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   Abstract–– Ethernet packet communication is the old established 
protocol of data transfer in networks. Ethernet devices transmit 
the data from a source to a receiver while the receiver has no 
statistics regarding the transmission channel. In this era of global 
transmission where the upcoming communication technology will 
be equipped with self optimized transmission under which there 
will be minimum errors. The need to gather information related to 
the transmission path arises. The primary objective of this 
research paper is to evaluate the different P4 parameters on 
optical media. P4 enabled NIC’s, corresponding FPGA Images 
and traditional Ethernet switches were used for the results. INT-
SDN P4 packets were transmitted and the comprehensive test 
traces were captured and examined. DPDK was used which 
provides the foundation for P4 packet forwarding. Data, as well as 
the control plane were fully configurable in the hardware setup 
which resulted in speedier data transmission and also enhanced 
the packet efficiency at higher data rates. Metrics such as latency, 
throughput, data rates and efficiency were accumulated, 
compared and analyzed on P4 based optical network having a 40 
Gbps data transmission rate. Moreover, the inside story of the 
optical channel was gathered which will provide further insights 
related to the P4 transmission medium.     

   Keywords–– Programming Protocol Independent Packet 
Processors (P4), In-Band Network (INT), Software Defined 
Networking (SDN), Network Interface Card (NIC), Data Plane 
Development Kit (DPDK), Field Programmable Gate Array 
(FPGA), Application Specific Integrated Circuit (ASIC), 
Transmission Control Protocol (TCP). 

I.    INTRODUCTION 
   As specified in Gartner’s report [1], the number of 
communicating devices will reach 20.4 billion and that of the 
IoT implements will touch 30.7 billion by 2020. In accordance 
with this massive expansion in the number of hardware 
implementations, the need to raise the bandwidth will arise with 
respect to time. Therefore, a traditional TCP/IP packet should 
be modified to accommodate the large amount of information 
that needs to be successfully transmitted and efficiently 
received. Moreover, the packet size has to be raised and an 
addition of more headers will be needed with time. To process 
the larger volume of packets, particular packet handling 
mechanisms will also be required to maintain the overall 
efficiency of the optical network. INT-SDN [2] is the possible 
solution to this future network complication as SDN is bound 
to deliver the data in a more economical way while having 
easier network implementations. Additionally, SDN is also 
capable to provide centralized provisioning of the optical 
networks.     

   Data Plane, Control Plane and the Management Plane are the 
three vital components of any networking system. While data 
plane carries the user information, the control plane consists of 
routing information as well as of signaling components and the 
administrative instructions are in the management plane. SDN 
creates a divergence in the data and control plane providing 
more flexibility to the network management by transferring the 
control plane from hardware device to the software domain.  

   The concept of OpenFlow was introduced to remove the 
communication barrier [3] between hardware devices of 
different manufacturers and to create a single platform of 
networking irrespective of any vendor-specific physical 
hindrance. OpenFlow consists of a flow tables, some controllers 
and a common protocol. The protocol was designed to match 
the packet headers across multiple layers and also to get the 
TCP/UDP statistics of the forwarded packets. However, with 
respect to time and globalization, the need to elevate the packet 
size arises and therefore, the number of packet headers also 
expanded.  

   P4 is a protocol independent programming language [4] that 
enables the administrator to have full control over the data 
plane. P4 provides modification and enhancement to the 
traditional Ethernet topology which uses the TCP/IP concepts 
for the data forwarding mechanism. The communication 
through the old established Ethernet terminology only provides 
the transfer of information from source to sink, and there is no 
collection of metadata from the communication channel. 
Metadata refers to the ingress timestamp, egress timestamp, 
queue occupancy of the packets along with the switch ID’s of 
all the intermediate devices through which packets have gone 
through. This metadata adds more details to the packets and will 
assist in tracing the path of the packets. Moreover, the 
timestamp of the packet will provide the time at which the P4 
packet enter and leave a particular device, which will aid in 
calculating the latency of the overall packets. 

   In P4 communication the metadata is called as INT collection 
which corresponds to the calculation of queue occupancy and 
hop latency of the packets. The metadata is inserted by the 
devices very much similar to the push mechanism on the stacks, 
in which the most recently added metadata will appear at the 
top of the stack and will be clearly visible at the output side. 
This metadata is the driving force of the system which could be 
used to feed the future Artificial Intelligence (AI) as well as to 
the Machine Learning (ML) algorithms for diversified analysis.   
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II.   ADVANTAGES OF P4 
   Unlike TCP/IP packets which have a fixed number of headers, 
P4 packets can have an adjustable number of headers depending 
on the required application. These additional headers in P4 are 
cited as INT headers which collects the in-band network 
telemetry and delivers this stored information to the receiver. In 
short, P4 focuses on the Information-Centric Networking [5] 
which revolves around gathering the intended information 
related to the optical channel as well as to the overall system.   

   Implementing P4 over the existing Ethernet devices without 
hindering the present network setup is a major concern while 
running P4. However, Service-Centric Networking [6] is the 
unique property of P4 which empowers P4 to run over the 
traditional TCP/IP protocol. This service-centric attribute 
validates the communication without altering any pre-
established settings with TCP/IP header arrangement.  

III.   ARCHITECTURAL CONFIGURATIONS 

• DPDK 

   Multithreading processing mechanism works with minimum 
errors up to line rate of 10 Gbps. Therefore, specialized packet 
processing techniques are required to cover up the data rate gap 
while transferring information. There are multiple packet 
processing software available such as DPDK, NetMap, 
PF_RING_DNA, etc. As some of the exclusive hardware 
devices which can process higher data rate are not economical 
to use, hence, open-source software applications are being 
implemented nowadays.   

   The DPDK performs three main tasks: Storing the packets by 
allocating memory space, managing the generated P4 packet 
queue and buffer management of the packets. Where queue 
management is performed by librte_ring DPDK library by 
providing a ring structure called as rte_ring.   

   When there is a massive burst of packets, the need to fasten 
the processing rate arises within the communicating software. 
DPDK is a software application consisting of a large number of 
libraries that accelerate the packet processing rate [7] by 
eliminating the use of Linux Kernel stack (Figure. 1). In this 
way, the application implemented in user space communicates 
directly with the physical networking device. DPDK behaves as 
a user place directory while using the pthread library. 

 
    Figure 1. Kinux by-passing by DPDK. 

   EAL (Environment Application Layer) in DPDK holds the 
relationship between hardware and DPDK memory space.                          
Hugepages is the corresponding memory space that is being 
used by the DPDK and Linux kernel for the resource 

allocations. The EAL is also responsible for avoiding the panic 
condition when a single application is required to use multiple 
physical as well as software resources at once. The basic 
function of EAL is to initialize resources such as PCI Devices, 
physical consoles, timers, etc. Execution instances are created 
by EAL which provides smoother access to the physical cores. 
The initialization is performed after building and making the 
application.  

• P4 Switch 

   In our research work, Inventec switch is implemented and 
used. The switch is P4 enabled L2/L3 programmable white box 
which performs packet forwarding for the optical network. It 
has a bi-directional throughput of 6.4 Terabits, latency of 675 
nanoseconds (or 0.675 microseconds), memory of 8 GB and the 
packet buffer capacity of almost 22 MB. The switch has 64 
physical ports that can perform on 100 GE high-end data rates. 
The main advantage of the Inventec switch lies in the dynamic 
buffer management system. This system prevents the collision 
of heavy TCP/IP traffic bursts [8] between the transmitting and 
the receiving nodes of the network implementation. On top of 
that, in terms of network security concerns the switch provides 
Accounting and Authorization facility along with ACL 
Permit/Deny and IPv6 ACL realizations and enforcements. 

• 8700 Ethernet Switch 

   An Ethernet switch acts as a centralized device that gets data 
from multiple ports and provides them with full available 
bandwidth. Ciena 8700 Multi-Port 100 Gbps Ethernet Switch is 
used while creating the P4 Testbed on the optical telemetry. 
This switch aggregates the incoming data traffic and diverges 
that into corresponding physical ports for the next destinations. 
Multi-Protocol Label Switching (MPLS), Zero-Touch 
Provisioning (ZTP) and Segment Routing are some of the 
switch attributes which provide advanced functionality and 
high-end data executions.   

• P4 NIC Card 

   A P4 NIC is capable of generating P4 packets, which consists 
of modified Ethernet headers along with some additional header 
fields. Two Alpha-Data 40 Gbps P4 NIC’s are implemented in 
our Testbed setup which creates and receives the P4 packets 
over the optical network. C/C++ header files and libraries are 
used which provide API’s for controlling the reconfigurable 
computing planes [9] for the practical applications.	
   A specific FPGA image is flashed over the NIC’s using Xilinx 
Vivado software in order to make the NIC’s P4 operational. 
That FPGA image consists of the bitstreams that are having the 
Match-Action Tables (MAT). The image could be modified in 
accordance with the desired output while considering the type 
of application implemented. These tables act as the guiding 
principles and are required to perform specific tasks on the 
received P4 packets. These tasks may include shortening the 
header or adding metadata to the particular header fields. In 
traditional NIC’s there is no provision of header modifications, 
however, P4 communication provides multiple options to 
generate a flexible data packet.  
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IV.   P4 TESTBED SETUP

 
Figure 2. P4 Testbed Architecture. 

 

(i.) P4 Packet Trace 

   The P4 packet is generated at the sender side using the P4 
enabled NIC. The NIC is capable of producing the packets of 
the desired length while having specific packet headers. The 
process of initializing the packets begins with defining the 
desired number of headers in the sample application. Where 
sample application is used to create and store the P4 packet 
formations which could be altered at any stage in the 
communication process. The packet then travels through the 40 
GE optical QSFP link and reaches the P4 enabled Inventec 
switch. Then the packet is forwarded to the 8700 carrier 
Ethernet switch. This switch just passes the packets to the P4 
enabled NIC, which serves as the receiver side. 

   While traveling through the Inventec switch, the metadata is 
inserted to the P4 packet headers. This metadata is referred to 
as the ingress as well as the egress timestamp and the switch 
ID. The packet has been provided with enough storage to 
smoothly collect and store the metadata in the specific INT 
headers. Then this collected metadata is delivered to the 
receiver NIC which then displays the desired information 
included in the INT headers. 

   For the exact realization and proper execution of the INT 
headers two vital procedures are followed at the NIC’s: Parsing 
and deparsing. These two mechanisms are implemented at both 
the sender and receiver nodes of the Testbed architecture in 
order to maintain a flow in system performance.    

(ii.) Parsing 

   In this P4 Testbed (Figure 2), uncomplicated FPGA images 
are used to avoid any unnecessary handling of matching 
algorithms. There are basically two types of rules for the 
matching tables: ternary and exact. Hash based lookup tables 
are also being implemented depending on the type of header 
extractions at the output side. 

   Parsing is the process in which the INT headers in the P4 
packets are matched with the tables stored in the FPGA load 
and the complete procedure is called as the match-action tables.  

 

Under the parsing stage, the specified INT headers are 
identified by looking into the FPGA load. A proper sequential 
state and transition method is followed and can be cited under 
Finite State Machines (FSM’s) for further clarifications as 
shown in Figure 3. The FPGA image contains the bitstream and 
the same image is implemented on the sender as well as on the 
receiver side for proper synchronization of the packet header 
extraction.      

(iii.) Deparsing 

   After identifying the particular INT headers for further 
processing, deparsing is the next stage where the actual action 
is carried out. As compared to parsing, the deparsing 
mechanism is more complex to implement in the actual 
scenarios. The deparser is always in the activity mode being 
ready to perform and complete the end tasks at the P4 packet. 

   The deparser can add or delete the INT headers and these 
functions are based on the information provided by the parser 
side. In short, the deparser is capable and responsible for 
performing three functions on the packet: 

• Packet Integration 

   Under this procedure, the deparser can merge two P4 packets 
as ordered by the parser. The parser provides the information 
onto which two headers are to be combined in order to combine 
all the data into a single INT header to be delivered to end node.  

• Packet Extending 

   In this P4 Testbed, packet integration is not implemented 
considering the type of complexity and amount of maintenance 
associated. However, extending and compression are realized 
on practical grounds. When metadata is inserted into the packet 
header by the intermediate nodes and the size of the overall 
packet grows automatically, then this mechanism is called as 
packet extending. With each subsequent interaction of the P4 
packet with hardware devices, the INT header expands in terms 
of size. 
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• Packet Compression 

   Packet compression refers to the deletion of some data from 
the INT header in order to shorten the size of the packet header. 
In some scenarios, where the need to remove some unnecessary 
information arises then this packet compression is 
implemented. In this P4 Testbed (Figure 2), the packet 
compression is implemented but not widely used as the focus 
is to gather the metadata while employing the packet extender 
functionality.  

 
Figure 3. Packet abstraction using Finite State Machine (FSM). 
Where 1 corresponds to packet buffer, 2 belongs to packet drop/ 

delete and 3 refers to the packet out. 

   While considering the packet processing conditions and the 
implementation of control flows the realization is much 
complex on FPGA’s as compared to that of the ASIC’s. The 
reason lies behind the excess amount of data that the P4 packet 
carries in form of the metadata collected from each 
corresponding networking nodes. Tree structured algorithms 
and branch conditions are used in FPGA’s while executing the 
packet contained in the sample P4 application.  

V.   P4 PACKET STRUCTURE 
   The traditional Ethernet packets have 7 header fields named 
as: Preamble, Start Frame Delimiter (SFD), Destination 
Address (DA), Source Address (SA), Length, Payload and 
Cyclic Redundancy Check (CRC). Whereas the P4 packet also 
has 7 headers but with the addition of specific INT headers: 

(i.)  IDMA Metadata (Header Size: 8 Bytes) 
   This header doesn’t carry any metadata rather this indicates 
the starting of the P4 packet. This header is included to 
differentiate the TCP/IP packet from the P4 packet. 

(ii.) Ethernet (Header Size: 14 Bytes)  
   This header is created by combining three Ethernet packet 
headers: Destination MAC Address, Source MAC Address and 
the Length header. The challenge in P4 networking is to 
maintain the old established Ethernet protocols and make them 
compatible with the P4 methodology, therefore, the three 
Ethernet headers have been carried out while implementing P4 
networking in actual scenarios. 

(iii.) IPV4 (Header Size: 20 Bytes)  
   Three types of information is contained in this header: Sender 
IP Address, Receiver IP Address and the length of the IPV4 
header. 

(iv.) TCP (Header Size: 20 Bytes) 
   This header holds the transmission protocol standard that the 
packet needs to follow while travelling in the network. Two 
types of flags are used for the proper packet transmission and 
they are SYN and ACK flags. Where the SYN is used to 
maintain the synchronization between the two connected nodes 
and the ACK flag is used to acknowledge the sender that the 
packet containing information has been successfully received. 

(v.) INT Shim (Header Size: 4 Bytes) 
   The critical difference between the Ethernet and the P4 
packet starts from this header onwards. INT (IN-Band Network 
Telemetry) Shim header is introduced to the Ethernet packet to 
modify it from Ethernet to P4 communication. The INT shim 
header is adjustable in terms of header size because this is the 
header which gathers all the metadata from the communicating 
intermediated devices. This header contains the ingress as well 
as egress timestamps of the P4 packet, switch ID of the device, 
hop latency and queue occupancy at the NIC side. Every P4 
enabled device adds its own metadata and the size of INT shim 
header goes on expanding with respect to time. 

(vi.) INT Header (Header Size: 8 Bytes) 
   This INT header was introduced in order to have proper 
details of the P4 packet transmission path and to trace the hops 
that the packet has gone through. This header gives directions 
to the packet to reach the end node successfully without being 
lost in the channel. 

(vii.) Payload (Header Size: 231 Bytes) 

   The actual information to be transmitted by the sender node 
is contained in the payload header. With respect to the amount 
of data carried out by this header, the size of the payload is 
given with maximum space i.e. 231 bytes. 

• Packet Forwarding. 

   The implementation and realization of the P4 language is 
target and protocol independent [10] which means the 
administrator doesn’t need to clarify the specifications of each 
and every intermediate device to the P4 packet. Once the 
destination address is known to the packet then with the 
assistance of INT header the P4 packet can successfully reach 
the end node without any hassle, provided all the devices that 
the packet is going to interact with are P4 enabled. The primary 
objective of the P4 transmission is to gather the metadata and 
to transfer the information from one node to another without 
any transmission nuisance. All other headers except the 
payload are dumped once the packet reaches the destination 
address and then the data is delivered successfully to the 
receiver end. The end node can view and analyze the received 
statistics and can trace the packet pathway through the hop ID’s 
stored in the metadata provided by the INT shim header. This 
helps in tracing the path for the P4 data packet. 
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VI.   PSEUDO ALGORITHM    

Pseudo Algorithm 1: Parser-Deparser Functionality 

1   StartTime à Packet_Ingress.nanoseconds() 
2   EndTime à StartTime + Packet_Egress.nanoseconds() 
3   Set PacketSize (256 Bytes) for TestSetTX 

4   LineRate (Potentially Available) à 100 GE 
5   DataRate (Implemented) à 40 GE 
6   Login into the TestSet using valid credentials 
7   if PacketBurst() is available then 
8         Start Transmitting Packets 
9         PacketBurst() at P4_Enabled_Inventec_SwitchRX  

10       Buffer Packet at Parser 
11       Match PacketHeaders with FPGATables 
12       if MAT = Packet_Extender then  
13              Forward Packet to Deparser 
14             Add Metadata 
15      end 
16  else 
17         if MAT = Packet_Compressor then 
18              Forward Packet to Deparser 
19              Remove particular Headers 
20        end 
21  end 
22  foreach P4 packet generated at NIC do 
23        Forward PacketBurst() to P4 enabled switchRX   
24        Forward PacketBurst() to 8700 Ethernet switchRX   

25        PacketBurst() at P4_Enabled_Sink_NICRX 
26        Call New PacketBurst() 
27  end 

   Algorithm 1 shows the logic implemented while undergoing 
the parser-deparser mechanism at the realized P4 NIC’s. 40 GE 
is the practical data rate used i.e. the packets are transferred 
from sender to receiver at the rate of 40 Gbps and the optical 
QSFP links are also 40 Gbps enabled. The packets are sent in 
the burst size of 512 packets at a single instance [line 7]. The 
instructions in the FPGA bitstream is compared with the 
headers of the ingress P4 packet and according to the resultant 
guidelines, particular tasks are performed on the packet. The 
packet could be extended [line 12] by adding corresponding 
metadata into it, or it could be compressed [line17] by 
removing some of the unnecessary headers. The compressor 
function is implemented to reduce the burden of size length on 
the overall packet magnitude. When the compressor is realized 
then the packet gets more space to gather and carry additional 
route information. The complete algorithm works by 
initializing the P4 packets at the source side [line 22], then 
forwarding that packet to the next hops: P4 enabled switch and 
Carrier Ethernet switch [line 23-24]. And in the final stage, the 

packet reaches the destination at the sink side and the new call 
for the next burst of packets is generated [line 26]. 

VII.   PERFORMANCE EVALUATION 
   Two P4 enabled Alpha-Data KU3 NIC’s are implemented 
and configured on the different Dell servers. An appropriate 
FPGA image having the mechanism of match-action tables is 
flashed on both the servers using Vivado software. The sender 
NIC (installed on the server) is connected to the P4 enabled 
Inventec switch, which is further linked to the Ciena 8700 
Ethernet carrier switch. The carrier switch is then attached to 
the receiver NIC (installed on the server). 40 GE optical QSFP 
links are used to connect all the hardware devices. The 
realization of the P4 NIC’s is achieved using Centos 7.5 OS 
having kernel version as 3.10.0-693.el7.x86_64. The latest 
DPDK version of 19.02 is used to access all the updated packet 
libraries. 

• The P4 protocol overhead is calculated as: 

!"	!$%&'(	)*+',!$%&'(	!$-./$0	)*+'
!"	!$%&'(	)*+'  = 123,415123  = 24%. 

The overall P4 overhead comes out to be 24%. This overhead 
will reduce with expansion in the packet size. 

• Protocol efficiency of the P4 technology: 

6789:;	67<=>7?	@AB:
6C	6789:;	@AB:  = 415123 = 76%. 

The efficiency of the P4 protocol used for the transmission 
comes out to be 76%.  

 
Chart 1. P4 Protocol Efficiency. 

• Throughput is calculated as follows: 
Efficiency × Net bit rate = 75% × 40 Gbps ≅ 30 Gbps. 

With protocol overhead of 24%, efficiency of 75%, data rate of 
40 Gbps, the maximum network throughput comes out to be 30 
Gbps when 40 GE optical QSFP are implemented for network 
connections.  

• Latency  
   In P4 Testbed, the consistent latency of 360 microseconds (or 
0.00036 seconds) is observed against different time instances. 
This is a healthy indication that the system is delivering quality 
output as the packets are being processed and forwarded to the 
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next stage with minimum delay. Lower the packet latency, the 
higher will be the efficiency.  

 
Chart 2. Latency V/S Time Instances. 

• Queue Status 

   The queue status is the total number of P4 packets in the row 
waiting for further instructions. The average number of egress 
queue status is taken into consideration and it is observed that 
there is 24200 number of packets at various time occurrences. 
The queue size remains the same which depicts that the buffer 
is diligently performing its task of storing the specified amount 
of P4 packets. The queue size will gradually increase with the 
augmentation of packets. More buffer capacity as well as extra 
cores and queues will be required at the NIC’s whenever the 
need to accommodate a large number of packets emerge.  

 
Chart 3. Average number of P4 packets in the egress queue versus 

various time instances. 

VIII.   RESULTS AND DISCUSSION 
   75% of the P4 protocol efficiency is gained when the packet 
size of 305 bytes along with 231 bytes of payload is transmitted 
over the 40 GE data rate. It is observed that when the packet 
size is increased by a significant value of 10 bytes then there is 
a subsequent rise in the overall efficiency by almost 1%. 
Minimum latency of 360 microseconds is observed at 
particular time periods with the same packet size of 305 bytes. 
With this latency, the future implementation could be 
performed on the 5G networks which require ULLC (Ultra 
Low Latency Calculation). As the developed P4 Testbed is 
having very low latency and significantly high throughput, 
therefore, 5G network scenario could be implemented on this 
Testbed for future realizations. 

IX.   FUTURE TASKS 
   Increasing the data rate from 40 GE to 100 GE is one of the 
essential endeavors to be implemented, in order to fulfill the 
bandwidth requirement of future users. For the actual 
realization of 100 GE data rate, there are some prerequisites to 
be met. Firstly, 100 GE P4 enabled NIC’s are required to be 
installed, then there is the need for particular FPGA images to 
be flashed on those NIC’s. Corresponding optical QSFP’s are 
required which can carry 100 GE P4 packet rate. Unnecessary 
P4 packet headers that are not required for the application 
could be removed to save memory and to give more space to 
the INT sections to gather and store more metadata from the 
intermediate communicating nodes. As the P4 Testbed is 
having ULCC (Ultra Low Latency Calculation), therefore the 
Testbed could be used to test the 5G network scenarios. IoT 
networks may also be connected with the realized 
communication devices to have divergent applications. Traffic 
management algorithms incorporating Machine Learning 
(ML) and Artificial Intelligence (AI) could be merged with the 
present architecture in order to have divergent results.  
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