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Abstract We previously showed the feasibility of a fault
detection scheme for all-optical networks (AONs) based on
their decomposition into monitoring-cycles (m-cycles). In
this paper, an m-cycle construction for fault detection is for-
mulated as a cycle cover problem with certain constraints. A
heuristic spanning-tree based cycle construction algorithm
is proposed and applied to four typical networks: NSFNET,
ARPA2, SmallNet, and Bellcore. Three metrics: grade of
fault localization, wavelength overhead, and the number of
cycles in a cover are introduced to evaluate the performance
of the algorithm. The results show that it achieves nearly
optimal performance.

Keywords Fault detection · Fault localization ·
All-optical network · Monitoring cycle · Cycle cover

Introduction

Fault detection and localization are essential for providing
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(AONs) with ever-increasing data rate as well as increased
wavelength number and density in wavelength-division mul-
tiplexing (WDM) [1]. For AONs, fault detection and locali-
zation can be performed in either the physical or the IP layer.
Most routing protocols in the IP layer, e.g., OSPF or IS–IS,
have inherently such a functionality [2]. Unfortunately, the
long detection time in the IP layer (typical at seconds-level)
makes it difficult to achieve time-critical recovery. Thus,
some effective and efficient fault detection mechanisms at
the optical layer are required. However, existing fault detec-
tion and localization mechanisms for conventional networks
cannot be applied to AONs directly due to the lack of electri-
cal terminations [3]. Even some detection methods deployed
in optical networks with opto-electro-opto (OEO) conversion
cannot be transplanted to AONs, for instance the examples
in [4]. In the physical layer, network faults can be detected
by measuring the optical power, analyzing the optical spec-
trum, using pilot tones, or performing optical time-domain
reflectometry [5]. A fault detection scheme was developed
by assigning monitors to the sinks of each optical multiplex
section and optical transmission section [6]. Another scheme
proposed in [7] modeled all possible states of a link as a fi-
nite state machine (FSM). The FSM for each link keeps tracks
of the current state of the link by assigning a monitor to the
link. Ideally, all potential faults could be completely detected
and located by assigning a monitor to each link (channel).
However, it is usually not feasible to implement the monitor-
per-link scheme in large-scale networks because of the large
number of required monitors and the real-time processing of
a huge amount of redundant alarms.

Other than assigning a monitor per link, some authors
placed a monitor to each established lightpath [8]. Some
heuristics were proposed to reduce the number of required
monitors based on the information of redundant alarms. This
scheme was effective at the time it was proposed, since the
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number of lightpaths in an AON was relatively small and they
did not change frequently once established. However, the
number of lightpaths soars so much nowadays with the use
of DWDM technology that this scheme will introduce huge
cost due to the large number of required monitors. Further-
more, most AONs currently support dynamically lightpath
provisioning so that the monitor placement has to be dynam-
ically re-calculated and re-located once some lightpaths are
changed, which is not easy to fulfill in the real world.

To detect and locate network faults, it is not necessary to
put monitors on all links, lightpaths, or nodes. For example,
some authors proposed a diagnosis method with sparse moni-
toring nodes (multiple monitors may be required) particularly
for crosstalk attacks, which could be considered as special
cases of network faults in a wide sense [9, 10]. In this paper,
we propose a general approach at the physical layer for fault
detection and localization in AONs through decomposing the
given network into a set of cycles, which form a cycle cover
for the network. A spanning-tree based cycle construction
algorithm is developed and applied to four typical example
networks: NSFNET, ARPA2, SmallNet, and Bellcore. The
performance of the proposed approach is evaluated in terms
of grade of fault localization, costs, and impacts on wave-
length utilizations.

This paper is organized into the following sections. Sec-
tion Monitoring-cycles and cycle construction formulation
introduces the concept of monitoring cycles and formulates
the problem of constructing monitoring cycles to the cy-
cle cover problem. Section Heuristic spanning-tree (HST)
based cycle construction proposes a heuristic spanning-tree
based cycle construction algorithm. The proposed algorithm
is then applied to four typical example networks in Sec-
tion Examples and evaluations. The performance measures
of the proposed algorithm are also evaluated. Finally, some
conclusions are outlined in the last section.

Monitoring-cycles and cycle construction formulation

We previously proposed a fault detection and performance-
monitoring scheme based on decomposing an AON into a
set of cycles [11]. All nodes and links in the network appear
in at least one of these cycles, which form a cycle cover of
the network. A network monitor is assigned to one node in
each cycle and a loopback supervisory channel is set up in
this cycle. A cycle with a monitor and a supervisory channel
is defined as “monitoring cycle (m-cycle)”. Network faults
trigger alarms in m-cycles that cover the faulty source thus
they are detectable. Depending on the type of monitors in
the m-cycles (e.g., optical power meters, optical spectrum
analyzers, and transceivers), various performance parameters
of AONs can be measured, such as optical power, channel
wavelength, optical signal-to-noise ratio, and bit error ratio.

Flexible index thresholds can be set to determine whether a
network fault occurs. Such an approach reduces the number
of required monitors from the number of links to the number
of cycles in an AON. Furthermore, the loopback supervisory
scheme puts the transmitter and receiver together in a sin-
gle node of an m-cycle. Thus the source signals could be
used as references for received signals and the hardware and
software of monitoring devices could be greatly simplified.
More importantly, through assigning monitors to some se-
lected nodes and/or avoiding assigning monitors to the nodes
with high management expense, the cost of our fault detec-
tion and localization mechanism could be kept in low.

A meshed AON can be modeled as a finite undirected
graph G(V, E), where V is the set of vertices (nodes) and E
is the set of edges (links). Hereafter the term vertex (edge)
and node (link) are exchangeable in this paper. We assume
that such a graph is connected and it contains neither loops
nor multiple edges. A loop is an edge that starts and ends at
the same vertex. Multiple edges refer to two or more parallel
edges that have the same start-vertex and end-vertex. Fur-
thermore, an edge is a bridge of a graph if the graph becomes
from a connected graph to be a disconnected one after delet-
ing it. A bridge link is a single-failure point for the network,
thus it is usually avoided during the network topology design.
Therefore, G(V, E) is assumed to be bridgeless.

A cycle (denoted as c) of the graph G is a sub-graph of
G that is connected and regular of degree two. It is often
identified with its edge-set. A cycle cover (denoted as C) of
a graph is a set of cycles in which each vertex and edge of
the graph appears at least in one of these cycles. According
to the m-cycle definition, the set of m-cycles is a cycle cover
for a given graph. Let C = {c1, c2, . . . , cM } be such a set of
m-cycles. For an edge e ∈ E , let C(e) denote the number of
cycles in C that contain e, that means C(e) = |{i : e ∈ ci }|
where |•| represents the set cardinality, i.e., the number of
elements in a finite set. When C(e) = t , we say that the cover
time of edge e is t in C . The length of a cycle is the number
of edges it contains, denoted by len(ci ) = |ci |. The length
of C , denoted as len(C), is the sum of all cycle lengths in C .
Obviously we have,

len(C) =
M∑

i=1

|ci | =
L∑

j=1

C(e j ). (1)

While looking for a set of m-cycles (a cycle cover) for
a graph, we have to take the following considerations into
account: grade of fault localization, wavelength overhead due
to m-cycles, and cost of the required monitors.

Grade of fault localization

A network fault triggers alarms in the m-cycles in which it ap-
pears, but not others. Reversely, if alarms are received in some
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m-cycles but no others, it implies that the potential faulty
links are the common links of these m-cycles. Figure 1 gives
a graph example with a cycle cover C = {c1, c2, c3, c4}.
If, for example, a fault occurs along link (1,4), it will trigger
alarms in c1 and c4, respectively, but there is no alarm in other
m-cycles. If alarms are received in m-cycles c1 and c4, but
not in others, it implies that the potential faulty links could
be either (1,4) or (2,4) or both, since the alarm distribution
triggered by the fault in both links are identical, which means
alarms in c1 and c4. Generally, a binary indication bit m j can
be defined for m-cycle c j to indicate whether or not a fault
occurs and thus an alarm appears in it,

m j =
{

1 an alarm appears in c j

0 no alarm appears in c j
; j = 1, 2, . . . , M. (2)

The sequence of such bits for a link forms an alarm code
(M bits in total). Alarms are sent to a centralized network
management unit (NMU) and alarm codes are generated in
real time. Furthermore, for any link ei ∈ E(i = 1, 2, . . . , L)

and m-cycle c j , a binary associative bit ai j is defined as,

ai j =
{

1 ei is covered by c j

0 ei is not covered by c j ,
(3)

where i = 1, 2, . . . , L and j = 1, 2, . . . , M . The sequence
of associative bits of a link corresponding to all the m-cycles
forms the associative code (M bits in total). Once alarms
in m-cycles are collected and an alarm code is generated,
we can compare the alarm code bit-by-bit with the associa-
tive code for each link. If a link’s associative code exactly
matches the alarm code, then this link is a faulty candidate
for the received alarm code. By matching the real-time alarm
codes with the associative codes of all links, a faulty candi-
date set can be established for each alarm code. Based on
the selection of m-cycles, multiple elements may exist in
such candidate sets. To quantitatively measure the grade of
localization, we introduce the concept of Localization Degree
(denote as I ), which is defined as the average size of non-
empty faulty candidate sets produced by all possible alarm
codes. Let C = {c1, c2, . . . , cM } be a set of m-cycles in graph
G. Since each alarm code consists of M bits, the number of
possible alarm codes is 2M −1. Let sk be the faulty candidate
set for alarm code mk , where k = 1, 2, . . . , 2M − 1. Please
note for a given AON, some alarm codes are not applicable
and thus the corresponding faulty candidate sets are empty.
Let D be the collection of all non-empty sk . Then the locali-
zation degree can be defined as the following,

I =
∑

sk∈D |sk |
|D| . (4)

In the ideal case, every candidate set has only one element
and Iideal = 1 (defined as complete localization). In build-
ing m-cycles for fault detection, we want to minimize the
localization degree, i.e., MIN I .
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Fig. 1 A graph example and cycle cover

Wavelength overhead

In each link, some wavelength channels are reserved for m-
cycles. These channels cannot be used for carrying user traffic
and therefore become an overhead. The number of reserved
wavelengths within a link is equal to the cover times of that
link in the cycle cover. Let �max be the maximum num-
ber of wavelengths reserved for monitoring in a link and it
represents the worst case. Given a graph with N vertices, L
edges and M m-cycles, the average number of reserved wave-
lengths (�avg) for all edges is equal to the average cover time
and,

�avg =
L∑

i=1

C(ei )
/

L = len(C)
/

L . (5)

To quantitatively analyze the relative overhead due to m-
cycles, we define the average wavelength overhead per link
brought to the network by m-cycles as WOHavg = �avg/F ,
where F is the number of total available wavelengths per
link. To minimize the wavelength overhead, we have to min-
imize �avg, which is equivalently to minimize the cycle cover
length. Consequently, m-cycle construction can also be for-
mulated to the least cost cycle cover problem for un-weighted
graphs.

Cost of monitors

Since a monitor and a dedicated supervisory channel are
assigned for each m-cycle, the number of required moni-
tors and reserved wavelengths, i.e., the number of m-cycles
(M = |C |), is a measure of the cost for such type of fault
detection and localization approaches. To minimize this cost,
we have to minimize the number of m-cycles, i.e., M I N |C |.

Heuristic spanning-tree (HST) based cycle construction

It has been proven that cycle covers exist for each bridge-
less, connected, undirected graph and could be obtained in
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running time O(N 2) [12]. Numerous algorithms have been
reported for constructing cycle covers, e.g., a polynomial-
time algorithm was proposed in [13]. Unfortunately, such
works are focused on the least-cost cycle cover problem but
do not consider the localization degree and cycle numbers.
We previously developed two m-cycle construction algo-
rithms: heuristic depth-first searching and shortest path
Eulerian matching algorithm, with a balance of all three con-
siderations [11]. In this paper, we propose a heuristic span-
ning-tree based m-cycle construction algorithm for the same
purpose, while improving the performance in terms of local-
ization degree.

Preliminary

For a connected, bridgeless, simple graph G(V, E),
there must exist a spanning-tree T . For each link e /∈ T
(whereby e is called a “chord”), it holds that if the two end-
points of e are n1 and n2, then n1, n2 ∈ T and there must
exist a path p ∈ T connecting n1, n2. Thus, link e and path
p form a cycle. We say this cycle is generated by chord e.
Each chord generates such a unique cycle. We also have the
following cycle cover existence lemma [14].

Lemma There exists at least one cycle cover for a bridgeless
graph G(V, E).

For a cycle ci in a graph G with precisely L edges, an
associative vector vi with L components can be assigned to
it. The j th component v j

i of the vector vi = (v1
i , v2

i , . . . , vL
i )

is one if the j th edge of G lies in ci , and zero otherwise (please
note the difference with the associative code defined in Sec-
tion Grade of fault localization). Cycles c1, c2, . . . , cM are
called independent if their associative vectors are linearly
independent, where a group of vectors a1, a2, . . . , an are
linearly independent if and only if

∑i=n
i=1 ki ai = 0 holds

when k1 = k2 = · · · = kn = 0.
H. Walther has proven the following theorem in [13],
Walther’s Theorem: Let G be a connected graph with L

edges and N vertices. Then there exist L − N + 1, but no
more independent elementary cycles.

A cycle is called elementary cycle if no vertex is encoun-
tered more than once when traversing it. Each cycle can be
partitioned into elementary cycles. In this paper, a cycle refers
to an elementary cycle

Based on the above lemma and theorem, we claim the
following theorem,

New theorem: For a connected, bridgeless, simple graph
G with a given spanning-tree, cycles generated by all chords
construct a cycle cover for G.

Proof Let G has L edges, N vertices, and the spanning-tree
is T . Then, all edges can be partitioned into two sets: N − 1
edges in T and L − N + 1 edges not in T .

(1) Each edge not in T is a chord. It generates a cycle and is
covered by this cycle. There are L − N +1 such cycles.

(2) Assume that there exists an edge e∗ ∈ T and e∗ is not
covered by any cycles generated by those chords. Be-
cause of the lemma, there must exist another cycle c0

in which e∗ appears. The associative vector of c0 is
a0 = (a1

0, a2
0 , . . . , a∗

0 , . . . , aL
0 ), where a∗

0 = 1 and
corresponding to the position of edge e∗. For all other
cycles, the components at this position of the associa-
tive vectors are zero, because they do not cover edge e∗.
Thus, cycle c0 is independent from all other L − N + 1
cycles. Consequently, by adding c0, graph G now has
L − N + 2 independent cycles. But Walther’s theorem
indicates that there are no more than L − N + 1 inde-
pendent cycles in graph G. ��

In the proof, please note that a cycle cover of graph G is
uniquely determined by the given spanning-tree.

Heuristic spanning-tree (HST) based algorithm

Among the numerous existing cycle building algorithms,
the spanning-tree based ones are fast, simple, and flexible.
Breadth-first and depth-first spanning-trees (BFST and
DFST) are well known and have been in common use for
a long time. Numerous algorithms to generate such span-
ning-trees have been intensively studied [15]. Figure 2 gives
three spanning-trees for an example graph and m-cycles gen-
erated by corresponding chords. Numbers of cycles in the
covers generated by various spanning-trees are the same for
the graph. By enumerating the faulty candidates for all pos-
sible alarm codes, we find that their localization degrees are
also the same (I = 1). However, the figure shows that the
average cover time (i.e., the average wavelength overhead)
per link is smaller for the cover generated by BFST than
by DFST. Furthermore, the average cover time might be de-
creased by including nodes with large degrees in the tree
(comparing Fig 2 b and c). This observation leads us to
choose BFST and apply a heuristic rule of putting the large-
degree nodes into the spanning-tree as early as possible while
generating the spanning-tree for constructing a cycle cover.
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Fig. 3 m-Cycles obtained by
HST for (a) NSFNET; (b)
ARPA2; (c) SmallNet; (d)
Bellcore (links in spanning-trees
are in dark)
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A heuristic spanning-tree (HST) based cycle construction
algorithm is then given below,

1. Initial: for a graph G, label the degrees of all nodes; set
the spanning-tree T = null; select the node with the
maximum degree as the root. Add all links to T that are
incident to the root.

2. For each node ni ∈ T , update its degree label with the
number of links that are incident to ni and connect ni

with nodes not in T .
3. Select the node with the maximum degree label in T .

Add all links to T that are incident to the selected node
and connect it with nodes not in T .

4. Repeat steps 2–3 until all node-degree labels are zero.
Now T is a spanning-tree of G.

5. Given T , construct the cycles for all chords. They form
a cycle cover and are the required m-cycles.

For fault localization based on m-cycles obtained by the
HST algorithm, each chord appears in a unique m-cycle and
thus it can be completely localized if faults occur upon such
edges. Most edges in T are also completely localizable for
topologies of real telecommunication networks, although it
is not guaranteed all the time. Therefore, the lower bound
ratio of localizable links is

(localizable link)% = L − N + 1

L
= 1 + 1

/
L − 2

/
d̄, (6)

where �d = 2N
/

L is the average node degree of graph G.
This lower bound shows that the ratio of localizable links in
a graph is in inverse proportion to the average node degree.

It implies that the HST algorithm has better performance in
terms of localization degree for more complex networks.

Examples and evaluations

In this section, the HST based cycle construction algorithm is
applied to four typical example networks (NSFNET, ARPA2,
SmallNet, and Bellcore). The network topologies, spanning-
trees, and m-cycles obtained by the HST algorithm are shown
in Fig. 3. The performance of the algorithm is evaluated in
terms of localization degree, cost, and wavelength overhead.

Tables 1–4 enumerate all possible alarm codes and corre-
sponding faulty candidate sets for the four example networks,
respectively. Table 5 summarizes these localization results
and compares them with the heuristic depth-first searching
(HDFS) and the shortest-path Eulerian matching (SPEM)
algorithms reported in [11]. The comparison shows that the
HST algorithm has much better performance than the HDFS
and SPEM algorithms in terms of fault localization degree.
Further analyses indicate that the HST algorithm performs
even better in terms of localization degree for graphs with
larger average node degrees. More specifically, for graphs
with average node degree larger than 3.0, the localization
degrees of the HST algorithm are very close to the ideal
case (Iideal = 1). This observation implies that such fault
detection and localization approaches are suitable for com-
plex networks (with large average node degree), and thus are
scalable.

Table 1 Fault localization
results: NSFNET — HST Alarm code Fault candidate

c1 c2 c3 c4 c5 c6 c7 c8

0 0 0 0 0 0 0 0 Null
1 10–14

1 9–14
1 1 12–14

1 6–11, 9–11
1 8–9
1 1 1 9–13

1 5–7, 7–8
1 1 2–8

1 4–10
1 1 10–13
1 1 1 6–12
1 1 1 1 1 12–13

1 1–4
1 1 1 3–6
1 1 4–5
1 1 1 5–6

1 1–2
1 1 1 2–3
1 1 1–3

Others N/A
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Table 2 Fault localization
results: ARPA2 — HST

Alarm code Fault candidate

c1 c2 c3 c4 c5

0 0 0 0 0 Null
1 11–17, 16–19, 17–18, 18–21, 19–20, 20–21

1 6–15, 15–16
1 1 14–16

1 8–13, 13–14
1 1 8–9, 9–10, 10–11
1 1 1 11–12, 12–14

1 6–7, 7–8
1 1 1–8

1 1–4, 4–5, 5–6
1 1 1 1–2, 2–3, 3–6

Others N/A

Table 3 Fault localization
results: SmallNet — HST

Alarm code Fault candidate

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13

0 0 0 0 0 0 0 0 0 0 0 0 0 Null
1 9–10

1 8–10
1 8–9

1 6–10
1 5–10
1 1 1 1 7–10

1 5–6
1 4–5
1 1 1 5–9

1 3–8
1 3–4
1 1 4–9

1 2–8
1 1 1 1 7–8

1 2–3
1 1 1 1 1 1 7–9
1 1 1 3–9

1 1–6
1 1 1 6–7

1 1–2
1 1 1 2–7
1 1 1–7

Others N/A

The cost of the proposed scheme is measured by the num-
ber of required monitors and reserved wavelengths for the
m-cycles. The cost of the wavelengths is evaluated by �avg,
�max, and WOHavg, as described in Section Monitoring-
cycles and cycle construction formulation. In Table 6, the
maximum and average numbers of reserved wavelengths in
the network links are summarized and compared with the
HDFS/SPEM algorithms. It shows that the numbers of both
maximum and average reserved wavelengths for the m-cycles
obtained by HST algorithm are larger than when performing
HDFS and SPEM. This is the payment for the benefit in
localization degree. Nevertheless, with DWDM technology,
the number of wavelengths in a single link tends to become

larger. For example, it was reported already in 2001 that 432
wavelengths could be multiplexed into a single fiber [16, 17].
In current commercial DWDM systems, it is easy to boost the
number of available wavelengths in a fibre to 192 or above
[18]. Even for a small number of available wavelengths per
link, e.g., F = 64, the wavelength overhead for the HST
algorithm is small (around 3%, see Table 6). Such overhead
has trivial impact on network utilization, if it is not negligible.

The cost of monitors is weighted by the number of moni-
tors for the m-cycles, i.e., the number of m-cycles (denoted
as M). For comparing with the monitor-per-link case, a cost
gain is calculated as G = (L − M)/L , where L is the
number of links. The cost gains of the HST algorithm are
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Table 4 Fault localization
results: Bellcore — HST Alarm code Fault candidate

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12 c13 c14

0 0 0 0 0 0 0 0 0 0 0 0 0 0 Null
1 6–14, 12–14

1 12–13
1 9–11

1 9–10
1 8–11
1 1 2–11

1 7–12
1 5–15, 6–15

1 6–12
1 1 1 1 8–12

1 6–7
1 1 7–8

1 4–13
1 4–5
1 1 5–6
1 1 1 1 3–6
1 1 3–4

1 3–13
1 1 1 2–13
1 1 1 1 1 2–3

1 1–10
1 1 2–10

1 1–9
1 1 1 8–9
1 1 1 1 1 1 1 1 2–8
1 1 1–2

Others N/A

Table 5 Comparison of
localization degree

Network example Avg. node degree Algorithm Localization degree Max candidate set size

NSFNET 3.00 HST 1.105 2
HDFS 1.50 3
SPEM 3.00 7

ARPA2 2.38 HST 2.500 6
HDFS 3.13 6
SPEM 5.00 8

SmallNet 4.40 HST 1.000 1
HDFS 1.47 3
SPEM 3.67 6

Bellcore 3.73 HST 1.077 2
HDFS 2.15 6
SPEM 4.67 8

Table 6 Comparison of
wavelength overhead

�max : the maximum number of
wavelengths reserved for moni-
toring in a link �avg : the average
number of reserved wavelengths
for all links WOHavg : average
wavelength overhead per link.
It is calculated as WOHavg =
�avg/F , where F is the number
of total available wavelengths per
link. In this table WOHavg is cal-
culated for F = 64

Network example Algorithm �max �avg WOHavg(%)

NSFNET HST 5 1.90 2.97
HDFS 3 1.57 2.45
SPEM 2 1.24 1.94

ARPA2 HST 3 1.60 2.50
HDFS 3 1.36 2.13
SPEM 2 1.20 1.88

SmallNet HST 6 1.95 3.05
HDFS 3 1.55 2.42
SPEM 2 1.18 1.84

Bellcore HST 8 1.96 3.06
HDFS 3 1.43 2.23
SPEM 2 1.14 1.78
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Table 7 Comparison of cost
gains

M : the number of m-cycles
M ′ : the number of extra
monitors for achieving complete
fault localization
G : cost gain over the
monitor-per-link method
G ′ : revised cost gain over the
monitor-per-link method under
the complete fault localization

Network example Algorithm M G(%) M ′ M + M ′ G ′(%)

NSFNET HST 8 61.9 2 10 52.4
HDFS 6 71.4 7 13 38.1
SPEM 4 80.9 15 19 9.5

ARPA2 HST 5 80.0 15 20 20.0
HDFS 4 84.0 16 20 20.0
SPEM 4 84.0 18 22 12.0

SmallNet HST 13 40.9 0 13 40.9
HDFS 8 63.6 7 15 31.8
SPEM 4 81.8 16 20 9.1

Bellcore HST 14 50.0 2 16 42.9
HDFS 6 78.6 15 21 25.0
SPEM 5 82.1 21 26 7.1

compared in Table 7 with HDFS and SPEM for the exam-
ple networks. Because the monitor-per-link approach always
achieves complete localization, for a fair comparison, we
add some extra monitors for those links that cannot be fully
localized under the HST algorithm to achieve complete local-
ization. For example, a straightforward method would be the
following one. If there are K � 2 links in a faulty candidate
set, we assign K − 1 extra monitors to K − 1 of those K
links. More efficient methods might be applied for achieving
complete localization, e.g., using extra m-cycles. Therefore,
the HST algorithm still has good cost gains, although the M
values of HST are larger than HDFS and SPEM. Denote the
number of extra monitors as M ′, the complete localization
can be achieved and the cost gain calculation is revised as,

G ′ = (L − (M + M ′))
/

L . (7)

Revised cost gains obtained from the four example networks
are also compared in Table 7. Again, the average node degree
affects the cost gain. For graphs whose average node degree
is 3.0 or above, the cost gain for HST is 40–52%. For the
worst case, ARPA2, it still achieves a cost gain no less than
20%. Such results show that under a fair comparison, the cost
gains of HST are better than those of HDFS and SPEM.

The fault detection scheme in [8], as described in Section
Introduction, placed a monitor per path. In a N -node net-
work, typically each node has to communicate with all the
others. Thus, the number of potential paths is N (N −1). Even
with 50% savings of monitors (in maximum) by applying
the proposed heuristic optimization algorithm, the number of
required monitors is still O(N 2). Clearly, the m-cycle based
approach achieves significant cost gains in all examples com-
pared to either the monitor-per-link or the monitor-per-path
case.

Conclusion

In mesh AONs, network faults can be detected and located
by decomposing them into monitoring-cycles (m-cycles). We

formulated the m-cycle construction as a cycle cover prob-
lem with certain constraints. A heuristic spanning-tree (HST)
based m-cycle construction algorithm has been developed
and evaluated in terms of localization degree, wavelength
overhead, and cost gain. The proposed HST algorithm has
been applied to four typical networks (NSFNET, ARPA2,
SmallNet, and Bellcore) and compared to the previously re-
ported algorithms, HDFS and SPEM. The comparison results
show that the performance of localization degree for HST
algorithm is better than HDFS and SPEM. Analyses indicate
that the average node degree of a network plays an impor-
tant role in the performance of m-cycle based fault detection
and localization approaches. The fact that m-cycle based ap-
proaches can achieve better performance in networks with a
larger average node degree implies that such approaches are
suitable for complex networks and thus scalable.

The HST algorithm introduces more monitors than in
HDFS and SPEM. However, in a fair comparison of achiev-
ing complete localization, it has better cost gains than HDFS
and SPEM. Additionally, all the three m-cycle construction
algorithms have good cost gains over either monitor-per-link
or monitor-per-path case. Finally, the wavelength overheads
due to m-cycles are negligible in all approaches. Therefore,
the HST algorithm is effective and cost-efficient.

References

1. Ramamurthy, S., Sahasrabuddhe, L., Mukherjee, B.: Survivable
WDM mesh networks, IEEE/OSA J. Lightwave Technol. 21(4),
870–883 (2003)

2. Goyal, M., Ramakrishnan, K.K., Feng, W.-C.: Achieving faster fail-
ure detection in OSPF networks. Proc. of IEEE ICC’03, Anchorage,
Alaska, USA, May 2003, vol. 1, pp. 296–300

3. Mas, C., Thiran, P.: A review on fault location methods and their
applications in optical networks. Optical Network Magazine 2(4),
73–87 (2001)

4. Kobayashi, Y., Tada, Y., Matsuoka, S., Hirayama, N., Hagimoto,
K.: Supervisory systems for all-optical network transmission sys-
tems. Proc. of IEEE Globecom’96, London, UK, November 1996,
vol. 2, pp. 933–937



286 Photon Netw Commun (2006) 11:277–286

5. Mèdard, M., Marquis, D., Chinn, S.R.: Attack detection methods
for all-optical networks. Proc. of Network and Distributed System
Security Symposium, San Diego, California, March 1998, session 3

6. Hamazumi, Y., Koga, M., Kawai, K., Ichino, H., Sato, K.: Optical
path fault management in layered networks. Proc. of IEEE Globe-
com’98, Sydney, Australia, November 1998, vol. 4, pp. 2309–2314

7. Li, C.-S., Ramaswami, R.: Automatic fault detection, isolation, and
recovery in transparent all-optical networks. IEEE/OSA J. Light-
wave Technol. 15(10), 1784–1793 (1997)

8. Stanic, S., Subramaniam, S., Choi, H., Sahin, G., Choi, H.-A.:
On monitoring transparent optical networks. Proc. of International
Conference on Parallel Processing Workshops, Vancouver, British
Columbia, Canada, August 2002, pp. 217–223

9. Wu, T., Somani, A.K.: Attack monitoring and localization in all-
optical networks. Proc. of SPIE Opticommun 2002: Optical Net-
working and Communications, Boston, MA, USA, July 2002, vol.
4874, pp. 235–248

10. Wu, T., Somani, A.K.: Necessary and sufficient condition for k
crosstalk attacks localization in all-optical networks. Proc. of IEEE
Globecom’03, San Francisco, CA, USA, Dececember 2003, vol. 5,
pp. 2541–2546

11. Zeng, H., Huang, C., Vukovic, A., Savoie, M.: Fault detection and
path performance monitoring in meshed all-optical networks,” Proc.
of IEEE Globecom’04, Dallas, TX, USA, November 2004, vol. 3,
pp. 2014–2018

12. Itai, A., Rodeh, M.: Covering a graph by circuits, Automata, lan-
guages and programming, Lecture Notes in Computer Science vol.
62, pp. 289–299, Springer-Verlag, Berlin, (1978)

13. Fan, G.: Covering graphs by cycles. SIAM J. Discrete Mathe. 5(4),
491–496 (1992)

14. Walther, H.: Ten applications of graph theory, Chapter 1: Flows and
tensions on networks. D. Reidel Pub. Co. Boston, (1984)

15. Wilson, R.J., Watkins, J.J.: Graphs: an introductory approach,
Chapter 10: Trees, Wiley, New York (1990)

16. Kartalopoulos, S.V.: Fault detectability in DWDM – toward higher
signal quality & system reliability, IEEE Press, Piscataway, (2001)

17. Grover, W.D.: Mesh-based survivable networks: options and strat-
egies for optical, MPLS, SONET, and ATM Networking, Prentice
Hall PTR, Upper Saddle River, NJ (2004)

18. Elliott, R.: Dark fibre pricing analysis Europe 1998–2002, [Online
document], November 2002, available at http://www.band-
x.com/information/Dark_Fibre_Report-prices_98–02webver-
sion.pdf

Hongqing Zeng received the B. Eng. de-
gree in Electrical Engineering from Huaz-
hong University of Science and Technology,
Wuhan, P.R. China, in 1990. He received
the M.Sc. degree in Electrical Engineering
from Wuhan University, Wuhan, P.R. China,
in 1995. He worked for Industrial and Com-
mercial Bank of China from 1995 to 2000 as
a research engineer. He was a research engi-
neer from 2002 to 2004 in the Broadband

Network Technologies Research Branch of Communications Research
Center, Ottawa, Canada. Currently he is a Ph.D. candidate in Electrical
Engineering, in the Department of Systems and Computer Engineering,
Carleton University, Ottawa, Canada. His research interest is optical
communication networks.

Dr. Changcheng Huang received B. Eng. in
1985 and M.Eng. in 1988 both in Electronic
Engineering from Tsinghua University, Beij-
ing, China. He received a Ph.D. degree in
Electrical Engineering from Carleton Uni-
versity, Ottawa, Canada in 1997. He worked
for Nortel Networks, Ottawa, Canada from
1996 to 1998 where he was a systems engi-

neering specialist. From 1998 to 2000 he was a systems engineer and
network architect in the Optical Networking Group of Tellabs, Illinois,
USA. Since July 2000, he has been with the Department of Systems and
Computer Engineering at Carleton University, Ottawa, Canada where
he is currently an associate professor. Dr. Huang won the CFI new
opportunity award for building an optical network laboratory in 2001.
He is currently an associate editor of IEEE Communications Letters.

Dr. Alex Vukovic has over 20 years in re-
search and technology development lead-
ership in optical communications, network
architecture and thermal management ac-
quired at university, industry, and research
laboratories. Alex’s contributions involve
over 60 journal and conference papers, pat-
ents, white papers, technology roadmaps and
book chapters. In addition, Alex is an inter-
nationally recognized speaker, conference

chair, invited university lecturer, member of numerous international
research lecturer, member of numerous international research commit-
tees, industry program reviewer, scientific committee chairman, keynote
speaker and scientific authority. For his achievements, Nortel Networks
presented him with a Gold Award.

Currently at the Communications Research Centre (Ottawa,
Canada), Alex’s focus is on research leadership to verify and validate
network concepts and key building blocks for next generation commu-
nication networks. He is also an Adjunct Professor at the University of
Ottawa. Alex earned his M.Sc. and Ph.D. degrees from the University
of Belgrade, Yugoslavia, in 1987 and 1990, respectively.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (None)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (ISO Coated)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.3
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Perceptual
  /DetectBlends true
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /SyntheticBoldness 1.00
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveEPSInfo true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 150
  /GrayImageDepth -1
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputCondition ()
  /PDFXRegistryName (http://www.color.org?)
  /PDFXTrapped /False

  /Description <<
    /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
    /ENU <>
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [2834.646 2834.646]
>> setpagedevice


