 
described as Use Cases, and the processing of each is traced 
as a sequence of high-level operations, identified in the 
UCM as its responsibilities. The operations are allocated to 



software task components, and other resources required are 
also identified as UCM components (the path enters the 
component to obtain the resource, and leaves to release it). 
For early analysis, the scenarios can be based on the 
documentation and the expertise of the developers 
[Smith90]; later, they can be based on tracing the execution 
of the code. 

We assume that the system is divided into a set of large 
grain subsystems, and from here on the term “component” 
will be reserved for these; each of them will generate a 
component submodel in the overall performance model. 
They may be subsystems with internal concurrency. The 
approach is particularly suitable when the system has many 
of these components and each one includes several tasks 
and a large number of responsibilities. It is particularly 
simple and efficient when each component is assembled 
from tasks and operations which are variations on a small 
number of basic tasks and operations, as in the router 
example later. 

Object-oriented design promotes re-use not only of data 
structures, but also of behaviour. This is particularly marked 
in systems with peer components based on the same set of 
classes, and with strongly similar functionality; their 
behaviour is inherited from the common classes. We will 
call these “Behaviour-Inheriting Peer” (BIP) systems. A set 
of internet routers with identical code is an example. The 
objects in each router may be instantiated differently to 
conform to its configuration, but their behaviour comes 
from common classes. 

 
Strategy A, for a system defined explicitly by a set of 
scenarios: 
Strategy A does not make any assumption about similar 
behaviour in different components. 
1. Optionally define the system-wide scenario for each 

request, as just discussed; 
2. Decompose each scenario into fragments at the 

component boundaries, so there is a set of “component-
path” scenario fragments in each component. For a 
system with many components, it may be preferable to 
begin with this step, and avoid creating the very large 
UCM of step 1. 

3. Map each fragment into a partial LQN model called a 
“component-path submodel”, representing the system 
behaviour for that fragment.  

4. For each component, create a component sub-model, as 
follows: 
4.1 Collect the component-path sub-models into one 

sub-model with all the tasks together, ignoring the 
fact that a task may be represented more than once; 

4.2 Where a task is represented more than once, unify 
the instances into a single task with all the entries; 

4.3 In a single task, if there are two entries that make the 
same demands, and have the same interactions with 
other entries, these entries can be merged into one 
entry handling the requests of both. This rule may 
have to be applied recursively, because when entries 
are merged then other mergings may become 

possible. 
5. Compose the component sub-models into the system 

model, connecting them by calls (asynchronous by 
default) where a scenario crosses from one component 
to another. This gives the performance model for the 
system. 
5.1 If the system-wide analysis shows that the transfer 

of control from one component to another is by a 
synchronous call, then the call between components 
is synchronous instead. This is the case in Figure 1, 
for the calls between component C-A and C-B. It 
must be inferred from the UCM; automated analysis 
can be applied to the system-wide UCM [Petriu02]. 

The assembling and composition in steps 4 and 5 can, in 
principle, be applied recursively at multiple levels of 
component decomposition. 
In the BIP-type systems described above, the components 
are all closely related to each other and their local 
component-path scenarios are all variations inherited from a 
relatively small number of scenario classes. In BIP systems 
a library of sub-model classes can be created with one for 
each scenario class. The component-path sub-models then 
instantiate these classes. 
 
Strategy B, for Behaviour-Inheriting Peer (BIP) systems: 
In Strategy A, replace steps 1,2,3 by 
1. Analyze the software objects and their behaviour 

within each component to identify the types of 
component-path scenarios, and define them as classes 
of scenarios. For each one, create an LQN sub-model 
class. Identify parameters that may be different in 
different instantiations of a component-path scenario. 
Parameters may include the identity of software 
elements and system nodes. 

2. From the system specification and the role and 
workload of each component, identify its component-
path scenarios by class, and their parameters if any. 

3. Generate the set of component sub-models as instances 
from the sub-model classes. 

Then follow steps 4 and 5 for Strategy A. 
The case study which follows will be modeled using 

strategy A for a particular configuration, to explain the 
ideas, and also discusses how the library of sub-model 
classes is created. Then the tool created for modeling the 
family of systems uses Strategy B, to cover the wide range 
of variations that are possible. 

 

4. Case study on CGNet 
In this section we illustrate the approach described above 

by applying it to CGNet, which is an example of a BIP 
system. CGNet [Hobbs01] is a network emulator which 
includes routers (nodes), sources (generators) and 
destinations (sinks) for the traffic, and is configured with a 
connection topology with stated link capacities. There is a 
generator for each node, which sends it packets for different 



destinations at pre-configured rates. The packets traverse 
the path specified in the routing table to a traffic sink, which 
consumes the packets. 

Here we treat a router node as a component; the generator 
is modeled as an arrival process and the sink is modeled by 
a dummy “user” task. 

Every node has the same operations: the main thread 
receives packets from the incoming sockets, parses packets 
and switches them to the outgoing queues. The sending or 
sinking thread sends packets to outgoing sockets; the 
sending thread also emulates the network interface delay for 
the link. 
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Figure 2. Topology for one configuration with 5 nodes 
The case study will consider a configuration of CGNet 

with five nodes to explain the compositional model-
building approach. The topology is shown in Figure 2. Data 
packets start from a generator (triangle) and end at a sink 
(square). They traverse the routers (circles) along the paths 
defined in the routing table. 

The traffic is made up of classes, according to the route 
followed. For the packet class named as (XX, ZZ), node XX 
is the source router that is connected to its generator; node 
ZZ is the destination router that is connected to the traffic 
sink. XX and ZZ will be replaced by the two-letter names of 
the router nodes shown in Figure 2. There may also be 
forwarding routers along the path between XX and ZZ; we 
will designate such a router YY. Each packet class has its 
own scenario; Figure 3 shows the path view [Woodside95b] 
of the scenario for class (AT, CH), showing the path and 
responsibilities described above overlaid on the components 
shown in Figure 2. 
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Figure 3. Path of scenario for packet class (AT, CH) 
The components in the analysis are the router nodes, and 

the path fragments will describe the handling of each packet 
class (with a different fragment for each packet class 
traversing the node). Figure 4 shows the three fragments of 
the system-wide scenario for packet class (CH, AT), as it 
traverses nodes CH, WA and AT. It also shows the 
responsibilities receive, switch, send (or send-to-sink) and 
delay (for emulating network delay) within each scenario 
fragment. They are labelled rcv, sw, snd, del respectively. 
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Figure 4. Scenario fragments for packet class (AT, CH) 
For further analysis we have defined three different roles 

for the component-path scenario fragments. They are source, 
forwarding, and destination roles. The role will affect 
which sub-model class is instantiated, for the component 
sub-path. 

Every component sub-path does the same overall 
operation, to handle a packet. There are three variations, 
which we will call handleXX, handleYY and handleZZ, for 
the handling done by a source, forwarding and destination 
node respectively. Each of these is a component-path class, 
and they give the sub-model classes smXX, smYY, and smZZ. 



They can be instantiated by providing node names to 
replace XX, YY and ZZ. As a first example, Figure 5 shows 
handleXX as a UCM fragment and smXX as a LQN 
submodel. This class has a parameter YY, which is the 
name of the next node in the route followed by packet class 
(XX, ZZ) from node XX. Notice that one node has 
component-path fragments with different roles, for classes 
that are originated, forwarded or have their final destination 
at that node. 
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handleXX for a source 

fragment 

 
RCV_XX_ZZ XX_RCV

SW_XX_ZZ XX_SW

XX_SEND_YYSEND_XX_ZZ

XXYYDELAYXXYYDELzz

(b) Component path sub 
model class smXX 

Figure 5. Scenario fragment and sub-model class for a 
source node XX and a packet class with next node YY. 

 
The sub-model structure is obtained partly from analysis 

of the code. There is a thread for receiving packets, and a 
thread for each outgoing interface, and these threads are 
modeled by LQN tasks. The switching and routing is also 
modeled by a task, which later will be aggregated into 
Receive. When it receives a packet the software reads it 
from a socket, so in smXX, the receiving task responds to an 
asynchronous call. Once the packets are received to the 
workspace, the switching procedure performs 
switching/routing according to the routing table before 
another packet can be received. Thus the call from receiving 
task to the switching task in smXX is synchronous. Once the 
packet is stored in the outgoing queue, the receiving and 
switching tasks are no longer blocked, so the entry in the 
switching task makes an asynchronous call to the entry of 
the sending task. In the program, the sending thread triggers 
an emulation of the network delay and is blocked during 
this time, so a synchronous call is used from the sending 
task to the delay task, which represents an operating system 
timer. The sending thread writes the packets to the outgoing 
socket and does not wait for a reply from the next hop. So 
from the network delay task to the receiving task of the next 
component the call is asynchronous. Thus the requests 
between components (nodes) are all asynchronous. 

For a component-path fragment with a forwarding role 
the operations are identical, as shown in Figure 6 for 
operations at node YY to forward packet class (XX, ZZ). 
The only difference is that on instantiation, the input is 
bound to a predecessor node in the path instead of to the 
local packet generator. For a destination role, there is a 

difference shown in Figure 7. The call from Switch goes to 
Sink rather than to Send, and there is no network delay 
emulation. 
Applying the steps for node AT 

Consider the node Atlanta (AT) and the steps for deriving 
its component sub-model from the LQN submodel classes. 
Necessary information is retrieved from the routing tables 
in node AT and connected nodes DA and WA. 
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(b) Component path sub 
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Figure 6. Scenario fragment and sub-model class for a 
forwarding node YY and a packet class with next node ZZ 
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(b) Component path sub 
model class smZZ 

Figure 7. Scenario fragment sub-model class for a 
destination node ZZ and packet class with previous node YY. 

 
First we consider packet classes that originate at AT. 

From the routing table in node AT we find it is the source 
of 4 packet classes (AT, CH), (AT, DA), (AT, NY) and (AT, 
WA). Class (AT, DA) chooses node DA as its next hop, 
while all the others choose node WA as next hop. We create 
four instances of the component-path sub-model class smXX 
in Figure 5, replacing XX by AT, ZZ by the destination of 
the class, and YY by the node which is next in each route. 
This gives four component-path sub-models for AT. 

Second, we consider packet classes that terminate at AT. 
The nodes connected to AT are DA and WA. From the 
handleZZ and smZZ class definitions in Figure 7 it is clear 
that the source of the packet class has no effect on the 
processing of a packet coming from either one, so just two  
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Figure 8. The component sub-model nodeAT for node Atlanta 
 
component-path submodels are created from the class in 
Figure 7, one with YY replaced by DA, and one with YY 
replaced by WA. 

Third, we can consider classes which are forwarded by 
AT, however in this configuration there are none. If there 
were, the LQN sub-model class in Figure 6 would be 
instantiated. 

The resulting collection of sub-models are then merged 
together using step 4 of Strategy A, to give the component 
sub-model for the Atlanta node shown in Figure 8. The 
merging of tasks and entries is done as follows. (1) All 
packet classes coming from the generator wait in a queue 
located in the same incoming socket. Step 4.2 merges all 
the entries of the receiving task coming from the generator. 
(2) One switching task is created for each incoming socket, 
combining the entries that handle its packet classes, in step 
4.2. (3) Because node AT does not take account of the 
source node origins of packet classes (XX, AT), the entries 
for all classes ending at AT are merged into one entry in 
the switching task by step 4.3. The same reason gives one 
entry in the sinking task that sends them to the sink at AT. 
(4) The routing table in AT indicates that packet classes 
with the destinations CH, NY, and WA should go through 
the link ATWA. All these packet classes should wait in the 
same outgoing queue for the outgoing socket. Step 4.2 
creates one sending and network delay task for these 
classes.  

This gives the sub-model nodeAT for the Atlanta node, 
shown in Figure 8. The complete network node includes 
the router node component nodeAT, the processor 
ATServer and a user pseudo task ATuserTask to receive 
packets from local generator. The next step is to combine 
the node sub-models into a system model. 

To create a complete system model, the component sub-
models for the nodes must be joined together. For this step 
it is useful to define a high-level view of the components 
seen from outside, showing their interfaces. Figure 9 
shows nodeAT as a box with plug-in points (circles in 
boxes) for the interfaces (input interfaces at the top, and 
output at the bottom). The interfaces are labelled as <link, 
list of classes>, where the link is named for the two nodes 
that it connects, in the order source-destination. The link 
gAT is the link from the generator to the node, and its 
classes are all traffic originating at AT. The input and 
output interfaces connected to another node are shown 
separately, even though they are provided by the same 
socket in the prototype. 

<gAT, ATUser> <DA-AT, (XX, AT)> <WA-AT, (XX, AT)>

<AT-WA, (XX, CH),(XX, NY), (XX, WA)><AT-DA, (XX, DA)>
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Figure 9. The labeled high-level component for 

nodeAT for performance model 
 
By the same procedures we can obtain component sub-

models for all nodes, and they can be shown in the same 
way. Then their interconnection is illustrated in Figure 10. 

To construct the overall LQN model, calls are inserted 
between the component sub-models. Where an output 
interface is connected to an input interface, the call made 
from the sending object is merged with the call received by 
the receiving object. The interactions that are merged must 



be of the same type (here, we have seen that they are all 
asynchronous). The system-wide LQN model is too 
complex to show here. 
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Figure 10. A high-level model for the network 
 
An LQN model is incomplete without processor 

execution demand parameters, giving the demand for each 
call to an entry. In this case we used the fact that each 
entry call is associated with operations on one data packet. 
It is straightforward to measure the total execution demand 
at a node and allocate it per packet. However each packet 
is handled by two concurrent threads, one to receive and 
switch, and one to send and emulate network delay. It 
would be better to estimate these separately, to see if the 
nodes are bottlenecked at receive or at send; this can affect 
the location of buffer overflow. 

5. Experiments on the CGNet model 
Experiments were performed with each node running on 

a separate Unix workstation, all of the same type. The total 
CPU time for all packets handled at each node was 
recorded, and the number of packets that arrived and were 
sent (they were not the same when buffers overflowed). 
The CPU time for each node was split into amounts for 
sending and receiving by fitting parameters, using least 
squares regression (see e.g. [Scheaffer86] for a discussion 
of regression, and [Wu03b] for details of its application). 
The resulting execution demand of receiving and switching 
is 0.0016 sec, and for sending or sinking it is 0.0018 sec. 
The network delay emulation derived from configuration 
files was taken to place execution demand on the network 
processor. Overhead and message handling execution are 
included in the two parameters. 

When the model is compared to measurements, it gives 
results for utilization shown in Figure 11(a) and for 
throughput, shown in Figure 11(b). For the model the 
confidence interval is plotted as (LCL, UCL) and all the 
predicted values lies in this confidence limits. The 
horizontal axis shows a multiplier on the workload 
intensity, which was defined by a profile of arrival rates 
for different classes. The agreement is good when the 
workload is low (no packet loss), and less good for the  
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Figure 11. Predicted vs measured performance 
for node AT 

cases where there is packet loss. The model solutions 
bysimulation appear to drop packets a bit differently from 
the real system CGNet; this is being investigated. The full 
results are beyond the scope of this paper, but this sample 
indicates that (with this limitation in representing loss) the 
strategy generates a realistic model. Also, in cases that 
were simple enough to generate models by hand, the 
strategy gave the same model. 

CGNet can be configured in many different ways, with 
different numbers of nodes and different connections and 
emulated link capacities. The configuration and its 
workload and routing tables are all driven by data which 
has been used as input to a Converter Tool, implemented 
to automate the process of model generation. As illustrated 
in Figure 12, it uses the configuration data to create the 
model structure with the compositional approach, and then 
adds the (assumed) known parameters for the execution 
demands. 



 

 
Converter Tool 

Configuration 

[Network Description Files] 

Parameter 

[Execution Demand] LQN model 
[SPEX] 

 
Figure 12. The overall approach to building the 

LQN model from the CGNet configuration  

6. Conclusions 
An approach has been defined for building performance 

models of complex systems with non-repetitive structure, 
but with components based on the same software objects 
and executing a few strongly related behaviours. These 
were called BIP (Behaviour-Inheriting Peer) systems. The 
model is created by instantiating sub-models that represent 
classes of behaviour, and then by composing them in two 
stages, first to create a submodel for each component, and 
then to create the overall system model. This approach can 
model arbitrarily large configurations without the need to 
program the simulations. For CGNet, a prototype tool to 
emulate a network of routers, a Converter tool was 
developed to automate this process. From the data required 
to configure CGNet, a performance model can be created 
also. The accuracy of the CGNet model appears to be good, 
except when it is limited by the modeling platform’s 
handling of packet losses. 

The Converter tool has achieved, for models of systems 
generated from CGNet, the goal of configuration-driven 
modeling described in [Wu03a] [Bertolino03]. The 
Converter tool can build a performance model for a CGNet 
configuration of any size, for essentially zero additional 
effort by the analyst. The effort necessary to support this 
capability is to create the behaviour and path sub-model 
classes, and to calibrate the demand parameters. If the 
software evolves, these model aspects must be maintained. 

The same strategy should apply equally well to model 
other kinds of systems with strongly related components, 
such as peer-to-peer application systems, and grid systems. 
Submodels created by the BIP strategy described here can 
be freely combined with other submodels that are created 
by other means, to give a powerful and unconstrained 
modeling capability. 
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