
1

Stability Condition for SIP Retransmission Mechanism:

Analysis and Performance Evaluation
Yang Hong, Changcheng Huang, James Yan

Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada

E-mail: {yanghong, huang}@sce.carleton.ca, jim.yan@sympatico.ca

Abstract—SIP (Session Initiation Protocol) has been widely

adopted as a signaling protocol to establish, modify and

terminate multimedia sessions between end-users in the Internet.

SIP introduces a retransmission mechanism to ensure the

reliability of its real-time message delivery. However,

retransmission makes server overload worse, as indicated by the

recent server crashes in the real carrier networks. In this paper,

we use a discrete time model to describe the queuing dynamics of

an overloaded SIP server with the retransmission mechanism.

We then derive a sufficient stability condition that a SIP server

can handle the overload effectively under the retransmission

mechanism. Discrete time model allows us to run fluid-based

Matlab simulation directly to evaluate the overload performance.

This approach is much simpler than event-driven simulation.

Event-driven OPNET simulation was also conducted to observe

the transient behaviour of an overloaded server in a SIP network.

Our simulation results demonstrate that: (1) The sufficient

stability bound is quite tight. The bound indicates that effective

CPU utilization as low as 20% can still lead to an unstable system

after a short period of demand burst or a temporary server

slowdown. Resource overprovisioning is not a viable solution to

the server crash problem; (2) By satisfying the stability condition,

the initial queue size introduced by a transient overload can

avoid a system crash. Such stability condition can help the

operator to determine whether and when to activate overload

control mechanism in case of heavy load.

Keywords-SIP, Retransmission, Overload, Stability Condition,
CPU Utilization

1. INTRODUCTION

SIP (Session Initiation Protocol) [1] has been widely
deployed for significantly growing session-oriented
applications in the Internet, such as Voice-over-IP, instant
messaging and video conference. As a signaling protocol, SIP
is responsible for creating, modifying and terminating sessions
in a mutual real-time communication [2]. 3GPP (3rd
Generation Partnership Project) has adopted SIP as the basis
of the IMS (IP Multimedia Subsystem) architecture [3, 4, 5].

Fig. 1 illustrates a simplified configuration of a SIP
network which consists of two basic elements: UA (User
Agent) and P-Server (Proxy Server) [1]. A UA may perform
two roles: in the UAC (User Agent Client) role, the originating
UA sends requests; in the UAS (User Agent Server) role, the
terminating UA receives requests and sends responses. The
task of a P-server is to receive SIP requests and forward them
to the terminating UA (or to another P-server that is closer to
the terminating UA). Each P-server is assigned to serve
multiple individual UAs. UA and P-server cooperate to
establish, modify and terminate sessions for multimedia
communication.

SIP is designed to be an application layer protocol
independent of the underlying transport mechanism which

may be TCP (Transmission Control Protocol) or UDP (User
Datagram Protocol). SIP introduces a retransmission
mechanism to maintain its reliability [5, 6]. The mechanism
provides reliability by retransmitting lost SIP messages either
end-to-end or hop-by-hop. A SIP source uses a delay to detect
a message loss. It would produce one or more retransmissions
if the corresponding reply message is not received in a
predetermined time interval. If a retransmission triggered by a
delay caused by the overload, it would introduce the overhead
rather than reliability into the network. Such redundant
retransmissions increase the memory and CPU loads for a SIP
server, which may cause a system overload and deteriorate the
signaling performance [6-18]. In an overload situation, the
throughput drops down to a small fraction of the original
processing capacity, thus poses a serious problem for a SIP
network [11]. This kind of behaviour has happened in real
carrier networks where large scale collapses of SIP servers
have been observed in present of sudden heavy SIP traffic
(e.g., emergency-induced call volume) [12].

Internet

Proxy

Server

UA UA

Proxy

Server

Fig.1. Simplified configuration of a SIP network

A SIP server can be overloaded due to various reasons
such as poor capacity planning, dependency failures,
component failures, avalanche restart, flash crowds, denial of
service attacks, etc., as indicated by RFC 5390 [20]. In general,
a short period of demand burst or a server slowdown may
bring a server overload and lead to server crash. The built-in
SIP overload control mechanism has proven to be ineffective
in practice, because it attempts to mitigate the overload by
rejecting some calls, but the cost of rejecting a SIP session is
comparable with the cost of serving a session.

SIP retransmission mechanism should be disabled for hop-
by-hop transaction when running SIP over TCP to avoid
redundant retransmissions at both SIP and TCP layer [1].
However, almost all real SIP networks run SIP over UDP
mainly because the following reasons [8-18, 21-22]: (1) TCP
is optimized for accurate delivery by sacrificing its timeliness
which is a critical requirement for real-time application such
as SIP; (2) SIP works at application layer while TCP works at
transport layer. Even TCP can provide reliability at transport

2

layer, SIP messages can still be dropped or corrupted while
being processed at application layer; (3) TCP keeps
retransmitting outstanding packets until an ACK is received.
Each retransmitted packet is pushed to the application layer to
be a SIP message which costs extra CPU time and introduces
more delay, therefore making CPU overload worse.

Recent collapse of SIP servers due to emergency-induced
call volume or “American Idol” flash crowd in the real carrier
networks has motivated some overload control solutions. For
example, three window-based feedback algorithms were
proposed to adjust the message sending rate of the upstream
SIP servers based on the queue length [11]. Both centralized
and distributed overload control mechanisms for SIP were
investigated in [12]. Retry-after control, processor occupancy
control, queue delay control and window based control were
proposed to improve goodput and prevent overload collapse in
[8]. A small buffer size has been proved to be a simple
overload control mechanism at a cost of temporary call
rejection rate hike in [23]. It has been revealed that the
retransmission mechanism is a main factor to deteriorate the
overload performance [11, 18]. Thus it is necessary to
investigate the impact of the retransmission mechanism on the
SIP overload. A demand burst or routine server maintenance
such as database synchronization may accumulate the
signaling messages to create a long queue. Excessive queuing
delay, introduced by a long initial queue size, may continue to
trigger the redundant retransmissions and crash the server after
an overloaded server resumes its normal service with a low
effective CPU utilization. It would be interesting to find a
sufficient stability condition for the initial queue size, which
indicates whether the SIP server can handle overload
effectively. Such stability condition can help the SIP operator
to decide whether and when to activate the overload control
algorithm. It also can help researchers propose more effective
solutions to avoid SIP overload collapse caused by the SIP
retransmissions.

Event-driven simulation has been widely used for
evaluating network performance. Its computation cost grows
linearly with network sizes and message volumes [24]. When
event-driven simulation is used to evaluate a SIP network,
each outstanding SIP message requires a timer being
maintained. When an overload happens, outstanding messages
are built up, and the simulator needs to increase the number of
timers dramatically in order to track message retransmissions.
Tracking and manipulating these timers consume large amount
memory and CPU time which make the simulation process
extremely slow, thus in some cases, cause the simulator to
crash and terminate simulation unexpectedly. In order to
simplify the CPU-consuming timer-tracking process, fluid-
based simulation tracks time slot instead of individual
messages. Messages arriving within the same time slot are
aggregated and processed together. This will greatly simplify
the complexity caused by large number of messages and allow
smooth scalability by choosing different granularities as
required.

The contributions of this paper are: (1) Deriving a
sufficient stability condition that a SIP server can handle the
overload effectively under the retransmission mechanism; (2)
Developing a discrete-time, fluid-based model to reduce
significantly simulation effort; (3) Comparing the results of
both fluid-based Matlab simulation and event-driven OPNET

simulation to demonstrated that the fluid-based simulation is
relatively accurate and scalable for evaluating the performance
of a SIP network; (4) Performing fluid-based Matlab
simulation and event-driven OPNET simulation to verify that
the stability bound is quite tight, or an initial queue size
(created by a transient overload) which is 5% higher than the
bound will bring a server crash. Slightly different initial queue
sizes (the difference is less than 10% in this paper) create
totally different dynamic behaviour patterns; (5) Simulating an
application scenario to demonstrate that an effective CPU
utilization as low as 20% cannot prevent a SIP server from
overload during a short period of maintenance service and
such overload continues to spread even after the normal
service resumes.

The paper is organized as follows. Section 2 describes the
SIP retransmission mechanism. Section 3 analyzes the
queuing dynamics of an overloaded SIP server under
retransmission mechanism. Section 4 derives a stability
condition for SIP retransmission mechanism in the case of
server overload. Section 5 evaluates the performance of an
overloaded server. Some conclusions are made in Section 6.

Invite

100Trying
Invite

Invite
100Trying

180Ringing
180Ringing

180Ringing

200OK
200OK

200OK

ACK
ACK

ACK

Session Data

Bye
Bye

Bye

Originating

UA

Terminating

UA

SIP

Proxy-2

200OK
200OK

200OK

SIP

Proxy-1

Fig. 2. A typical procedure of session establishment

2. SIP RETRANSMISSION MECHANISM OVERVIEW

SIP works in the application-layer for multimedia session
establishment and tear-down. To briefly describe the basic SIP
operation, we only consider originating UA, SIP P-server and
terminating UA, as shown in Fig. 2. To set up a call, an
originating UA sends an “Invite” request to a terminating UA
via two P-servers. The P-server returns a provisional “100
(Trying)” response to confirm the receipt of the “Invite”
request. The terminating UA returns an “180 (Ringing)”
response after confirming that the parameters are appropriate.
It also evicts a “200 (OK)” message to answer the call. The
originating UA sends an “ACK” response to the terminating
UA after receiving the “200 (OK)” message. Finally the call
session is established and the multimedia communication is
created between the originating UA and the terminating UA
through the SIP session. The “Bye” request is generated to
terminate the session thus cancel the communication.

3

SIP has two types of message retransmission: (a) a sender
starts the first retransmission of the original message at T1
seconds, the time interval doubling after every retransmission
(exponential backoff), if the corresponding reply message is
not received. The last retransmission is sent out at the
maximum time interval 64xT1 seconds. Default value of T1 is
0.5s, thus there is a maximum of 6 retransmissions. The hop-
by-hop “Invite”-“Trying” transaction shown in Fig. 2 follows
this rule [1]; (b) a sender starts the first retransmission of the
original message at T1 seconds, the time interval doubling
after every retransmission but capping off at T2 seconds, if the
corresponding reply message is not received. The last
retransmission is sent out at the maximum time interval 64xT1
seconds. Default value of T2 is 4s, thus there is a maximum of
10 retransmissions. The end-to-end “OK”-“ACK” and “Bye”-
“OK” transactions shown in Fig. 2 follows this rule [1].

3. QUEUING DYNAMICS OF SIP RETRANSMISSION MECHANISM

A real SIP network consists of a series of geographically
distributed P-servers and a large amount of UAs. Each P-
server is responsible for setting up a session call between two
UAs. It forwards the requests and also generates a provisional
response to confirm the receipt of every request from the
upstream sender (an originating UA or a P-server) [1]. It
provides a retransmission mechanism to guarantee a reliable
delivery of a SIP message [5]. However, the arrival of too
many SIP messages may cause an unnecessary queuing delay,
stimulate redundant retransmissions and accelerate the
overload, thus eventually bring down the entire network [11].
Therefore, it is necessary to describe the queuing dynamics of
an overloaded SIP server (e.g., [16, 23]), before we derive a
stability condition for SIP retransmission mechanism.

UA

UA

UA

UA

UA

UA

UA

UA

Overloaded

P-Server

Originating Servers Terminating Servers

P-Server

Fig. 3. SIP network topology with an overloaded P-server (which is marked in
red color) and its multiple upstream originating servers

When overloads happen in the network, at any time, one of
the servers will be the most overloaded one among all the
overloaded servers. Without loss of generality, we consider a
typical SIP network which consists of an overloaded P-server
and its multiple upstream originating servers [11], as shown in
Fig. 3. For a clear presentation, we use difference equations to
describe the queuing dynamics of an overloaded P-server. In
our discrete time model, we make the following assumptions
according to SIP RFC [1]:

(a) We investigate the retransmissions which are mainly
caused by long queuing delay of the overloaded server.
Therefore, for the round trip response time between the
overloaded server and its neighbouring server, the queuing and
processing delays are dominant, while transmission and
propagation delay are negligible [12]. This assumption is valid

because signaling messages are typically CPU capacity
constrained rather than bandwidth constrained;

(b) Time is divided into discrete time slots. This makes it
easy to describe how many retransmitted messages are
triggered by a delay caused by the overload. The errors
introduced by the discrete time slot can be made arbitrarily
small by making the interval of a timeslot smaller and smaller.
We use t and n to denote time and timeslot respectively;

(c) The SIP RFC [1] does not specify the queuing and
scheduling discipline to be deployed by a SIP server. We
assume that a SIP server maintains a First-In-First-Out (FIFO)
queue for messages arriving at different time-slots. This FIFO
queuing model reflects the common practice by most vendors
today [11]. Within the same time slot, original request
messages enter the tail of the queue prior to retransmitted
request messages. Such enqueuing priority has negligible
impact if the interval of the time slot is very small. There is no
enqueuing difference for the messages arriving at different
time slots;

(d) The time to process a response message or a timer
timeout is typically much smaller than a request message [1].
We assumed that, within a time slot, the server has enough
CPU capacity to process the incoming response messages,
thus response messages will not be enqueued as long as they
are treated with higher priority such as interrupt. They will not
be dropped either when the queue for request messages are
overflowed. The service capacity of the overloaded server
includes the rate for processing response messages;

(e) In order to focus our analysis on the overloaded
server, we assume multiple upstream originating servers and
the downstream server of the overloaded P-server have
sufficient capacity to process all requests, retransmissions, and
response messages immediately without any delay;

(f) Practical buffer sizes vary with the actual service
rates and system configuration plans. With the memory
becoming cheaper and cheaper, typical buffer sizes are likely
to become larger and larger. The buffer sizes for all servers are
assumed to be large enough to hold all the incoming messages.
Therefore there is no message loss at all servers.

(g) The hop-by-hop Invite-100Trying transaction is the
major workload contributor due to its role for call setup and its
hop-by-hop retransmission mechanism [1]. Given the
proportionate nature and the general similarity of the
retransmission mechanisms between the “Invite” and “non-
Invite” messages in a typical session [1], we will focus on the
hop-by-hop Invite-100Trying transaction and ignore other
end-to-end transactions in this paper.

)(n

100Trying Response

)(nr

)(nq

Invite Request

Fig. 4. Queuing dynamics of an overloaded SIP server ((n) denotes
aggregated original message arrivals, r(n) denotes aggregated retransmitted

message arrivals from multiple upstream servers, q(n) denotes queue size, (n)
denotes service rate)

Fig. 4 depicts the queuing dynamics of an overloaded SIP
server in a SIP network (as shown in Fig. 3). The overloaded
server receives the original Invite requests with an aggregate

4

rate (n) at time slot n, where (n) can be arbitrary. We can
obtain the queue size q(n+1) at next time slot n+1 based on
the information at the current time slot n, i.e.,

)]()()()([)1(nnrnnqnq . (1)

where q(n) denotes the queue size; r(n) denotes the aggregated

retransmitted messages; (n) denotes an arbitrary service
process for the request messages, which is equal to the server
service capacity minus the service rate for the response

messages. (n) plus r(n) give the total arrival messages at

current time slot n. Adding q(n) and deducting (n) would
generate a new queue size q(n+1) in the next time slot n+1, as
described by Eq. (1). We use []+ to indicate that the queue size
at each time slot should be nonnegative.

If the server does not receive the corresponding response
message for an original request message at a specific time-out,
it would trigger retransmission. There are maximum 6
retransmissions for every original request message [1]. Thus
we can obtain the total retransmitted messages r(n) at current
time slot n as

6

1
)()(

j j nrnr , (2)

where rj(n) denotes the jth–time retransmission for the original

request messages arriving at time n-Tj, Tj=(2j-1)T1 and 1≤j≤6.

At time (n-Tj), the original request message arrivals were

(n-Tj) and the queue size was q(n-Tj). Since the overloaded

server can process
jT

k j kTn
1

)(messages during the Tj

time slots, the remaining messages at current time slot n
become

])(-)-()([
1

jT
k jjj kTnTnqTn , which should be

nonnegative. This may include both the original arrival
messages at time (n-Tj) and the queued messages right before
the time slot (n-Tj). However, only the remaining original

arrival messages (n-Tj) need to be retransmitted at current
time n, we use min{} function to get the jth–time retransmitted
messages at current time slot n, i.e.,

)}(

,])()-()(min{[)(
1

j

T
k jjjj

Tn

kTnTnqTnnr j

. (3)

Eqs. (1) to (3) shows the dynamic behaviour of an
overloaded SIP server. Due to its nonlinear characteristic, it
may show complex, sometimes chaotic, patterns that bring a
potential server collapse.

4. STABILITY CONDITION FOR SIP RETRANSMISSION
MECHANISM

The retransmission can provide a reliable delivery of SIP
messages. However, it also increases the queuing size and
enhances the overload. It would be interesting to derive a
stability condition that the server can handle overload
effectively. The messages accumulated by a transient overload
(e.g., a demand burst or a server slowdown) create an initial
queue size when the server returns to its normal service state.
Such initial queue size may bring a queuing delay long enough
for the retransmissions of old remaining original messages in
the queue as well as all the new incoming original messages.
We would like to investigate whether the SIP server can serve

the original messages in the initial queue size and their
retransmissions under a low effective CPU utilization.

Without loss of generality, we consider the “Invite-Trying”

request-response pair with a deterministic arrival rate and a

deterministic service rate ; there are i retransmissions for the
new arrival original messages; the initial queue size is q(0).

Theorem 1: If the initial queue size q(0) created by a
demand burst can satisfy a sufficient stability condition
described by Eq. (4), then the SIP server is stable.

61,
1

)12)1(()4232(

,)12(min)0(

11
1

1
1

ji
i

TiTi

Tq
iij

j

 (4)

Proof:
To prevent messages from accumulating unlimitedly in

SIP server, the total average incoming rate should be less than
the service rate. Assume that there would be i retransmissions
for an arbitrary original Invite request message, a conservative
condition to maintain stability is

1/)1(i ,

which is equivalent to
)1(i , (5)

i.e.,

 /)(i . (6)

To achieve the above sufficient stability condition, we
need to guarantee that the original messages from both the
initial queue size and the new arrivals are not retransmitted

more than j times, where we denote j as /)(j .

Then we update the equivalent stability condition in Eq. (6) as

 /)(ji . (7)

To avoid j+1 retransmissions for the original messages in
the initial queue size, we obtain a stability condition for the
initial queue size as

1
1

1)12(/)0(TTq j
j
 ,

which is equivalent to

1)0(jTq . (8)

To avoid (j+1) retransmissions for any newly arrival
original messages, the queue size in any time should satisfy

1)(jTtq . (9)

Eq. (4) can certainly satisfy Eq. (8). To show that Eq. (4)
can satisfy the requirement of Eq. (9), we consider five cases
in the following discussion.

1. We first consider the queue sizes at each specified
retransmission times Ti=(2i-1)T1 using Eqs. (1)-(3) as follows,

])0([)()0()(111 TqTqTq ,

])0([)2(2)()(2112 TqTTqTq ,

])0([)(2)()(1
1

1 i
i

ii TqTiTqTq , (10)

])0([)6(32)()(6156 TqTTqTq .

2. We next consider the queue sizes between any two
neighbouring retransmission times Ti-1 and Ti. Eqs. (1)-(3), (7)
and (10) lead to

)())(()()(111 iii TqTtiTqtq , (11)

5

The inequality in Eq. (11) indicates that the queue size is

decreasing continuously with a slope of -i during the time
period. However, at time t=Ti, the ith retransmission for the

remaining [q(0)Ti] messages from the initial queue size q(0)
is triggered, resulting in a sudden increase in the queue size
described by (10). Then when 0<t≤Tj, the condition described
by (9) becomes

61)(1 jiTTq ji . (12)

Given the condition of Eq. (8), we assume the worst case

with q(0)Ti0. Using recursive substitution for Eq. (10), we
can obtain

i

k

ki

k

k
i TTkqiTq

1 11 1
1)12()(2)0()1()(,

which can be reorganized as

,2

2)0()1()(

11 1

2
1 1

1 1
1

TiTxT
dx

d

TqiTq

i
k

k

x

i
k

k

i
k

k
i

or

.
21

22

1

21

21
)0()1()(

11

1

2

1

1

1

TiTT
x

xx

dx

d

TqiTq

i

x

i

i

i

Then we can obtain

.)323()12)1(()0()1()(11 TiTiqiTq ii
i (13)

Combining Eqs. (12) and (13), we can obtain the second
condition in Eq.(4) as

61
1

)12)1(()4232(
)0(11

1

ji
i

TiTi
q

iij

(14)
3. We then consider the case that Tj<t<Tj+1. From Eqs.

(1)-(3), (7), (9) and (12), we have

1)())()1(()()(jjjj TTqTtjTqtq . (15)

This means the queue size is non-increasing during the
time period Tj<t<Tj+1.

4. Next, we consider the case that t=Tj+1. Since Eq. (8)

indicates [q(0)Tj+1]
+=0, from Eqs. (1)-(3), (7) and (12), we

can obtain

1

111
)(

])0([))1((2)()(

jj

j
j

jj
TTq

TqTjTqTq

 . (16)

5. Finally, we consider the case that t>Tj+1. From Eqs.
(1)-(3), (7) and (16), we have

.)())()1(()()(1111 jjjj TTqTtjTqtq (17)

Combining Eq. (8), (11), (12), (14), (15), (16) and (17), we
can reach a sufficient stability condition for the initial queue
size described by Eq. (4).□

5. Performance Evaluation and Simulation

Since violating the sufficient stability condition does not
always bring the instability to a SIP system, we would like to
investigate how tight the sufficient stability bound for the
retransmission mechanism is when a SIP overload happens.
To achieve this goal, we will evaluate the performance of an
overloaded SIP server by performing fluid-based Matlab
simulation using the analytical model described by Eqs. (1) to

(3), where the time slot is 50ms. In the mean time, in order to
validate the accuracy and scalability of fluid-based simulation,
we also performed event-driven OPNET simulation in a real
SIP network as depicted by Fig. 3. Four originating servers
generated original request messages with equal rate, and then
sent them to four terminating servers via two P-servers. In our
OPNET simulation, messages were enqueued based on first-
come-first-in principle. That is, Assumption (c) was
unnecessary for OPNET simulation. The default timer for the
first retransmission was T1=0.5s [1].

The retransmission messages triggered by the overload are
redundant messages. Therefore, only the CPU consumed by
the original messages can be regarded as effective use of

resources. We define effective CPU utilization as the ratio
between the total mean arrival rate for the original messages

and the mean service rate, i.e., =/.
To verify the sufficient stability condition for the initial

queue size, we have considered two scenarios: (1) Arrival rate
and service rate were deterministic and the overload was
caused by a demand burst; (2) Arrival rate and service rate

were Poisson distributed
1
 and the overload was caused by a

server slowdown.

5.1. Constant Arrival Rate and Service Rate

In this scenario, a demand burst overloaded the server and

created an initial queue size at time t=0s. This emulated a

short surge of user demands. Normal original request

messages arrived at the overloaded server with a constant rate

=200 messages/sec. This emulated regular user demands.

The overloaded server maintained a constant service rate

=1000 messages/sec. Thus the effective CPU utilization for

regular user demands is =/=20%. The simulation time is

50s.

Eq. (7) gives j=()/=4. Then using Eq. (4), we can
obtain the stability condition for the overloaded server as
q(0)<min{15500, 8200, 6167, 5700, 6220}=5700 messages.
We will consider two sub-scenarios with different initial
queue sizes.

Sub-scenario (a)

In this sub-scenario, a demand burst created an initial
queue size as q(0)=5500 messages < 5700 messages, obeying
the stability condition described by Eq. (4).

Figs. 5 and 6 show the dynamic behaviour of the
overloaded SIP server using both Matlab simulation and
OPNET simulation. One can observe that the curves obtained
by Matlab simulation are very close to the curves obtained by
OPNET simulation. The difference for instantaneous
retransmission rate shown in Fig. 6 was caused by enqueuing
priority within the same time slot (Assumption (c)). The
similarity between Matlab simulation result and OPNET
simulation result demonstrates that fluid-based simulation is a
relatively accurate and cost-effective approach for
performance evaluation of a SIP network, while it can
simplify a CPU-consuming timer-tracking process by tracking
single time slot instead of individual message timer.

1 Currently there is no measurement result for the workload in the real SIP

networks. Poisson distributed message arrival rate and service rate are widely

adopted by most existing research work (e.g., [11]).

6

Fig. 5(b) shows that the queue size decreased linearly with
800 messages/sec at the beginning.

At time t=T1=0.5s, the overloaded SIP server had
processed 500 messages, the 1st-time retransmission for the
residual 5000 original messages in the initial queue happened
(as shown in Fig. 6). The new 100 original messages arriving
between t=0s and t=T1=0.5s joined the queue together with
5000 retransmitted SIP messages, so the queue size became
10,100 messages (as shown in Fig. 5(b)). The new arrival
original messages at time t=0s started to trigger the first-time
retransmissions (as shown in Fig. 6). Similarly, due to the 2nd-
time and 3rd-time retransmissions, the queue size increased
dramatically at time t=T2=1.5s and t=T3=3.5s respectively.

0 5 10 15 20 25 30 35 40 45 50
0

5000

10000

15000

Time (sec)

Q
u

e
u

e
 s

iz
e
 (

m
e
ss

a
g

e
s)

Matlab

OPNET

(a) full view

0 0.5 1 1.5 2 2.5 3
0

5000

10000

15000

Time (sec)

Q
u
e
u
e
 s

iz
e
 (

m
e
ss

a
g
e
s)

Matlab

OPNET

(b) enlarged partly view

Fig. 5. Queue size q (messages) versus time for the overloaded server when

the initial queue size obeys the stability condition

0 5 10 15 20 25 30 35 40 45 50
0

1000

2000

3000

4000

5000

6000

Time (sec)

R
e
tr

a
n
sm

is
si

o
n
 r

a
te

 (
m

sg
s/

se
c
)

OPNET

OPNET
avg

Matlab

Fig. 6. Retransmission rate r and moving average retransmission rate ravg

(messages/sec) versus time for the overloaded server when the initial queue

size obeys the stability condition

At time t=8s, the retransmission rate of new arrival

original messages increased from 600 messages/sec to 800

messages/sec (as shown in Fig. 6), thus the total incoming

traffic rate of both original messages and retransmitted

messages was equal to the service rate =1000 messages/sec

(or =5/=1). Between the time t=3.5s and t=8s, 900 new

incoming original messages and 2700 incoming retransmitted

messages entered the overloaded SIP server, thus the queue

size reached and stayed at a steady queue size as

14700+900+2700-4500=13800 messages, well matching our

theoretical analysis on the queuing dynamics in Section 3.

Sub-scenario (b)

In this sub-scenario, a demand burst created an initial
queue size as q(0)=6000 messages > 5700 messages, violating
the stability condition described by Eq. (4).

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5
x 10

4

Time (sec)
Q

u
e
u

e
 s

iz
e
 (

m
e
ss

a
g

e
s)

Matlab

OPNET

Fig. 7. Queue size q (messages) versus time for the overloaded server when
the initial queue size violates the stability condition

0 5 10 15 20 25 30 35 40 45 50
0

1000

2000

3000

4000

5000

6000

Time (sec)

R
e
tr

a
n
sm

is
si

o
n
 r

a
te

 (
m

sg
s/

se
c
)

OPNET

OPNET
avg

Matlab

Fig. 8. Retransmission rate r and moving average retransmission rate ravg

(messages/sec) versus time for the overloaded server when the initial queue

size violates the stability condition

Fig. 7 shows that the queue size decreased linearly except
4 spikes due to the dramatic retransmissions until the time
t=19s. At time t=19s, the retransmission rate of new arrival
original messages increased from 800 messages/sec to 1000
messages/sec (as shown in Fig. 8). The total incoming traffic
rate of both original messages and retransmitted messages was

larger than the service rate =1000 messages/sec (or

=6/=1.2>1). Therefore, after the time t=19s, the queue
size increased linearly and continuously with 200
messages/sec (as shown in Fig. 7), which would bring a SIP
server crash eventually.

In summary, slightly different initial queue sizes due to the
demand bursts (the difference is less than 10% in the two sub-
scenarios) create totally different dynamic behaviour patterns.
The slightly smaller initial queue size of 5500 messages

7

allows the server to handle the initial temporary overload
effectively, while the slightly larger initial queue size of 6000
messages will result in infinitely increasing queue size, thus
bring a SIP server to crash. This indicates that the sufficient
stability bound is quite tight.

5.2. Poisson Distributed Arrival Rate and Service Rate

In this application scenario, the overloaded SIP server

worked in one of the two states (i.e., normal service state and

maintenance state) alternately. During the maintenance period,

the overload may happen due to the server slow down. The

mean service time at the normal service state was m1=600sec;

the mean service time at the maintenance state was m0=30sec;

all were exponential distributed. The mean service rate at the

normal service state was 1=1000 messages/sec; the mean

service rate at maintenance state was 2=200 messages/sec;

the mean arrival rate of the SIP messages was =200

messages/sec; all were Poisson distributed. The simulation

time is 2000s. The overall effective mean utilization was equal

to .2.0)/()(001101 mmmm We will not show the

OPNET simulation result because it was very close to the

Matlab simulation result as the Subsection 5.1.

Figs. 9 to 12 show the dynamic behaviour of the

overloaded SIP server under two different service states.

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 10

5

Time (sec)

Q
u

e
u

e
 s

iz
e
 (

m
e
ss

a
g

e
s)

(a) full view

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

500

1000

1500

2000

2500

Time (sec)

Q
u

e
u

e
 s

iz
e
 (

m
e
ss

a
g

e
s)

(b) enlarged partly view

Fig. 9. Queue size q (messages) versus time for the overloaded server which

performed normal service and maintenance service alternately

Between the time t=812s and 833s, SIP server had short

period of maintenance, service rate decreased (as shown in Fig.

12). The messages started to accumulate and the queue size

increased to reach a peak around 2200 messages at time

t=833s (as shown in Fig. 9(b). When a mean service rate was

200 messages/sec, the queue size larger than 100 messages

brought a queuing delay longer than 0.5s, and started to

stimulate the retransmission (as shown in Fig. 11). After the

server resumed normal service at time t=833s, the initial queue

size was less than 5700 messages (the stability condition

described by Eq. (4)). The server could process these

accumulated messages in time, so the queue size decreased

until the buffer was empty at time t838s (as shown in Fig.

9(b)).

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

100

200

300

400

500

600

Time (sec)

O
ri

g
in

a
l

m
e
ss

a
g

e
 r

a
te

 (
m

e
sg

s/
se

c
)

avg

Fig. 10. Original message arrival rate and moving average original message

arrival rate avg (messages/sec) versus time for the overloaded server which

performed normal service and maintenance service alternately

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

200

400

600

800

1000

1200

1400

1600

1800

2000

Time (sec)

R
e
tr

a
n
sm

is
si

o
n
 r

a
te

 (
m

sg
s/

se
c
)

r

r
avg

Fig. 11. Retransmission rate r and moving average retransmission rate ravg

(messages/sec) versus time for the overloaded server which performed normal

service and maintenance service alternately

However, maintenance with a relatively long period (or a
equivalent large demand burst)) happened at time t=1462s, the
queue size increased continuously and triggered more than 5
retransmissions that made the total arrival message arrival rate
exceed the normal service rate (as shown in Fig. 11). After the
server entered the normal service state at time t=1527s, the
initial queue size was larger than 5700 messages. Since the
stability condition for the initial queue size was violated, the
SIP server cannot handle the overload effectively. The queue
size tended to infinity (as shown in Fig. 9(a)), thus eventually
crashed the server.

In summary, although the effective mean utilization is as
low as 20%, if the accumulated messages in the SIP server
during the short maintenance period violate the stability
condition for the initial queue size, the server cannot mitigate
the overload effectively after it resumed its normal service.
Goodput collapse persists and the server would crash
eventually, well matching our theoretical analysis.

8

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

200

400

600

800

1000

1200

1400

1600

1800

Time (sec)

S
e
rv

ic
e
 r

a
te

 (
m

e
ss

a
g
e
s/

se
c
)

avg

Fig. 12. Service rate and moving average service rate avg (messages/sec)

versus time for the overloaded server which performed normal service and

maintenance service alternately

6. CONCLUSIONS

We have investigated the SIP retransmission mechanism in
case of the overload. We have derived a sufficient stability
condition that SIP server can handle the overload effectively
under the retransmission mechanism. To prevent the system
from crashing, the initial queue size caused by a transient
overload should satisfy the stability condition. Such stability
condition can help the SIP operator to trigger the overload
control algorithm ahead of time to avoid the SIP server
collapse.

We have performed simulation using both fluid-based
simulation approach and event-driven simulation approach to
evaluate the performance of an overloaded SIP server. Our
study indicated that the behaviour of the SIP server is highly
sensitive to the temporary overload due to the demand burst or
the server slow down. The sufficient stability bound for the
initial queue size caused by the overload is quite tight.
Effective resource utilization as low as 20% cannot prevent an
overloaded server from crash, if an initial queue created by a
short-term overload (due to a demand burst or a temporary
server slowdown) exceeds the sufficient stability bound
slightly.

Event-driven simulation, adopted by most existing
literature on SIP study, requires a series of retransmission
timers to track outstanding messages, thus makes the
experiment computationally expensive. As the network size
increases to a large scale, the number of timers may build up
to consume excessive memory and CPU time, thus crashes the
simulator eventually. On the contrary, fluid-based simulation
tracks time on a slot-by-slot basis. Events happening within
the same time slot will be aggregated and processed together.
Individual timers do not need to be tracked anymore. Thus
fluid-based approach is much simpler than event-driven
approach. The similarity between fluid-based Matlab
simulation result and event-driven OPNET simulation result
demonstrate that fluid-based simulation can be a relatively
accurate and cost-effective approach for evaluating the
performance of a SIP network.

ACKNOWLEDGMENT

We appreciate the financial support from the NSERC grant
#CRDPJ 354729-07 and the OCE grant #CA-ST-150764-8.
This work is also supported in part by Nortel Networks.

REFERENCES

[1] J. Rosenberg et al., “SIP: Session Initiation Protocol,” RFC 3261, IETF,
June 2002.

[2] J. Rosenberg and H. Schulzrinne, “SIP: Locating SIP Servers,” RFC 3263,
IETF, June 2002.

[3] 3GPP TS 24.228 v5.f.0 (2006-10), “Signaling flows for the IP
Multimedia call control based on SIP and SDP; Stage 3 (Release 5),”
October 2006.

[4] 3GPP TS 24.229 v8.5.1 (2008-09), “IP Multimedia call control protocol
based on SIP and SDP; Stage 3 (Release 8),” September 2008.

[5] J. Rosenberg and H. chulzrinne, “Reliability of provisional responses in
the Session Initiation Protocol (SIP),” RFC 3262, IETF, June 2002.

[6] M. Govind, S. Sundaragopalan, Binu K S, and Subir Saha,
“Retransmission in SIP over UDP - Traffic Engineering Issues,”
Proceedings of International Conference on Communication and
Broadband Networking, Bangalore, May 2003.

[7] E. Noel and C.R. Johnson, “Initial simulation results that analyze SIP
based VoIP networks under overload,” Proceedings of 20th
International Teletraffic Congress, 2007, pp. 54-64.

[8] E. Noel and C.R. Johnson, “Novel Overload Controls for SIP
Networks,” Proceedings of 21st International Teletraffic Congress, 2009.

[9] R.P. Ejzak, C.K. Florkey, and R.W. Hemmeter, “Network Overload and
Congestion: A comparison of ISUP and SIP,” Bell Labs Technical
Journal, 9(3), 2004, pp. 173–182.

[10] M. Ohta, “Overload Control in a SIP Signaling Network,” Proceeding of
World Academy of Science, Engineering and Technology, Vienna,
Austria, March 2006, pp. 205—210.

[11] V. Hilt and I. Widjaja, “Controlling Overload in Networks of SIP
Servers,” Proceedings of IEEE ICNP, Orlando, Florida, October 2008,
pp. 83-93.

[12] C. Shen, H. Schulzrinne, and E. Nahum, “SIP Server Overload Control:
Design and Evaluation,” Proceedings of IPTComm, Heidelberg,
Germany, July 2008.

[13] A. Abdelal and W. Matragi, “Signal-Based Overload Control for SIP
Servers,” Proceedings of IEEE CCNC, Las Vegas, NV, January 2010.

[14] “SIP Express Router” http://www.iptel.org/ser/.
[15] T. Warabino, Y. Kishi, and H. Yokota, “Session Control Cooperating

Core and Overlay Networks for “Minimum Core” Architecture,”
Proceedings of IEEE Globecom, Honolulu, Hawaii, December 2009.

[16] Y. Hong, C. Huang, and J. Yan, “Analysis of SIP Retransmission
Probability Using a Markov-Modulated Poisson Process Model,”
Proceedings of IEEE/IFIP Network Operations and Management
Symposium, Osaka, Japan, April 2010.

[17] E.M. Nahum, J. Tracey, and C.P. Wright, “Evaluating SIP server
performance,” Proceedings of international conference on Measurement
and modeling of computer systems (ACM SIGMETRICS), San Diego,
CA, US, 2007, pp. 349–350.

[18] J. Sun, R.X. Tian, J.F. Hu, and B. Yang, “Rate-based SIP Flow
Management for SLA Satisfaction,” Proceedings of 11th International
Symposium on Integrated Network Management (IFIP/IEEE IM), New
York, USA, June 2009, pp. 125-128.

[19] V. Hilt and H. Schulzrinne, “Session Initiation Protocol (SIP) Overload
Control,” IETF Internet-Draft, draft-hilt-sipping-overload-07, October
2009.

[20] J. Rosenberg, “Requirements for Management of Overload in the
Session Initiation Protocol,” IETF RFC 5390, December 2008.

[21] W. R. Stevens, TCP/IP Illustrated, Volume 1, Addison-Wesley, Boston,
1994.

[22] Y. Hong, O. W. W. Yang, and C. C. Huang, “Self-Tuning PI TCP Flow
Controller for AQM Routers With Interval Gain and Phase Margin
Assignment,” Proceedings of IEEE Globecom, Dallas, TX, U.S.A,
November 2004, pp. 1324-1328.

[23] Y. Hong, C. Huang, and J. Yan, J., “Modeling and Simulation of SIP
Tandem Server with Finite Buffer,” To appear in ACM Transactions on
Modeling and Computer Simulation, April 2011.

[24] Y. Liu, F. L. Presti, V. Misra, D. F. Towsley, and Y. Gu, “Scalable fluid

models and simulations for large-scale IP networks,” ACM Transactions

on Modeling and Computer Simulation, 14 (3), pp. 305–324.

