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    Abstract—In the quickly changing environment such as IoT, it 
is highly desirable to design a QoS-aware strategy to allocate the 
transmission power. In this paper, we apply the machine learning 
(ML) methodology to solve such a problem for a D2D network 
where the nodes are distributed following the conditional Poisson 
point process (PPP). The training is conducted in the feed-forward 
neural network (FNN). 
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I. INTRODUCTION 
    Device-to-device (D2D) networking is one of the 
representative wireless communication architectures in the 
current 4G and emerging 5G wireless communications. In 
particular, the D2D paradigm plays an important role in the 
Internet of Things (IoT). In practice, the D2D paradigm 
commonly coexists with the macro cellular network. 
Accordingly, there are two operating modes for the D2D 
communications: underlay and overlay. The underlay mode 
allows the D2D paradigm to share some spectra with the 
cellular network. The primary advantage of underlay is the 
spectrum efficiency, while the main disadvantage is the 
increased management complexity, since the cellular users 
should have the priority over the D2D users. On the other hand, 
the overlay mode reserves a small subset of spectra for the D2D 
users. Although the spectrum efficiency may not be as high as 
in underlay, the management complexity can be significantly 
reduced. Actually, if the overlay mode is implemented in a 
manner of time-multiplexing, periodically or statistically, the 
spectrum efficiency can be well improved. Nevertheless, in the 
overlay mode, several fundamental QoS issues must be well 
considered. For example, the fairness of resource allocation 
needs to be guaranteed within the D2D subnet. In most 
situations the task of allocating power to D2D transmitters is 
not trivial, due to the high density and mobility of D2D users. 
Moreover, the wireless channels are impacted by small and 
large scale fading as well as shadowing. The stochasticity is 
high. 

    In this paper, we develop an optimization model for a generic 
overlaid D2D subnet and solve it by the machine learning (ML) 
methodology [1]. Once the trained model is available, it can be 
used in a real-time mode which is highly desirable in the ever 
quickly changing environment such as IoT. 

    The rest of this paper is organized as follows. In Section II, 
the system model is described and the problem is formulated in 
a standard pattern. Considering that the presented strategy is a 

relative rare approach in the context of wireless 
communications, in Section III, we provide some remarks on 
the nonlinear optimization and neural networks (NN). Then the 
D2D networks used for training are described in Section IV. In 
Section V, three sets of NN training results of are discussed. 
Finally, the conclusion is put into Section VI. 

II. SYSTEM MODEL AND PROBLEM FORMULATION 
    In this section, we first describe the system model of the D2D 
subnet, then propose an optimization model for its power 
allocation problem.  

A. System Model 
    We consider a D2D subnet deployed in a cell represented by 
a disc with radius cR . This D2D subnet consists of N  pairs of 
transmitters (Tx) and receivers (Rx). The index set of these 
pairs is denoted by ND = {1, 2, …, N}. All of these N  pairs 
share the same frequency band. The main notations are listed in 
Table I. Other notations will be defined in the relevant context. 
In Table I, the term “link ij ” means the link from Tx i  to Rx 

.j The term “channel gain” refers to the small-scale fading. The 
Rayleigh fading is adopted in the analysis throughout this 
paper. Thus the channel gains kjh  and kkh follow the 
exponential distribution. The conventions commonly used in 
the literature of wireless communications are also adopted, such 
as unit mean and the i.i.d. condition. This way, the large-scale 
fading due to the path-loss will be described with a power-law 
term. To concentrate on the key concept, the shadowing effect 
is included in the large-scale fading with appropriately adjusted 
parameters. In the present model, half-duplex is assumed, i.e., 
a node cannot receive signals while simultaneously transmitting 
signals. For example, at a particular moment, the link from Tx 
3 to Rx 7 is different than the link from Tx 7 to Rx 3. This 
implies that, in general, it is not necessarily to have 

, { , , }.jk kjb b b h r α= ∈  Also, 0,kkr ≠  since it represents the 
distance from Tx k  to Rx .k  2

kσ  characterizes the additive 
white Gaussian noise (AWGN). With these elaborations, the 
signal-to-interference-plus-noise ratio (SINR) for the receiver 
k is expressed as: 
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where usually 1.6 9.jkα< <  Note that in (1) , , ,jk kk jkh h r and 

kkr are random variables (RVs), while the variables jP and kP
are the entities to be optimized (referred to as the decision 
variables in the optimization literature). 

TABLE I.  LIST OF MAIN NOTATIONS 

( )E τ  Mean of the random variable τ  

jkh  Channel gain of the interference link jk   

kkh  Channel gain of the desirable link paired with Tx k  and Rx 
k  

N  Number of Tx-Rx pairs 

jkr  The length of link jk  

ku  SINR of Rx k  

kP  Transmitter power of Tx k  

jkα  Path-loss exponent of link jk  
2
kσ  Noise power of Rx k  

 

B. Problem Formulation 
In the present work, we develop a model to optimally 

allocate the power for all D2D transmitters. There are several 
ways to characterize the merit of scheme. A variety of examples 
can be found in the literature, e.g., [2, Ch.6] and [3]. Here we 
adopt the proportional fairness as the objective function. The 
problem is formulated as follows: 
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where ku is defined in (1). 

Remark 1: The objective function in PF1 is in terms of the 
geometric average. 

Remark 2: In (1) and PF1, ( )j kP P  are decision variables, while 
others are parameters. 

Remark 3: PF1 characterizes a single frequency band only. Due 
to the orthogonality implied by overlay, it is straightforward to 
apply PF1 to the paradigm where more than one frequency 
bands are allocated to the D2D users. 

Remark 4: PF1 is a QoS-aware model due to the constraint set 
(3). According to (1), the constraint (3) appears to be highly 
nonlinear: 
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This intact fractional formulation could be directly dealt with by 
most standard numerical optimization solvers, such as those in 
Matlab. However, it is easy to transfer (5) into an equivalent 
linear form: 

2
1,,min ,min( / ) ( / ) . (6)jkkk N

j j kkk k kk k jk j jk k kh P r u h P r uαα σ= ≠− ≥&  

In the numerical experiments, we found that the behavior of the 
standard numerical optimization solvers with (6) is much better 
than using (5) as-is. This example shows the significant 
difference between pure mathematics and numerical 
mathematics. We also remark that the performance of numerical 
optimization can be further improved by using a normalized 
version of (6): 
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III. ESSENTIALS OF NEURAL NETWORK 
    Mathematically, the PF1 model described in the preceding 
section is a constrained nonlinear programming (NLP) 
problem. It could be solved by several numerical algorithms. 
To promote the real-time mode, in the present work, we 
investigate the feasibility of the machine learning (ML) 
methodology. The modern ML discipline is built upon the 
neural networks (NN). In general, NN can perform the 
supervised training or unsupervised training. NN can also be 
applied to pattern classification or function approximation. For 
the present problem, we mainly exploit NN for function 
approximation and supervised training.  
    The standard NN consists of three processes: training, 
validation, and testing. In the training stage, a set of data 
samples are used to solve the unknowns (a,k,a, weights and 
biases) of NN. In the validation stage, the hyper-parameters 
(HPs) are tuned up. One of the example HPs is the polynomial 
degree in the NN involving nonlinear regression. In the testing 
stage, a set of new data samples are used to verify the 
established mapping by NN. 
    Two types of datasets are needed for the supervised training. 
Before training an NN, a standard NLP solver is used to obtain 
a set of optimal solutions. This dataset is used as the target 
dataset for the NN. The other dataset is the input to the NN, 
commonly formatted as an R Q× matrix, where R is the 
number of elements in the NN's input, while Q is the number 
of samples [4]. Corresponding the PF1 model, R is the number 
of total random channel gains, while Q  is the number of total 
scenarios. 

IV. DATASET GENERATOR 
    As addressed in the preceding section, the concerned NN 
problem falls into the category of function approximation and 
supervised training. Therefore, the dataset for training the NN 
must be provided. In the present work, we designed a dataset 
generator for this purpose. 
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A. Distribution of Transmitters 
    We consider a generic overlaid D2D subnet deployed in a 
region represented by a disc with radius cR . The total number 
of transmitters (Tx) is .N  These N  transmitters are 
independently uniformly distributed in the disc. Thus the 
probability density function (PDF) is )./(1 2

cRπ  Accordingly, in 
the polar coordinate system, the cumulative distribution function 
(CDF) is: 

2

2 2
0 0

1( , ) . (8)
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Due to the omni-directionality property, we have: 
2

2( ) ( ) . (9)R R
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R
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Following the inverse function method [5, Sec. 4.9.1], we set: 
1( ) , (10)R cR F U R U−= =  

where U  is a random variable uniformly distributed in [0, 1]. 
Then the random variable R will follow the CDF in (9). Next, 
another uniform random variable Θ  is generated over ].2,0[ π
Consequently, in the Cartesian coordinate system, we have: 

cos , (11)

sin . (12)
c

c

X R U

Y R U
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It is worth noting that the above model is equivalent to the 
homogeneous Poisson point process (PPP) conditioned that 
there are N points within a finite disc [6, Theorem 2.9]. 

B. Distribution of Receivers 
    For a particular Tx, there is one associated receiver (Rx). The 
distribution of Rx follows the bipolar distribution [6, Sec. 5.3], 
which is a popular scheme in small-scale and ad hoc wireless 
networks. In this type of deployment, there is a circle centered 
at each Tx with radius  

0 ,
(0.5 ) min , (13)

D
jkj k N

b rε
∈

= −  

where 0ε >  is a small number to avoid an Rx is exactly at the 
midpoint between two Tx. As indicated in [6], several practical 
configurations can be easily derived from the bipolar model. 

    For the small-scale fading, we assume that its channel gains 
follow the exponential distribution with unit mean. A snap shot 
is shown in Fig. 1, where the corresponding Voronoi 
tessellations are also illustrated. The main parameters are listed 
in Tables II. 

TABLE II.  MAIN PARAMETERS IN TESTBED [7] 

Parameter Value 
Disc radius 100 (m) 
Path-loss exponent ( )α  4 

Maximum transmitter power )( maxP  0.1 (mW) 

Noise variance 2( )σ at 1 MHz bandwidth -143.97 (dBm) 

Number of Tx-Rx pairs 10, 20 
Number of scenarios 6800, 22110 

 

 
Fig. 1. A snapshot of D2D deployment. 

V. NEURAL NETWORK TRAINING 

    In the present work, the training is conducted in the feed-
forward neural network (FNN) [1, Ch. 6]. It was implemented 
in Matlab [4]. One of the axioms of NN is to staring the small 
architecture whenever possible. We have investigated several 
small architectures. In this paper, we present a design where the 
FNN consists of three hidden layers, with 50, 20, and 20 
neurons, respectively. All simulations were conducted in a 
computer equipped with the 3.50 GHz CPU and 16 GB RAM. 

A. Experiment 1 
    We started the training activity for a simplified version of 
PF1, where the QoS constraints (3) are relaxed. For the case of 

,10=N  the dimension of each single input vector is 
.1002 =N  The total number of input vectors (samples) is 

chosen as 6800, which is slightly larger than the total unknown 
parameters of this FNN to mitigate over-fitting. Similarly, the 
number of target vectors is also 6800. They are generated by 
the NLP solver fmincon in Matlab. Three instances of the 
targets are presented in Table III, where the data are normalized 
to .maxP   

    In the setup of NN, 70%, 20%, and 10% of samples are used 
as the datasets for training, validation, and testing, respectively. 
These ratios are based on typical recommendations in most NN 
monographs. A set of profiles is illustrated in Figs 2 to 4. Note 
that these profiles are recognized as standard benchmarks in the 
NN discipline. In Fig. 2, it is shown that the validation and test 
errors increases after the 30th epoch. We used the default 
threshold (6 epochs) as the stopping criterion. In Fig. 3, it is 
shown that a dominant portion of errors falls in two very narrow 
intervals and, actually, presents two “pulses”. Finally, in Fig. 4, 
the scatter plots of all sub-datasets are illustrated. They are the 
linear fitting between the target data and the calculated data by 
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this FNN. In the case of perfect fitting, the value of index R
should be 1. We obtained an overall value ≈R 0.935. This is 
mainly due to the relatively small size of the FNN. 

TABLE III.  EXAMPLES OF TARGET MATRIX 

Row Column 1 Column 1000 Column 3000 
1 0.3786 0.1763 0.0370 
2 0.8560 0.3904 0.2132 

…  … … … … … … 
10 0.1133 0.5501 0.1677 

    

 
Fig. 2. MSE performance 1. 

B. Experiment 2 
    In this experiment, we increased the number of D2D pairs to 

.20=N  Although this setup only doubled the previous case, 
the training time was significantly increased, partially due to 
the larger number of input vectors: 22110. With the same 
portions that 70%, 20%, and 10% of samples were used as the 
datasets for training, validation, and testing, respectively. The 
obtained results are illustrated in Figs. 5 and 6. In Fig. 5, it is 
shown that the validation and test errors keep decreasing through 
the 33rd epoch. In Fig. 6, the scatter plots of all sub-datasets are 
illustrated. We obtained an overall value ≈R 0.879. It is 
slightly lower than the case of .10=N  The Histogram of errors 
is omiited here due to the space limit. 

 
Fig. 3. Histogram of errors 1. 

 
Fig. 4. Scatter plots 1. 

C. Experiment 3 
    In this experiment, we included the QoS-aware constraints 
(3) in PF1. The number of D2D pairs was set to .10=N  The 
obtained results are illustrated in Figs. 7 to 8. In Fig. 7, it is 
shown that the validation and test errors increases after the 33ed 

epoch. We firstly used the default threshold (6 epochs) as the 
stopping criterion. Then 20 epochs were used to see whether the 
performance could be improved. This change can be seen from 
Fig. 7, where the horizontal axis extends to 55 epochs. However, 
as shown in Fig.8, the value of index R  is lower than previous 
examples. We conjecture that it was due to the relatively small 
size of NN. This is currently restricted by the available 
computational platform. We will conduct the training on the 
large NNs once the resource is upgraded in the near future. 
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Fig. 5. MSE performance 2. 

 
Fig. 6. Scatter plots 2. 

VI. CONCLUSION 
    In this paper, we solve the power allocation problem for the 
overlaid D2D subnet with QoS requirements. We present a new 
approach to seek the fairness solutions by means of machine 
learning (ML). The power allocation with fading immunization 
is thus induced from the fitting function realized in ML. The 
training is conducted in a feed-forward neural network. The 
details of this network are given in the paper. 
    Considering that the presented strategy is a relative rare 
approach in the context of wireless communications, we also 
provided some remarks on the relation between the nonlinear 
optimization and ML. These remarks would be helpful to gain 
more key insights of the proposed approach. In the on-going 
research, we are making efforts to extend the present work to 
other types of communication networks. 

 
Fig. 7. MSE performance 3. 

 
Fig. 8. Scatter plots 3. 
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