

Design Of A PI Rate Controller For

Mitigating SIP Overload
Yang Hong, Changcheng Huang, James Yan

Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada

E-mail: {yanghong, huang}@sce.carleton.ca, jim.yan@sympatico.ca

Abstract—Recent collapses of SIP servers in the carrier
networks (e.g., Skype outage) indicate that the built-in SIP
overload control mechanism cannot mitigate overload effectively.
In this paper, by employing a control-theoretic approach that
models the interaction between an overloaded downstream server
and its upstream server as a feedback control system, we
investigate the root cause of SIP server crash by studying the
impact of the retransmission on the queuing delay of the
overloaded server. Then we design a PI rate controller to mitigate
the overload by regulating the retransmission rate based on the
round trip delay. We derive the guidelines for choosing PI
controller gains to ensure the system stability. Our OPNET
simulation results demonstrate that our proposed control
theoretic approach can cancel the short-term SIP overload
effectively, thus preventing widespread SIP network failure.

I. INTRODUCTION

Internet protocol (IP) telephony is experiencing rapidly

growing deployment due to its lower-cost telecommunications

solutions for both consumer and business services. SIP

(Session Initiation Protocol) [1] has become the main

signaling protocol to setup, manage and terminate sessions for

IP telephony applications such as Voice-over-IP, instant

messaging and video conferencing. 3rd Generation Partnership

Project (3GPP) has adopted SIP as the basis of its IP

Multimedia Subsystem (IMS) architecture [2]. With the 3rd

Generation wireless technology being adopted by more and

more carriers, most cellular phones and other mobile devices

are starting to use or are in the process of supporting SIP for

session establishment [3].

Invite

100Trying
Invite

Invite
100Trying

180Ringing
180Ringing

180Ringing

200OK
200OK

200OK

ACK
ACK

ACK

Session Data

Bye
Bye

Bye

UAC UAS
SIP

Proxy-2

200OK
200OK

200OK

SIP

Proxy-1

Fig. 1. A typical procedure of session establishment.

Fig. 1 illustrates a basic operation of a SIP system. To set

up a call, a user agent client (UAC) sends an “Invite” request

to a user agent server (UAS) via the two proxy servers. The

proxy server returns a provisional “100 (Trying)” response to

confirm the receipt of the “Invite” request. The UAS returns a

“180 (Ringing)” response after confirming that the parameters

are appropriate. It also evicts a “200 (OK)” message to answer

the call. The UAC sends an “ACK” response to the UAS after

receiving the “200 (OK)” message. Finally the media

communication between the UAC and the UAS is established

through the call session. The “Bye” request is generated to

close the session, thus terminating the communication.
SIP introduces a retransmission mechanism to provide the

reliable message delivery [1, 4]. In practice, a SIP sender uses
timeout to detect message losses. One or more retransmissions
would be triggered if the corresponding reply message is not
received in predetermined time intervals.

When the message arrival rate exceeds the service capacity
at a SIP server, overload occurs and the queue builds up,
which may result in a long queuing delay and trigger
unnecessary retransmissions from its upstream servers. The
redundant retransmissions increase the CPU loads of both the
overloaded server and its upstream servers. Such overload
propagation may bring potential SIP network collapse [5-18].

SIP RFC 3261 [1] suggests that the SIP retransmission
mechanism should be disabled for hop-by-hop transaction
when running SIP over TCP to avoid redundant
retransmissions at both SIP and TCP layer [1]. However,
nearly all vendors choose to run SIP over UDP instead of TCP
for the following reasons [5-19]: (1) The overhead of state
management such as three-way handshake prevents TCP from
real-time application which is a critical requirement for SIP
protocol; (2) Designed for preventing congestion caused by
bandwidth exhaustion, the complex TCP congestion control
mechanism provides little help for SIP overload which is
caused by CPU constraint.

RFC 5390 [20] identified the various reasons that may
cause server overload in a SIP network. These include poor
capacity planning, component failures, flash crowds, denial of
service attacks, etc. In general, anything that may trigger a
demand burst or a server slowdown can cause server overload
and lead to server crash.

The contributions of this paper are: (1) Extending classical

control theory to model the impact of the retransmission rate

on the queuing delay of an overload SIP server. As shown in

Eq. (6), we have used the frequency domain technique to

accomplish the modeling; (2) Developing a PI controller to

mitigate the SIP overload by controlling retransmission rate

based on the round trip delay (i.e., the approximated queuing

delay as discussed later on); (3) Providing the guidelines for

obtaining PI controller parameters to guarantee the stability of

the SIP overload control system. We perform OPNET

simulation to validate the efficiency of the proposed control

theoretical approach on SIP overload control.

II. RELATED WORK

Recent collapses of SIP servers in carrier networks (e.g.,
Skype outage [21]) have motivated numerous overload control
solutions (e.g., [5-15]). For example, both centralized and
distributed overload control mechanisms for SIP were
developed in [9]. Three window-based feedback algorithms
were proposed to adjust the message sending rate of the
upstream SIP servers based on the queue size or queuing delay
[10]. Retry-after control, processor occupancy control, queue
delay control and window based control were proposed to
improve goodput and prevent overload collapse in [6].

However, these overload control proposals suggested that
the overloaded receiving server informs its upstream sending
servers to reduce their original message sending rates. Such
pushback control solution would increase the queuing delays
of newly arrival original messages at the upstream servers,
which in turn cause overload at the forwarding upstream
servers. Overload may thus propagate server-by-server to
sources and block large amount of calls which means the
revenue loss for carriers.

Since unnecessary retransmissions caused by overload
would exacerbate the overload [15], different from all existing
solutions discussed above, our goal for mitigating the overload
is to reduce the retransmission rate only. Controlling
retransmission rate based on redundant retransmission ratio
was proposed in [22]. However, redundant retransmission
messages can only be detected after their corresponding
response messages are received, such delay might lead to
sluggish reaction and potential throughput loss. The queuing
delay has been well accepted as a more reliable indicator of
overload by some push-back solutions (e.g., [5, 10]), therefore,
in this paper, we propose to control retransmission rate based
on the queuing delay of an overloaded server which can be
approximated by the round trip delay of its upstream server.

UAC

ProxyUAC

UAC

UAC UAS

UAS

UAS

UAS

2

Proxy

21

0

Fig. 2. SIP network topology with an overloaded downstream receiving Server
2 (which is marked with diagonal lines) and its upstream sending Server 1.

III. PI CONTROLLER FOR MITIGATING SIP OVERLOAD

The topology of a real SIP network can be quite complex.

Fig. 2 depicts a typical SIP network topology [9]. To focus our

study on the interactions between overloaded receiving Server

2 and its upstream sending Server 1, we assume the upstream

servers of Server 1 and the downstream servers of Server 2

have sufficient capacity to process all arrival messages without

any delay. Practical buffer sizes vary with the actual service

rates and system configuration plans. With the memory

becoming cheaper and cheaper, typical buffer sizes are likely

to become larger and larger. We assume that the buffer sizes

for all servers are large enough to hold all arrival messages.

Given the proportionate nature and the general similarity of

the retransmission mechanisms between the “Invite” and

“non-Invite” messages in a typical session [1], this paper will

focus on the hop-by-hop Invite-100(Trying) transaction.

A. Queuing Dynamics of Overloaded Server

Fig. 3 depicts the queuing dynamics of Server 1 and Server
2. There are two queues at each server: one to store the
messages and the other to store the retransmission timers [9,
12]. We can obtain the queuing dynamics for the message
queue of Server 2 as

)()()()()(22222 tttrttq   , (1)

where q2(t) denotes the queue size and q2(t)0; 2(t) denotes
original message rate; r2(t) denotes retransmission message

rate; 2(t) denotes response message rate; 2(t) denotes the
message service rate.

1

100Trying response



)('2 tr

Invite request
2

100Trying response



Invite request

Server 1

Server 2



Message buffer

Timer buffer

Timer starts
Reset timer Timer fires

Timer expires

q2(t)

qr1(t)

2(t) 1(t) q1(t)

r2(t) r1(t)
2(t) 1(t)

Fig. 3. Queuing dynamics of an overloaded server and its upstream server.

Like Eq. (1), we can obtain the queuing dynamics for the
message queue of Server 1 as

)()()()()()(112111 tttrtrttq   , (2)

where q1(t) denotes the queue size and q1(t)0; 1(t) denotes
arbitrarily distributed original message rate, which may
follows Poisson, Pareto, Gamma or Lognormal distribution;

r1(t) denotes retransmission rate corresponding to 1(t); r'2(t)
denotes retransmission message rate generated by Server 1 for

2(t); 1(t) denotes response message rate corresponding to

2(t); 1(t) denotes arbitrarily distributed service rate.
When Server 2 performs its routine maintenance and

reduces its service capacity for signaling messages, the

original message rate 2(t) is larger than the service rate 2(t),
the queue size q2(t) tends to increase according to Eq. (1) (i.e.,

0)(2 tq). After a short period of overload, the queuing delay

of Server 2 is long enough to trigger the retransmissions r'2(t)
which enter the queue of Server 1. If the total new message

arrival rate of 1(t), 1(t) and r'2(t) is larger than the service

rate 1(t), the queue size q1(t) would increase (i.e., 0)(1 tq ,

as indicated by Eq. (2)) and may trigger the retransmissions
r1(t) to propagate the overload from Server 2 to Server 1. After
queuing and processing delay at Server 1, the retransmitted
messages r'2(t) enter Server 2 as r2(t) to increase the queue size
q2(t) more quickly (as described by Eq. (1)), thus making the
overload at Server 2 much worse.

B. Overload Control Plant

In order to present our overload control mechanism more
clearly, we assume that the upstream Server 1 can process all
arrival messages without any delay before the overload is

propagated from its downstream Server 2, i.e., 2(t)=1(t) and
r2(t)=r'2(t). Therefore, we can update the queuing dynamics for
the message queue of Server 2 as

)()()()()(22212 tttrttq   . (3)

Then the corresponding message queuing delay of Server 2
becomes

)(/)]()()()([)(222122 tttttrt   . (4)

Each request message corresponds to a response message,
and the time to process a response message is typically much
smaller than a request message [1, 10]. Thus we can use the
request message service rate (i.e., the response message rate

1(t)) to approximate the total service rate 2(t). Then we can
approximate the queuing delay of Server 2 as

)(/)]()()()([)(112122 tttttrt   , (5)

We assume that the system is locally stable and therefore

the uncontrolled variables 1, 2 and 1 are constant around an

operating point. Truncating the component (1+2−1) only
has impact on the zeros of closed-loop overload control system,
and thus will not reduce the system stability margin. Therefore,
the transfer function between the instantaneous queuing delay

2(t) and the retransmission rate r'2(t) can be approximated as

P(s)=2(s)/r'2(s)=ℒ{2(t)}/ℒ{r'2(t)}1/(1s). (6)

Such control plant approximation has been widely adopted in

industrial process control system design, e.g., [23, 24], which

has recently found its application in network traffic control,

e.g., [25]. The validity of this approximation has also been

verified by our performance evaluation in Section IV.

As processing signaling messages are typically CPU

capacity constrained rather than bandwidth constrained, for the

round trip delay between an upstream server and its

overloaded downstream server, the queuing delay is dominant,

while transmission and propagation delay are negligible [10].

Therefore, the round trip delay between the upstream Server 1

and the downstream Server 2 can approximate the queuing

delay 2 of the overloaded downstream Server 2 when the

overload happens.

C. The PI Rate Controller Design

As the retransmitted messages r'2(t) may increase queue
sizes at both Server 1 and Server 2 and bring the overload to
both servers, we propose a PI rate control algorithm that can
mitigate the overload by reducing the retransmission rate r'2(t),
thus preventing the network collapse (such as Skype outage
[21]) caused by overload propagation.

C(s) P(s)
r'2(t)e(t)0 2(t)+


G(s)

Fig. 4. Feedback SIP overload control system.

Fig. 4 depicts a feedback SIP overload control system,
where the overload control plant P(s) represents the interaction
between an overloaded downstream receiving server and its
upstream sending server, and adaptive PI rate controller C(s) is
located at the upstream server for mitigating the overload to
clamp the round trip delay of the upstream server (i.e., the
approximated queuing delay of the overloaded downstream
server) below a target value, when the overload is anticipated
at its downstream server.

Based on the instantaneous round trip delay of the
upstream server (which approximates the queuing delay of the

overloaded downstream server) 2(t), the retransmission rate
r'2(t) can be obtained by the following PI control algorithm
expressed via









t

IP

t

IP

KtK

eKteKtr

0 2020

02

))d(())((

)d()()(




. (7)

where KP and KI denote the proportional gain and integral gain

of the PI controller at the upstream server, and 0 denotes the

target round trip delay. In the real-time implementation, a

retransmission probability is equal to the ratio between the

retransmission rate r'2(t) and the measured timer expiration

rate. Since the original message rate is maintained to keep the

revenue and achieve the user satisfaction in case of the

overload, PI controller aims at clamping the round trip delay

of the upstream server below a desirable target delay 0 rather

than reaching the target delay 0.
It can be easy to obtain the transfer function between the

retransmission rate r'2(t) and the round trip delay deviation e(t)
as C(s)=KP+KI/s. (8)
Then the open-loop transfer function of overload control

system becomes G(s)=C(s)P(s)=(KP+KI/s)/(1s). (9)

From the definition on the phase margin m of G(s) [26],
we can obtain

m
I

gP

K

K













22
arctan , (10)

1
1

2
1

222

1

222







g

IgP

gg

IgP KKKK








, (11)

where g is the gain crossover frequency of the overload
control system. It is well known that a positive phase margin

(m>0) can guarantee the stability of the control system in
accordance with the Nyquist Stability Theorem [23-26]. A
common control engineering practice suggests an interval of

phase margin as 300m600 for a good response [24]. To

simplify our controller design, we set g=1 based on numerous
simulation results. Thus we can obtain KP and KI as

)(tan1

)tan(

2

1

m

m
PK






 ,

)(tan1 2

1

m

IK





 . (12)

So far we have assumed 1 be constant. In reality, this is not
necessarily true. If the PI controller parameters KP and KI
remain unchanged, the varying service rate of the overloaded
server may drive the phase margin out of its desirable interval.
Lemma 1 shows the impact of the response message rate on
the phase margin of the overload control system. We omit the
proof due to page limit.

Lemma 1: If current response message rate '1 is larger than

previous response message rate 1 (that is, '1>1) and the PI

controller is designed based on 1, then the overload control

system with '1 will have less phase margin than that with 1

(that is, 'm<m).
To achieve a satisfactory performance, we self-tune PI

controller when dramatic change of message response rate 1
exceeds a specified interval. Summary of our overload control
algorithm is shown in Fig. 5.

When each retransmission timer fires or expires

Overload Control Algorithm

Fixed parameter:

Varying parameter:

: Instantaneous round trip delay

Retransmit the message with a retransmission

probability corresponding to a retransmission

rate r'2 calculated by a PI rate controller

r'2 : Message retransmission rate

Adaptive PI rate control algorithm:

(1) Specify target queuing delay  and phase

margin m; Set the initial values for ; Obtain

PI controller gains using Eq. (12).

(2) Measure  and upon response message

arrivals.

 : Response message rate
KP: Proportional gain of PI controller
KI: Integral gain of PI controller

 : Target round trip delay

(3) If >1.5 or <0.5, self-tune PI

controller gains using Eq. (12), then update

=; Otherwise, PI controller remains

unchanged.
(4) Calculate the retransmission rate r'2 using

Eq. (7); Go to Step (2).

m : Phase margin

Fig. 5. A PI rate control algorithm for mitigating SIP overload.

IV. PERFORMANCE EVALUATION AND SIMULATION

To verify our PI controller, we conducted OPNET
simulations to observe the dynamic behaviour of the
overloaded server and its upstream server. During our
experiment, four user agent clients generated original request
messages with equal rate, and then sent them to four user
agent servers via two proxy servers, as shown in Fig. 2. The

message generation rates are Poisson distributed
1

. The
message service rate of each server is also Poisson distributed.
Since processing a response message takes much less time
than processing a request message, we set the ratio α of the
mean processing time of a response message to that of a
request message as α=0.5. The mean service capacity of a
proxy server is 1000 messages/sec measured based on the
processing time of request message, i.e. C1=C2=1000 request
messages/s. That is, the mean processing times for a request
message and a response message are 1ms and 0.5ms
respectively. The mean service capacity of a UAC or a UAS is
equal to 500 request messages/sec. The total message service

rate  is bounded by the service capacity C at each server, i.e.,

≤C. The target delay 0 is set as 0.5s. The phase margin is set
as 450. The Internet Traffic Report indicates that current global
packet loss statistic averaged 8% packet loss [27], considering
possible message corruption in the SIP layer, average message
loss probability is set as 10%.

To demonstrate the effectiveness of our overload control
solution, two typical overload scenarios were simulated: (1)
Overload at Server 1 due to a demand burst; (2) Overload at
Server 2 due to a server slowdown. The simulation time is 90s,

1 The workload in the real SIP networks can be arbitrarily distributed, which

may follows Poisson, Pareto, Gamma or Lognormal distribution. Poisson

distributed message arrival rate and service rate are widely adopted by most

existing research work (e.g., [10]).

and the 1st-time retransmission timer is T1=500ms [1]. In each
scenario, we performed our simulations with overload control
algorithm and without overload control algorithm separately.
In all the simulation plots in this paper, we use
“OLC”/“NOLC” to indicate that overload control algorithm
“was”/“was not” applied to all servers in the SIP network.

A. Overload at Server 1

In this scenario, the mean message generation rate for each

user agent client was 200 messages/sec (i.e., 1=800
messages/sec, emulating a short surge of user demands) from

time t=0s to t=30s, and 50 messages/sec (i.e., 1=200
messages/sec, emulating regular user demands) from time
t=30s to t=90s. The mean service capacities of two proxy
servers were C1=C2=1000 messages/sec.

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5

6

7

8
x 10

4

Time (sec)

Q
u
e
u
e
 s

iz
e
 q

1
 (

m
e
ss

a
g
e
s)

NOLC q
1

OLC q
1

(a)

0 10 20 30 40 50 60 70 80 90
0

3000

6000

9000

12000

N
O

L
C

 Q
u
e
u
e
 s

iz
e
 q

0
 (

m
e
ss

a
g
e
s)

Time (sec)

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

O
L

C
 Q

u
e
u
e
 s

iz
e
 q

0
 (

m
e
ss

a
g
e
s)NOLC q

0

OLC q
0

(b)

Fig. 6. (a) Queue size q1 (messages) of Server 1 versus time. (b) Queue size q0
(messages) of UAC 0 versus time.

Figs. 6 and 7(a) show the dynamic behaviour of

overloaded Server 1 and its upstream UAC 0.

0 10 20 30 40 50 60 70 80 90
0

200

400

600

800

1000

1200

1400

1600

Time (sec)

M
es

sa
g
e

ra
te

 (
m

sg
s/

se
c)

NOLC 
1

OLC 
1

NOLC r
1

OLC r
1

(a)

0 10 20 30 40 50 60 70 80 90
0

200

400

600

800

1000

1200

Time (sec)
R

et
ra

n
sm

is
si

o
n
 r

at
e

(m
sg

s/
se

c)

NOLC r
1

OLC r
1

NOLC r
2


OLC r
2


(b)

Fig. 7. (a) Scenario A: Moving average original message rate 1 (messages/sec)

of Server 1 and moving average retransmission rate r1 (messages/sec) for

Server 1 versus time. (b) Scenario B: Moving average retransmission rate r1

(messages/sec) for Server 1 and moving average retransmission rate r2

(messages/sec) for Server 2 versus time.

Without overload control algorithm applied, it is easy to see

from Fig. 6(a) that Server 1 became CPU overloaded

immediately and the overload deteriorated as time evolves,

leading to the eventual crash of Server 1. Since the aggregate

service capacity of four user agent clients was larger than that

of proxy Server 1, the queue size of each user agent client

decreased slowly (see Fig. 6(b)) after new original message

generation rates decreased.

Our overload control algorithm made the queue size of

Server 1 increase slowly during the period of the demand burst,

and cancelled the overload at Server 1 within 27s (11s faster

than the overload control algorithm in [22]) after the new user

demand rate reduced at time t=30s.

B. Overload at Server 2

In this scenario, the mean server capacities of the two

proxy servers were C1=1000 messages/sec from time t=0s to

t=90s, C2=100 messages/sec from time t=0s to t=30s, and

C2=1000 messages/sec from time t=30s to t=90s. The mean

message generation rate for each user agent client was 50

messages/sec.

0 10 20 30 40 50 60 70 80 90
0

1

2

3

4

5
x 10

4

N
O

L
C

 Q
u
eu

e
si

ze
 q

1
 (

m
es

sa
g
es

)

Time (sec)

0 10 20 30 40 50 60 70 80 90
0

2

4

6

8

10

O
L

C
 Q

u
eu

e
si

ze
 q

1
 (

m
es

sa
g
es

)

NOLC q
1

OLC q
1

(a)

0 10 20 30 40 50 60 70 80 90
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

4

Time (sec)

Q
u
eu

e
si

ze
 q

2 (
m

es
sa

g
es

)

NOLC q
2

OLC q
2

(b)

Fig. 8. (a) Queue size q1 (messages) versus time. (b) Queue size q2 (messages)

versus time.

Without overload control algorithm applied, Figs. 7(b) and
8 demonstrate that Server 2 became overloaded first, which
was followed by a later overload at Server 1. The queue size at
Server 1 increased more quickly due to the extra work load for
handling retransmissions for both Server 1 and Server 2. After
Server 2 resumed its normal service at time t=30s, Server 1
and Server 2 had the same service capacity. Because Server 1
had to process part of r1 which would not enter Server 2, the
total arrival rate at Server 2 was less than its service capacity.
Eventually the overload at Server 2 was cancelled, while the
overload at Server 1 persisted (see Fig. 8).

With our overload control algorithm applied, the overload
at Server 2 was mitigated and the queue size of Server 2
increased relatively slowly. In the mean time, Server 1 had
enough capacity to process the limited retransmissions for
Server 2, thus maintaining a small queue. After Server 2
resumed its normal service, it only spent 7s (2s faster than the
overload control algorithm in [22]) to cancel the overload and

the buffer became empty at time t37s.

V. CONCLUSIONS

In order to study the impact of the retransmission rate on
the queuing delay of an overloaded server, we have employed
a control-theoretic approach to model the interaction between
the overloaded downstream receiving server and its upstream
sending server as a feedback control system. Then we have
developed a novel PI rate control algorithm to mitigate the
overload by reducing retransmission rate only, while
maintaining the original message rate to avoid excessive
revenue loss.

By analyzing queuing dynamics and performing OPNET
simulations, we have demonstrated that without overload
control algorithm applied, the overload at downstream server
may propagate or migrate to its upstream servers eventually.
Our overload control algorithm can cancel the short-term
overload effectively and prevent the overload propagation.
Without requiring modification in the SIP header and the
cooperation among different carriers in different countries, any
carrier can freely implement our proposed solution in its SIP
servers to avoid potential widespread server crash.

ACKNOWLEDGMENT

This work was supported by the NSERC grant #CRDPJ

354729-07 and the OCE grant #CA-ST-150764-8.

REFERENCES

[1] J. Rosenberg et al., “SIP: Session Initiation Protocol,” IETF RFC 3261,
June 2002.

[2] “3rd Generation Partnership Project”. http://www.3gpp.org.
[3] S.M. Faccin, P. Lalwaney, and B. Patil, “IP Multimedia Services:

Analysis of Mobile IP and SIP Interactions in 3G Networks,” IEEE
Communications Magazine, 42(1), January 2004, pp. 113-120.

[4] M. Govind, S. Sundaragopalan, K.S. Binu, and S. Saha, “Retransmission
in SIP over UDP - Traffic Engineering Issues,” in Proceedings of
International Conference on Communication and Broadband
Networking, Bangalore, India, May 2003.

[5] E. Noel and C.R. Johnson, “Initial simulation results that analyze SIP
based VoIP networks under overload,” in Proceedings of 20th
International Teletraffic Congress, Ottawa, Canada, 2007, pp. 54-64.

[6] E. Noel and C.R. Johnson, “Novel Overload Controls for SIP
Networks,” in Proceedings of 21st International Teletraffic Congress,
Paris, France, 2009.

[7] R.P. Ejzak, C.K. Florkey, and R.W. Hemmeter, “Network Overload and
Congestion: A comparison of ISUP and SIP,” Bell Labs Technical
Journal, 9(3), 2004, pp. 173–182.

[8] M. Ohta, “Overload Control in a SIP Signaling Network,” in Proceeding
of World Academy of Science, Engineering and Technology, Vienna,
Austria, March 2006, pp. 205—210.

[9] V. Hilt and I. Widjaja, “Controlling Overload in Networks of SIP
Servers,” in Proceedings of IEEE ICNP, Orlando, Florida, October 2008,
pp. 83-93.

[10] C. Shen, H. Schulzrinne, and E. Nahum, “SIP Server Overload Control:
Design and Evaluation,” in Proceedings of IPTComm, Heidelberg,
Germany, July 2008.

[11] A. Abdelal and W. Matragi, “Signal-Based Overload Control for SIP
Servers,” in Proceedings of IEEE CCNC, Las Vegas, NV, January 2010.

[12] “SIP Express Router” http://www.iptel.org/ser/.
[13] T. Warabino, Y. Kishi, and H. Yokota, “Session Control Cooperating

Core and Overlay Networks for “Minimum Core” Architecture,” in
Proceedings of IEEE Globecom, Honolulu, Hawaii, December 2009.

[14] I. Dacosta, V. Balasubramaniyan, M. Ahamad, and P. Traynor,
“Improving Authentication Performance of Distributed SIP Proxies,”
Proceedings of IPTComm, Atlanta, GA, July 2009.

[15] J. Sun, R.X. Tian, J.F. Hu, and B. Yang, “Rate-based SIP Flow
Management for SLA Satisfaction,” in Proceedings of 11th International
Symposium on Integrated Network Management (IEEE/IFIP IM), New
York, USA, June 2009, pp. 125-128.

[16] V. Hilt and H. Schulzrinne, “Session Initiation Protocol (SIP) Overload
Control,” IETF Internet-Draft, January 2011.

[17] Y. Hong, C. Huang, and J. Yan, “Analysis of SIP Retransmission
Probability Using a Markov-Modulated Poisson Process Model,” in
Proceedings of IEEE/IFIP Network Operations and Management
Symposium, Osaka, Japan, April 2010, pp. 179–186.

[18] E.M. Nahum, J. Tracey, and C.P. Wright, “Evaluating SIP server
performance,” in Proceedings of International Conference on
Measurement and Modeling of Computer Systems (ACM SIGMETRICS),
San Diego, CA, US, 2007, pp. 349–350.

[19] Y. Hong, O. W. W. Yang, and C. Huang, “Self-Tuning PI TCP Flow
Controller for AQM Routers With Interval Gain and Phase Margin
Assignment,” in Proceedings of IEEE Globecom, Dallas, TX, U.S.A,
November 2004, pp. 1324-1328.

[20] J. Rosenberg, “Requirements for Management of Overload in the
Session Initiation Protocol,” IETF RFC 5390, December 2008.

[21] R. Ando, “Internet phone and video service Skype went down in a global
service outage,” Reuters News, December 22nd, 2010.

[22] Y. Hong, C. Huang, and J. Yan, “Mitigating SIP Overload Using a
Control-Theoretic Approach,” in Proceedings of IEEE Globecom,
Miami, FL, U.S.A, December 2010.

[23] W.K. Ho, T.H. Lee, H.P. Han, and Y. Hong, “Self-Tuning IMC-PID
Control with Interval Gain and Phase Margin Assignment,” IEEE Trans.
on Control Systems Technology, 9(3), May 2001, pp. 535-541.

[24] W.K. Ho, Y. Hong, A. Hansson, H. Hjalmarsson, and J.W. Deng, “Relay
Auto-Tuning of PID Controllers Using Iterative Feedback Tuning,”
Automatica, 39(1), January 2003, pp. 149-157.

[25] D. Katabi, M. Handley, and C. Rohrs, “Congestion Control for High
Bandwidth Delay Product Networks”, in Proceedings of ACM
SIGCOMM, August 2002.

[26] K. Ogata, Modern Control Engineering, fourth edition, Prentice Hall,
New Jersey, 2002.

[27] “Internet Traffic Report”, http://www.internettrafficreport.com/, 2010.

http://www.3gpp.org/

