
 
 

Design Of A PI Rate Controller For 

Mitigating SIP Overload 
Yang Hong, Changcheng Huang, James Yan 

Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada 

E-mail: {yanghong, huang}@sce.carleton.ca, jim.yan@sympatico.ca

Abstract—Recent collapses of SIP servers in the carrier 
networks (e.g., Skype outage) indicate that the built-in SIP 
overload control mechanism cannot mitigate overload effectively. 
In this paper, by employing a control-theoretic approach that 
models the interaction between an overloaded downstream server 
and its upstream server as a feedback control system, we 
investigate the root cause of SIP server crash by studying the 
impact of the retransmission on the queuing delay of the 
overloaded server. Then we design a PI rate controller to mitigate 
the overload by regulating the retransmission rate based on the 
round trip delay. We derive the guidelines for choosing PI 
controller gains to ensure the system stability. Our OPNET 
simulation results demonstrate that our proposed control 
theoretic approach can cancel the short-term SIP overload 
effectively, thus preventing widespread SIP network failure. 

I. INTRODUCTION 

Internet protocol (IP) telephony is experiencing rapidly 

growing deployment due to its lower-cost telecommunications 

solutions for both consumer and business services. SIP 

(Session Initiation Protocol) [1] has become the main 

signaling protocol to setup, manage and terminate sessions for 

IP telephony applications such as Voice-over-IP, instant 

messaging and video conferencing. 3rd Generation Partnership 

Project (3GPP) has adopted SIP as the basis of its IP 

Multimedia Subsystem (IMS) architecture [2]. With the 3rd 

Generation wireless technology being adopted by more and 

more carriers, most cellular phones and other mobile devices 

are starting to use or are in the process of supporting SIP for 

session establishment [3]. 
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Fig. 1. A typical procedure of session establishment. 

Fig. 1 illustrates a basic operation of a SIP system. To set 

up a call, a user agent client (UAC) sends an “Invite” request 

to a user agent server (UAS) via the two proxy servers. The 

proxy server returns a provisional “100 (Trying)” response to 

confirm the receipt of the “Invite” request. The UAS returns a 

“180 (Ringing)” response after confirming that the parameters 

are appropriate. It also evicts a “200 (OK)” message to answer 

the call. The UAC sends an “ACK” response to the UAS after 

receiving the “200 (OK)” message. Finally the media 

communication between the UAC and the UAS is established 

through the call session. The “Bye” request is generated to 

close the session, thus terminating the communication. 
SIP introduces a retransmission mechanism to provide the 

reliable message delivery [1, 4]. In practice, a SIP sender uses 
timeout to detect message losses. One or more retransmissions 
would be triggered if the corresponding reply message is not 
received in predetermined time intervals. 

When the message arrival rate exceeds the service capacity 
at a SIP server, overload occurs and the queue builds up, 
which may result in a long queuing delay and trigger 
unnecessary retransmissions from its upstream servers. The 
redundant retransmissions increase the CPU loads of both the 
overloaded server and its upstream servers. Such overload 
propagation may bring potential SIP network collapse [5-18]. 

SIP RFC 3261 [1] suggests that the SIP retransmission 
mechanism should be disabled for hop-by-hop transaction 
when running SIP over TCP to avoid redundant 
retransmissions at both SIP and TCP layer [1]. However, 
nearly all vendors choose to run SIP over UDP instead of TCP 
for the following reasons [5-19]: (1) The overhead of state 
management such as three-way handshake prevents TCP from 
real-time application which is a critical requirement for SIP 
protocol; (2) Designed for preventing congestion caused by 
bandwidth exhaustion, the complex TCP congestion control 
mechanism provides little help for SIP overload which is 
caused by CPU constraint. 

RFC 5390 [20] identified the various reasons that may 
cause server overload in a SIP network. These include poor 
capacity planning, component failures, flash crowds, denial of 
service attacks, etc. In general, anything that may trigger a 
demand burst or a server slowdown can cause server overload 
and lead to server crash. 

The contributions of this paper are: (1) Extending classical 

control theory to model the impact of the retransmission rate 

on the queuing delay of an overload SIP server. As shown in 

Eq. (6), we have used the frequency domain technique to 

accomplish the modeling; (2) Developing a PI controller to 

mitigate the SIP overload by controlling retransmission rate 



 
 

based on the round trip delay (i.e., the approximated queuing 

delay as discussed later on); (3) Providing the guidelines for 

obtaining PI controller parameters to guarantee the stability of 

the SIP overload control system. We perform OPNET 

simulation to validate the efficiency of the proposed control 

theoretical approach on SIP overload control. 

II. RELATED WORK 

Recent collapses of SIP servers in carrier networks (e.g., 
Skype outage [21]) have motivated numerous overload control 
solutions (e.g., [5-15]). For example, both centralized and 
distributed overload control mechanisms for SIP were 
developed in [9]. Three window-based feedback algorithms 
were proposed to adjust the message sending rate of the 
upstream SIP servers based on the queue size or queuing delay 
[10]. Retry-after control, processor occupancy control, queue 
delay control and window based control were proposed to 
improve goodput and prevent overload collapse in [6]. 

However, these overload control proposals suggested that 
the overloaded receiving server informs its upstream sending 
servers to reduce their original message sending rates. Such 
pushback control solution would increase the queuing delays 
of newly arrival original messages at the upstream servers, 
which in turn cause overload at the forwarding upstream 
servers. Overload may thus propagate server-by-server to 
sources and block large amount of calls which means the 
revenue loss for carriers. 

Since unnecessary retransmissions caused by overload 
would exacerbate the overload [15], different from all existing 
solutions discussed above, our goal for mitigating the overload 
is to reduce the retransmission rate only. Controlling 
retransmission rate based on redundant retransmission ratio 
was proposed in [22]. However, redundant retransmission 
messages can only be detected after their corresponding 
response messages are received, such delay might lead to 
sluggish reaction and potential throughput loss. The queuing 
delay has been well accepted as a more reliable indicator of 
overload by some push-back solutions (e.g., [5, 10]), therefore, 
in this paper, we propose to control retransmission rate based 
on the queuing delay of an overloaded server which can be 
approximated by the round trip delay of its upstream server. 
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Fig. 2. SIP network topology with an overloaded downstream receiving Server 
2 (which is marked with diagonal lines) and its upstream sending Server 1. 

III. PI CONTROLLER FOR MITIGATING SIP OVERLOAD 

The topology of a real SIP network can be quite complex. 

Fig. 2 depicts a typical SIP network topology [9]. To focus our 

study on the interactions between overloaded receiving Server 

2 and its upstream sending Server 1, we assume the upstream 

servers of Server 1 and the downstream servers of Server 2 

have sufficient capacity to process all arrival messages without 

any delay. Practical buffer sizes vary with the actual service 

rates and system configuration plans. With the memory 

becoming cheaper and cheaper, typical buffer sizes are likely 

to become larger and larger. We assume that the buffer sizes 

for all servers are large enough to hold all arrival messages. 

Given the proportionate nature and the general similarity of 

the retransmission mechanisms between the “Invite” and 

“non-Invite” messages in a typical session [1], this paper will 

focus on the hop-by-hop Invite-100(Trying) transaction. 

A. Queuing Dynamics of Overloaded Server 

Fig. 3 depicts the queuing dynamics of Server 1 and Server 
2. There are two queues at each server: one to store the 
messages and the other to store the retransmission timers [9, 
12]. We can obtain the queuing dynamics for the message 
queue of Server 2 as 

)()()()()( 22222 tttrttq   ,                   (1) 

where q2(t) denotes the queue size and q2(t)0; 2(t) denotes 
original message rate; r2(t) denotes retransmission message 

rate; 2(t) denotes response message rate; 2(t) denotes the 
message service rate. 
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Fig. 3. Queuing dynamics of an overloaded server and its upstream server. 

Like Eq. (1), we can obtain the queuing dynamics for the 
message queue of Server 1 as 

)()()()()()( 112111 tttrtrttq   ,               (2) 

where q1(t) denotes the queue size and q1(t)0; 1(t) denotes 
arbitrarily distributed original message rate, which may 
follows Poisson, Pareto, Gamma or Lognormal distribution; 

r1(t) denotes retransmission rate corresponding to 1(t); r'2(t) 
denotes retransmission message rate generated by Server 1 for 

2(t); 1(t) denotes response message rate corresponding to 

2(t); 1(t) denotes arbitrarily distributed service rate. 
When Server 2 performs its routine maintenance and 

reduces its service capacity for signaling messages, the 

original message rate 2(t) is larger than the service rate 2(t), 
the queue size q2(t) tends to increase according to Eq. (1) (i.e., 

0)(2 tq ). After a short period of overload, the queuing delay 

of Server 2 is long enough to trigger the retransmissions r'2(t) 
which enter the queue of Server 1. If the total new message 

arrival rate of 1(t), 1(t) and r'2(t) is larger than the service 

rate 1(t), the queue size q1(t) would increase (i.e., 0)(1 tq , 

as indicated by Eq. (2)) and may trigger the retransmissions 
r1(t) to propagate the overload from Server 2 to Server 1. After 
queuing and processing delay at Server 1, the retransmitted 
messages r'2(t) enter Server 2 as r2(t) to increase the queue size 
q2(t) more quickly (as described by Eq. (1)), thus making the 
overload at Server 2 much worse. 

B. Overload Control Plant 

In order to present our overload control mechanism more 
clearly, we assume that the upstream Server 1 can process all 
arrival messages without any delay before the overload is 



 
 

propagated from its downstream Server 2, i.e., 2(t)=1(t) and 
r2(t)=r'2(t). Therefore, we can update the queuing dynamics for 
the message queue of Server 2 as 

)()()()()( 22212 tttrttq   .                   (3) 

Then the corresponding message queuing delay of Server 2 
becomes 

)(/)]()()()([)( 222122 tttttrt   .             (4) 

Each request message corresponds to a response message, 
and the time to process a response message is typically much 
smaller than a request message [1, 10]. Thus we can use the 
request message service rate (i.e., the response message rate 

1(t)) to approximate the total service rate 2(t). Then we can 
approximate the queuing delay of Server 2 as 

)(/)]()()()([)( 112122 tttttrt   ,             (5) 

We assume that the system is locally stable and therefore 

the uncontrolled variables 1, 2 and 1 are constant around an 

operating point. Truncating the component (1+2−1) only 
has impact on the zeros of closed-loop overload control system, 
and thus will not reduce the system stability margin. Therefore, 
the transfer function between the instantaneous queuing delay 

2(t) and the retransmission rate r'2(t) can be approximated as 

P(s)=2(s)/r'2(s)=ℒ{2(t)}/ℒ{r'2(t)}1/(1s).             (6) 

Such control plant approximation has been widely adopted in 

industrial process control system design, e.g., [23, 24], which 

has recently found its application in network traffic control, 

e.g., [25]. The validity of this approximation has also been 

verified by our performance evaluation in Section IV. 

As processing signaling messages are typically CPU 

capacity constrained rather than bandwidth constrained, for the 

round trip delay between an upstream server and its 

overloaded downstream server, the queuing delay is dominant, 

while transmission and propagation delay are negligible [10]. 

Therefore, the round trip delay between the upstream Server 1 

and the downstream Server 2 can approximate the queuing 

delay 2 of the overloaded downstream Server 2 when the 

overload happens. 

C. The PI Rate Controller Design 

As the retransmitted messages r'2(t) may increase queue 
sizes at both Server 1 and Server 2 and bring the overload to 
both servers, we propose a PI rate control algorithm that can 
mitigate the overload by reducing the retransmission rate r'2(t), 
thus preventing the network collapse (such as Skype outage 
[21]) caused by overload propagation. 
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Fig. 4. Feedback SIP overload control system. 

Fig. 4 depicts a feedback SIP overload control system, 
where the overload control plant P(s) represents the interaction 
between an overloaded downstream receiving server and its 
upstream sending server, and adaptive PI rate controller C(s) is 
located at the upstream server for mitigating the overload to 
clamp the round trip delay of the upstream server (i.e., the 
approximated queuing delay of the overloaded downstream 
server) below a target value, when the overload is anticipated 
at its downstream server. 

Based on the instantaneous round trip delay of the 
upstream server (which approximates the queuing delay of the 

overloaded downstream server) 2(t), the retransmission rate 
r'2(t) can be obtained by the following PI control algorithm 
expressed via 
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where KP and KI denote the proportional gain and integral gain 

of the PI controller at the upstream server, and 0 denotes the 

target round trip delay. In the real-time implementation, a 

retransmission probability is equal to the ratio between the 

retransmission rate r'2(t) and the measured timer expiration 

rate. Since the original message rate is maintained to keep the 

revenue and achieve the user satisfaction in case of the 

overload, PI controller aims at clamping the round trip delay 

of the upstream server below a desirable target delay 0 rather 

than reaching the target delay 0. 
It can be easy to obtain the transfer function between the 

retransmission rate r'2(t) and the round trip delay deviation e(t) 
as  C(s)=KP+KI/s.                            (8) 
Then the open-loop transfer function of overload control 

system becomes G(s)=C(s)P(s)=(KP+KI/s)/(1s).   (9) 

From the definition on the phase margin m of G(s) [26], 
we can obtain 
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where g is the gain crossover frequency of the overload 
control system. It is well known that a positive phase margin 

(m>0) can guarantee the stability of the control system in 
accordance with the Nyquist Stability Theorem [23-26]. A 
common control engineering practice suggests an interval of 

phase margin as 300m600 for a good response [24]. To 

simplify our controller design, we set g=1 based on numerous 
simulation results. Thus we can obtain KP and KI as 
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So far we have assumed 1 be constant. In reality, this is not 
necessarily true. If the PI controller parameters KP and KI 
remain unchanged, the varying service rate of the overloaded 
server may drive the phase margin out of its desirable interval. 
Lemma 1 shows the impact of the response message rate on 
the phase margin of the overload control system. We omit the 
proof due to page limit. 

Lemma 1: If current response message rate '1 is larger than 

previous response message rate 1 (that is, '1>1) and the PI 

controller is designed based on 1, then the overload control 

system with '1 will have less phase margin than that with 1 

(that is, 'm<m). 
To achieve a satisfactory performance, we self-tune PI 

controller when dramatic change of message response rate 1 
exceeds a specified interval. Summary of our overload control 
algorithm is shown in Fig. 5. 



 
 

When each retransmission timer fires or expires

Overload Control Algorithm 

Fixed parameter:

Varying parameter:

:  Instantaneous round trip delay 

Retransmit the message with a retransmission 

probability corresponding to a  retransmission 

rate r'2 calculated by a PI rate controller

r'2    :  Message retransmission rate 

Adaptive PI rate control algorithm:

(1) Specify target queuing delay  and phase 

margin m; Set the initial values for ; Obtain 

PI controller gains using Eq. (12).

(2) Measure  and upon response message 

arrivals.   

  :  Response message rate 
KP:  Proportional gain of PI controller
KI:  Integral gain of PI controller

   : Target round trip delay

(3) If >1.5 or <0.5, self-tune PI 

controller gains using Eq. (12), then  update 

=; Otherwise, PI controller remains 

unchanged.   
(4) Calculate the retransmission rate r'2 using 

Eq. (7); Go to Step (2).   

m  : Phase margin
 

Fig. 5. A PI rate control algorithm for mitigating SIP overload. 

IV. PERFORMANCE EVALUATION AND SIMULATION 

To verify our PI controller, we conducted OPNET 
simulations to observe the dynamic behaviour of the 
overloaded server and its upstream server. During our 
experiment, four user agent clients generated original request 
messages with equal rate, and then sent them to four user 
agent servers via two proxy servers, as shown in Fig. 2. The 

message generation rates are Poisson distributed
1

. The 
message service rate of each server is also Poisson distributed. 
Since processing a response message takes much less time 
than processing a request message, we set the ratio α of the 
mean processing time of a response message to that of a 
request message as α=0.5. The mean service capacity of a 
proxy server is 1000 messages/sec measured based on the 
processing time of request message, i.e. C1=C2=1000 request 
messages/s. That is, the mean processing times for a request 
message and a response message are 1ms and 0.5ms 
respectively. The mean service capacity of a UAC or a UAS is 
equal to 500 request messages/sec. The total message service 

rate  is bounded by the service capacity C at each server, i.e., 

≤C. The target delay 0 is set as 0.5s. The phase margin is set 
as 450. The Internet Traffic Report indicates that current global 
packet loss statistic averaged 8% packet loss [27], considering 
possible message corruption in the SIP layer, average message 
loss probability is set as 10%. 

To demonstrate the effectiveness of our overload control 
solution, two typical overload scenarios were simulated: (1) 
Overload at Server 1 due to a demand burst; (2) Overload at 
Server 2 due to a server slowdown. The simulation time is 90s, 

                                                            
1 The workload in the real SIP networks can be arbitrarily distributed, which 

may follows Poisson, Pareto, Gamma or Lognormal distribution. Poisson 

distributed message arrival rate and service rate are widely adopted by most 

existing research work (e.g., [10]). 

and the 1st-time retransmission timer is T1=500ms [1]. In each 
scenario, we performed our simulations with overload control 
algorithm and without overload control algorithm separately. 
In all the simulation plots in this paper, we use 
“OLC”/“NOLC” to indicate that overload control algorithm 
“was”/“was not” applied to all servers in the SIP network. 

A. Overload at Server 1 

In this scenario, the mean message generation rate for each 

user agent client was 200 messages/sec (i.e., 1=800 
messages/sec, emulating a short surge of user demands) from 

time t=0s to t=30s, and 50 messages/sec (i.e., 1=200 
messages/sec, emulating regular user demands) from time 
t=30s to t=90s. The mean service capacities of two proxy 
servers were C1=C2=1000 messages/sec. 
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Fig. 6. (a) Queue size q1 (messages) of Server 1 versus time. (b) Queue size q0 
(messages) of UAC 0 versus time. 

Figs. 6 and 7(a) show the dynamic behaviour of 

overloaded Server 1 and its upstream UAC 0. 
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Fig. 7. (a) Scenario A: Moving average original message rate 1 (messages/sec) 

of Server 1 and moving average retransmission rate r1 (messages/sec) for 

Server 1 versus time. (b) Scenario B: Moving average retransmission rate r1 

(messages/sec) for Server 1 and moving average retransmission rate r2 

(messages/sec) for Server 2 versus time. 

Without overload control algorithm applied, it is easy to see 

from Fig. 6(a) that Server 1 became CPU overloaded 

immediately and the overload deteriorated as time evolves, 

leading to the eventual crash of Server 1. Since the aggregate 

service capacity of four user agent clients was larger than that 

of proxy Server 1, the queue size of each user agent client 

decreased slowly (see Fig. 6(b)) after new original message 

generation rates decreased. 

Our overload control algorithm made the queue size of 

Server 1 increase slowly during the period of the demand burst, 

and cancelled the overload at Server 1 within 27s (11s faster 

than the overload control algorithm in [22]) after the new user 

demand rate reduced at time t=30s. 

B. Overload at Server 2 

In this scenario, the mean server capacities of the two 

proxy servers were C1=1000 messages/sec from time t=0s to 



 
 

t=90s, C2=100 messages/sec from time t=0s to t=30s, and 

C2=1000 messages/sec from time t=30s to t=90s. The mean 

message generation rate for each user agent client was 50 

messages/sec. 
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Fig. 8. (a) Queue size q1 (messages) versus time. (b) Queue size q2 (messages) 

versus time. 

Without overload control algorithm applied, Figs. 7(b) and 
8 demonstrate that Server 2 became overloaded first, which 
was followed by a later overload at Server 1. The queue size at 
Server 1 increased more quickly due to the extra work load for 
handling retransmissions for both Server 1 and Server 2. After 
Server 2 resumed its normal service at time t=30s, Server 1 
and Server 2 had the same service capacity. Because Server 1 
had to process part of r1 which would not enter Server 2, the 
total arrival rate at Server 2 was less than its service capacity. 
Eventually the overload at Server 2 was cancelled, while the 
overload at Server 1 persisted (see Fig. 8). 

With our overload control algorithm applied, the overload 
at Server 2 was mitigated and the queue size of Server 2 
increased relatively slowly. In the mean time, Server 1 had 
enough capacity to process the limited retransmissions for 
Server 2, thus maintaining a small queue. After Server 2 
resumed its normal service, it only spent 7s (2s faster than the 
overload control algorithm in [22]) to cancel the overload and 

the buffer became empty at time t37s. 

V. CONCLUSIONS 

In order to study the impact of the retransmission rate on 
the queuing delay of an overloaded server, we have employed 
a control-theoretic approach to model the interaction between 
the overloaded downstream receiving server and its upstream 
sending server as a feedback control system. Then we have 
developed a novel PI rate control algorithm to mitigate the 
overload by reducing retransmission rate only, while 
maintaining the original message rate to avoid excessive 
revenue loss. 

By analyzing queuing dynamics and performing OPNET 
simulations, we have demonstrated that without overload 
control algorithm applied, the overload at downstream server 
may propagate or migrate to its upstream servers eventually. 
Our overload control algorithm can cancel the short-term 
overload effectively and prevent the overload propagation. 
Without requiring modification in the SIP header and the 
cooperation among different carriers in different countries, any 
carrier can freely implement our proposed solution in its SIP 
servers to avoid potential widespread server crash. 
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