
INT-SDN: Evaluation of various P4 parameters
using optical telemetry having reconfigurable data

plane on 40 Gbps line rate
Harminder Singh§, Changcheng Huang§, Mathieu Sicard-Gagne†, Gauravdeep Shami†, Marc Lyonnais†, Dmitri Fedorov† and Rodney Wilson†

§Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada
†Ciena, CTO Team, Ottawa, Canada

Email: harmindersingh@cmail.carleton.ca, huang@sce.carleton.ca, {msicard, gshami, mlyonnai, dfedorov, rwilson}@ciena.com

 Abstract–– Ethernet packet communication is the old established
protocol of data transfer in networks. Ethernet devices transmit
the data from a source to a receiver while the receiver has no
statistics regarding the transmission channel. In this era of global
transmission where the upcoming communication technology will
be equipped with self optimized transmission under which there
will be minimum errors. The need to gather information related to
the transmission path arises. The primary objective of this
research paper is to evaluate the different P4 parameters on
optical media. P4 enabled NIC’s, corresponding FPGA Images
and traditional Ethernet switches were used for the results. INT-
SDN P4 packets were transmitted and the comprehensive test
traces were captured and examined. DPDK was used which
provides the foundation for P4 packet forwarding. Data, as well as
the control plane were fully configurable in the hardware setup
which resulted in speedier data transmission and also enhanced
the packet efficiency at higher data rates. Metrics such as latency,
throughput, data rates and efficiency were accumulated,
compared and analyzed on P4 based optical network having a 40
Gbps data transmission rate. Moreover, the inside story of the
optical channel was gathered which will provide further insights
related to the P4 transmission medium.

 Keywords–– Programming Protocol Independent Packet
Processors (P4), In-Band Network (INT), Software Defined
Networking (SDN), Network Interface Card (NIC), Data Plane
Development Kit (DPDK), Field Programmable Gate Array
(FPGA), Application Specific Integrated Circuit (ASIC),
Transmission Control Protocol (TCP).

I. INTRODUCTION
 As specified in Gartner’s report [1], the number of
communicating devices will reach 20.4 billion and that of the
IoT implements will touch 30.7 billion by 2020. In accordance
with this massive expansion in the number of hardware
implementations, the need to raise the bandwidth will arise with
respect to time. Therefore, a traditional TCP/IP packet should
be modified to accommodate the large amount of information
that needs to be successfully transmitted and efficiently
received. Moreover, the packet size has to be raised and an
addition of more headers will be needed with time. To process
the larger volume of packets, particular packet handling
mechanisms will also be required to maintain the overall
efficiency of the optical network. INT-SDN [2] is the possible
solution to this future network complication as SDN is bound
to deliver the data in a more economical way while having
easier network implementations. Additionally, SDN is also
capable to provide centralized provisioning of the optical
networks.

 Data Plane, Control Plane and the Management Plane are the
three vital components of any networking system. While data
plane carries the user information, the control plane consists of
routing information as well as of signaling components and the
administrative instructions are in the management plane. SDN
creates a divergence in the data and control plane providing
more flexibility to the network management by transferring the
control plane from hardware device to the software domain.

 The concept of OpenFlow was introduced to remove the
communication barrier [3] between hardware devices of
different manufacturers and to create a single platform of
networking irrespective of any vendor-specific physical
hindrance. OpenFlow consists of a flow tables, some controllers
and a common protocol. The protocol was designed to match
the packet headers across multiple layers and also to get the
TCP/UDP statistics of the forwarded packets. However, with
respect to time and globalization, the need to elevate the packet
size arises and therefore, the number of packet headers also
expanded.

 P4 is a protocol independent programming language [4] that
enables the administrator to have full control over the data
plane. P4 provides modification and enhancement to the
traditional Ethernet topology which uses the TCP/IP concepts
for the data forwarding mechanism. The communication
through the old established Ethernet terminology only provides
the transfer of information from source to sink, and there is no
collection of metadata from the communication channel.
Metadata refers to the ingress timestamp, egress timestamp,
queue occupancy of the packets along with the switch ID’s of
all the intermediate devices through which packets have gone
through. This metadata adds more details to the packets and will
assist in tracing the path of the packets. Moreover, the
timestamp of the packet will provide the time at which the P4
packet enter and leave a particular device, which will aid in
calculating the latency of the overall packets.

 In P4 communication the metadata is called as INT collection
which corresponds to the calculation of queue occupancy and
hop latency of the packets. The metadata is inserted by the
devices very much similar to the push mechanism on the stacks,
in which the most recently added metadata will appear at the
top of the stack and will be clearly visible at the output side.
This metadata is the driving force of the system which could be
used to feed the future Artificial Intelligence (AI) as well as to
the Machine Learning (ML) algorithms for diversified analysis.

978-1-7281-2794-1/19/$31.00 ©2019 IEEE

Authorized licensed use limited to: Carleton University. Downloaded on January 20,2021 at 17:59:33 UTC from IEEE Xplore. Restrictions apply.

II. ADVANTAGES OF P4
 Unlike TCP/IP packets which have a fixed number of headers,
P4 packets can have an adjustable number of headers depending
on the required application. These additional headers in P4 are
cited as INT headers which collects the in-band network
telemetry and delivers this stored information to the receiver. In
short, P4 focuses on the Information-Centric Networking [5]
which revolves around gathering the intended information
related to the optical channel as well as to the overall system.

 Implementing P4 over the existing Ethernet devices without
hindering the present network setup is a major concern while
running P4. However, Service-Centric Networking [6] is the
unique property of P4 which empowers P4 to run over the
traditional TCP/IP protocol. This service-centric attribute
validates the communication without altering any pre-
established settings with TCP/IP header arrangement.

III. ARCHITECTURAL CONFIGURATIONS

• DPDK

 Multithreading processing mechanism works with minimum
errors up to line rate of 10 Gbps. Therefore, specialized packet
processing techniques are required to cover up the data rate gap
while transferring information. There are multiple packet
processing software available such as DPDK, NetMap,
PF_RING_DNA, etc. As some of the exclusive hardware
devices which can process higher data rate are not economical
to use, hence, open-source software applications are being
implemented nowadays.

 The DPDK performs three main tasks: Storing the packets by
allocating memory space, managing the generated P4 packet
queue and buffer management of the packets. Where queue
management is performed by librte_ring DPDK library by
providing a ring structure called as rte_ring.

 When there is a massive burst of packets, the need to fasten
the processing rate arises within the communicating software.
DPDK is a software application consisting of a large number of
libraries that accelerate the packet processing rate [7] by
eliminating the use of Linux Kernel stack (Figure. 1). In this
way, the application implemented in user space communicates
directly with the physical networking device. DPDK behaves as
a user place directory while using the pthread library.

 Figure 1. Kinux by-passing by DPDK.

 EAL (Environment Application Layer) in DPDK holds the
relationship between hardware and DPDK memory space.
Hugepages is the corresponding memory space that is being
used by the DPDK and Linux kernel for the resource

allocations. The EAL is also responsible for avoiding the panic
condition when a single application is required to use multiple
physical as well as software resources at once. The basic
function of EAL is to initialize resources such as PCI Devices,
physical consoles, timers, etc. Execution instances are created
by EAL which provides smoother access to the physical cores.
The initialization is performed after building and making the
application.

• P4 Switch

 In our research work, Inventec switch is implemented and
used. The switch is P4 enabled L2/L3 programmable white box
which performs packet forwarding for the optical network. It
has a bi-directional throughput of 6.4 Terabits, latency of 675
nanoseconds (or 0.675 microseconds), memory of 8 GB and the
packet buffer capacity of almost 22 MB. The switch has 64
physical ports that can perform on 100 GE high-end data rates.
The main advantage of the Inventec switch lies in the dynamic
buffer management system. This system prevents the collision
of heavy TCP/IP traffic bursts [8] between the transmitting and
the receiving nodes of the network implementation. On top of
that, in terms of network security concerns the switch provides
Accounting and Authorization facility along with ACL
Permit/Deny and IPv6 ACL realizations and enforcements.

• 8700 Ethernet Switch

 An Ethernet switch acts as a centralized device that gets data
from multiple ports and provides them with full available
bandwidth. Ciena 8700 Multi-Port 100 Gbps Ethernet Switch is
used while creating the P4 Testbed on the optical telemetry.
This switch aggregates the incoming data traffic and diverges
that into corresponding physical ports for the next destinations.
Multi-Protocol Label Switching (MPLS), Zero-Touch
Provisioning (ZTP) and Segment Routing are some of the
switch attributes which provide advanced functionality and
high-end data executions.

• P4 NIC Card

 A P4 NIC is capable of generating P4 packets, which consists
of modified Ethernet headers along with some additional header
fields. Two Alpha-Data 40 Gbps P4 NIC’s are implemented in
our Testbed setup which creates and receives the P4 packets
over the optical network. C/C++ header files and libraries are
used which provide API’s for controlling the reconfigurable
computing planes [9] for the practical applications.	
 A specific FPGA image is flashed over the NIC’s using Xilinx
Vivado software in order to make the NIC’s P4 operational.
That FPGA image consists of the bitstreams that are having the
Match-Action Tables (MAT). The image could be modified in
accordance with the desired output while considering the type
of application implemented. These tables act as the guiding
principles and are required to perform specific tasks on the
received P4 packets. These tasks may include shortening the
header or adding metadata to the particular header fields. In
traditional NIC’s there is no provision of header modifications,
however, P4 communication provides multiple options to
generate a flexible data packet.

Authorized licensed use limited to: Carleton University. Downloaded on January 20,2021 at 17:59:33 UTC from IEEE Xplore. Restrictions apply.

IV. P4 TESTBED SETUP

Figure 2. P4 Testbed Architecture.

(i.) P4 Packet Trace

 The P4 packet is generated at the sender side using the P4
enabled NIC. The NIC is capable of producing the packets of
the desired length while having specific packet headers. The
process of initializing the packets begins with defining the
desired number of headers in the sample application. Where
sample application is used to create and store the P4 packet
formations which could be altered at any stage in the
communication process. The packet then travels through the 40
GE optical QSFP link and reaches the P4 enabled Inventec
switch. Then the packet is forwarded to the 8700 carrier
Ethernet switch. This switch just passes the packets to the P4
enabled NIC, which serves as the receiver side.

 While traveling through the Inventec switch, the metadata is
inserted to the P4 packet headers. This metadata is referred to
as the ingress as well as the egress timestamp and the switch
ID. The packet has been provided with enough storage to
smoothly collect and store the metadata in the specific INT
headers. Then this collected metadata is delivered to the
receiver NIC which then displays the desired information
included in the INT headers.

 For the exact realization and proper execution of the INT
headers two vital procedures are followed at the NIC’s: Parsing
and deparsing. These two mechanisms are implemented at both
the sender and receiver nodes of the Testbed architecture in
order to maintain a flow in system performance.

(ii.) Parsing

 In this P4 Testbed (Figure 2), uncomplicated FPGA images
are used to avoid any unnecessary handling of matching
algorithms. There are basically two types of rules for the
matching tables: ternary and exact. Hash based lookup tables
are also being implemented depending on the type of header
extractions at the output side.

 Parsing is the process in which the INT headers in the P4
packets are matched with the tables stored in the FPGA load
and the complete procedure is called as the match-action tables.

Under the parsing stage, the specified INT headers are
identified by looking into the FPGA load. A proper sequential
state and transition method is followed and can be cited under
Finite State Machines (FSM’s) for further clarifications as
shown in Figure 3. The FPGA image contains the bitstream and
the same image is implemented on the sender as well as on the
receiver side for proper synchronization of the packet header
extraction.

(iii.) Deparsing

 After identifying the particular INT headers for further
processing, deparsing is the next stage where the actual action
is carried out. As compared to parsing, the deparsing
mechanism is more complex to implement in the actual
scenarios. The deparser is always in the activity mode being
ready to perform and complete the end tasks at the P4 packet.

 The deparser can add or delete the INT headers and these
functions are based on the information provided by the parser
side. In short, the deparser is capable and responsible for
performing three functions on the packet:

• Packet Integration

 Under this procedure, the deparser can merge two P4 packets
as ordered by the parser. The parser provides the information
onto which two headers are to be combined in order to combine
all the data into a single INT header to be delivered to end node.

• Packet Extending

 In this P4 Testbed, packet integration is not implemented
considering the type of complexity and amount of maintenance
associated. However, extending and compression are realized
on practical grounds. When metadata is inserted into the packet
header by the intermediate nodes and the size of the overall
packet grows automatically, then this mechanism is called as
packet extending. With each subsequent interaction of the P4
packet with hardware devices, the INT header expands in terms
of size.

Authorized licensed use limited to: Carleton University. Downloaded on January 20,2021 at 17:59:33 UTC from IEEE Xplore. Restrictions apply.

• Packet Compression

 Packet compression refers to the deletion of some data from
the INT header in order to shorten the size of the packet header.
In some scenarios, where the need to remove some unnecessary
information arises then this packet compression is
implemented. In this P4 Testbed (Figure 2), the packet
compression is implemented but not widely used as the focus
is to gather the metadata while employing the packet extender
functionality.

Figure 3. Packet abstraction using Finite State Machine (FSM).
Where 1 corresponds to packet buffer, 2 belongs to packet drop/

delete and 3 refers to the packet out.

 While considering the packet processing conditions and the
implementation of control flows the realization is much
complex on FPGA’s as compared to that of the ASIC’s. The
reason lies behind the excess amount of data that the P4 packet
carries in form of the metadata collected from each
corresponding networking nodes. Tree structured algorithms
and branch conditions are used in FPGA’s while executing the
packet contained in the sample P4 application.

V. P4 PACKET STRUCTURE
 The traditional Ethernet packets have 7 header fields named
as: Preamble, Start Frame Delimiter (SFD), Destination
Address (DA), Source Address (SA), Length, Payload and
Cyclic Redundancy Check (CRC). Whereas the P4 packet also
has 7 headers but with the addition of specific INT headers:

(i.) IDMA Metadata (Header Size: 8 Bytes)
 This header doesn’t carry any metadata rather this indicates
the starting of the P4 packet. This header is included to
differentiate the TCP/IP packet from the P4 packet.

(ii.) Ethernet (Header Size: 14 Bytes)
 This header is created by combining three Ethernet packet
headers: Destination MAC Address, Source MAC Address and
the Length header. The challenge in P4 networking is to
maintain the old established Ethernet protocols and make them
compatible with the P4 methodology, therefore, the three
Ethernet headers have been carried out while implementing P4
networking in actual scenarios.

(iii.) IPV4 (Header Size: 20 Bytes)
 Three types of information is contained in this header: Sender
IP Address, Receiver IP Address and the length of the IPV4
header.

(iv.) TCP (Header Size: 20 Bytes)
 This header holds the transmission protocol standard that the
packet needs to follow while travelling in the network. Two
types of flags are used for the proper packet transmission and
they are SYN and ACK flags. Where the SYN is used to
maintain the synchronization between the two connected nodes
and the ACK flag is used to acknowledge the sender that the
packet containing information has been successfully received.

(v.) INT Shim (Header Size: 4 Bytes)
 The critical difference between the Ethernet and the P4
packet starts from this header onwards. INT (IN-Band Network
Telemetry) Shim header is introduced to the Ethernet packet to
modify it from Ethernet to P4 communication. The INT shim
header is adjustable in terms of header size because this is the
header which gathers all the metadata from the communicating
intermediated devices. This header contains the ingress as well
as egress timestamps of the P4 packet, switch ID of the device,
hop latency and queue occupancy at the NIC side. Every P4
enabled device adds its own metadata and the size of INT shim
header goes on expanding with respect to time.

(vi.) INT Header (Header Size: 8 Bytes)
 This INT header was introduced in order to have proper
details of the P4 packet transmission path and to trace the hops
that the packet has gone through. This header gives directions
to the packet to reach the end node successfully without being
lost in the channel.

(vii.) Payload (Header Size: 231 Bytes)

 The actual information to be transmitted by the sender node
is contained in the payload header. With respect to the amount
of data carried out by this header, the size of the payload is
given with maximum space i.e. 231 bytes.

• Packet Forwarding.

 The implementation and realization of the P4 language is
target and protocol independent [10] which means the
administrator doesn’t need to clarify the specifications of each
and every intermediate device to the P4 packet. Once the
destination address is known to the packet then with the
assistance of INT header the P4 packet can successfully reach
the end node without any hassle, provided all the devices that
the packet is going to interact with are P4 enabled. The primary
objective of the P4 transmission is to gather the metadata and
to transfer the information from one node to another without
any transmission nuisance. All other headers except the
payload are dumped once the packet reaches the destination
address and then the data is delivered successfully to the
receiver end. The end node can view and analyze the received
statistics and can trace the packet pathway through the hop ID’s
stored in the metadata provided by the INT shim header. This
helps in tracing the path for the P4 data packet.

Authorized licensed use limited to: Carleton University. Downloaded on January 20,2021 at 17:59:33 UTC from IEEE Xplore. Restrictions apply.

VI. PSEUDO ALGORITHM

Pseudo Algorithm 1: Parser-Deparser Functionality

1 StartTime à Packet_Ingress.nanoseconds()
2 EndTime à StartTime + Packet_Egress.nanoseconds()
3 Set PacketSize (256 Bytes) for TestSetTX

4 LineRate (Potentially Available) à 100 GE
5 DataRate (Implemented) à 40 GE
6 Login into the TestSet using valid credentials
7 if PacketBurst() is available then
8 Start Transmitting Packets
9 PacketBurst() at P4_Enabled_Inventec_SwitchRX

10 Buffer Packet at Parser
11 Match PacketHeaders with FPGATables
12 if MAT = Packet_Extender then
13 Forward Packet to Deparser
14 Add Metadata
15 end
16 else
17 if MAT = Packet_Compressor then
18 Forward Packet to Deparser
19 Remove particular Headers
20 end
21 end
22 foreach P4 packet generated at NIC do
23 Forward PacketBurst() to P4 enabled switchRX
24 Forward PacketBurst() to 8700 Ethernet switchRX

25 PacketBurst() at P4_Enabled_Sink_NICRX
26 Call New PacketBurst()
27 end

 Algorithm 1 shows the logic implemented while undergoing
the parser-deparser mechanism at the realized P4 NIC’s. 40 GE
is the practical data rate used i.e. the packets are transferred
from sender to receiver at the rate of 40 Gbps and the optical
QSFP links are also 40 Gbps enabled. The packets are sent in
the burst size of 512 packets at a single instance [line 7]. The
instructions in the FPGA bitstream is compared with the
headers of the ingress P4 packet and according to the resultant
guidelines, particular tasks are performed on the packet. The
packet could be extended [line 12] by adding corresponding
metadata into it, or it could be compressed [line17] by
removing some of the unnecessary headers. The compressor
function is implemented to reduce the burden of size length on
the overall packet magnitude. When the compressor is realized
then the packet gets more space to gather and carry additional
route information. The complete algorithm works by
initializing the P4 packets at the source side [line 22], then
forwarding that packet to the next hops: P4 enabled switch and
Carrier Ethernet switch [line 23-24]. And in the final stage, the

packet reaches the destination at the sink side and the new call
for the next burst of packets is generated [line 26].

VII. PERFORMANCE EVALUATION
 Two P4 enabled Alpha-Data KU3 NIC’s are implemented
and configured on the different Dell servers. An appropriate
FPGA image having the mechanism of match-action tables is
flashed on both the servers using Vivado software. The sender
NIC (installed on the server) is connected to the P4 enabled
Inventec switch, which is further linked to the Ciena 8700
Ethernet carrier switch. The carrier switch is then attached to
the receiver NIC (installed on the server). 40 GE optical QSFP
links are used to connect all the hardware devices. The
realization of the P4 NIC’s is achieved using Centos 7.5 OS
having kernel version as 3.10.0-693.el7.x86_64. The latest
DPDK version of 19.02 is used to access all the updated packet
libraries.

• The P4 protocol overhead is calculated as:

!"	!$%&'()*+',!$%&'(!$-./$0)*+'
!"	!$%&'()*+' = 123,415123 = 24%.

The overall P4 overhead comes out to be 24%. This overhead
will reduce with expansion in the packet size.

• Protocol efficiency of the P4 technology:

6789:;	67<=>7?	@AB:
6C	6789:;	@AB: = 415123 = 76%.

The efficiency of the P4 protocol used for the transmission
comes out to be 76%.

Chart 1. P4 Protocol Efficiency.

• Throughput is calculated as follows:
Efficiency × Net bit rate = 75% × 40 Gbps ≅ 30 Gbps.

With protocol overhead of 24%, efficiency of 75%, data rate of
40 Gbps, the maximum network throughput comes out to be 30
Gbps when 40 GE optical QSFP are implemented for network
connections.

• Latency
 In P4 Testbed, the consistent latency of 360 microseconds (or
0.00036 seconds) is observed against different time instances.
This is a healthy indication that the system is delivering quality
output as the packets are being processed and forwarded to the

Authorized licensed use limited to: Carleton University. Downloaded on January 20,2021 at 17:59:33 UTC from IEEE Xplore. Restrictions apply.

next stage with minimum delay. Lower the packet latency, the
higher will be the efficiency.

Chart 2. Latency V/S Time Instances.

• Queue Status

 The queue status is the total number of P4 packets in the row
waiting for further instructions. The average number of egress
queue status is taken into consideration and it is observed that
there is 24200 number of packets at various time occurrences.
The queue size remains the same which depicts that the buffer
is diligently performing its task of storing the specified amount
of P4 packets. The queue size will gradually increase with the
augmentation of packets. More buffer capacity as well as extra
cores and queues will be required at the NIC’s whenever the
need to accommodate a large number of packets emerge.

Chart 3. Average number of P4 packets in the egress queue versus

various time instances.

VIII. RESULTS AND DISCUSSION
 75% of the P4 protocol efficiency is gained when the packet
size of 305 bytes along with 231 bytes of payload is transmitted
over the 40 GE data rate. It is observed that when the packet
size is increased by a significant value of 10 bytes then there is
a subsequent rise in the overall efficiency by almost 1%.
Minimum latency of 360 microseconds is observed at
particular time periods with the same packet size of 305 bytes.
With this latency, the future implementation could be
performed on the 5G networks which require ULLC (Ultra
Low Latency Calculation). As the developed P4 Testbed is
having very low latency and significantly high throughput,
therefore, 5G network scenario could be implemented on this
Testbed for future realizations.

IX. FUTURE TASKS
 Increasing the data rate from 40 GE to 100 GE is one of the
essential endeavors to be implemented, in order to fulfill the
bandwidth requirement of future users. For the actual
realization of 100 GE data rate, there are some prerequisites to
be met. Firstly, 100 GE P4 enabled NIC’s are required to be
installed, then there is the need for particular FPGA images to
be flashed on those NIC’s. Corresponding optical QSFP’s are
required which can carry 100 GE P4 packet rate. Unnecessary
P4 packet headers that are not required for the application
could be removed to save memory and to give more space to
the INT sections to gather and store more metadata from the
intermediate communicating nodes. As the P4 Testbed is
having ULCC (Ultra Low Latency Calculation), therefore the
Testbed could be used to test the 5G network scenarios. IoT
networks may also be connected with the realized
communication devices to have divergent applications. Traffic
management algorithms incorporating Machine Learning
(ML) and Artificial Intelligence (AI) could be merged with the
present architecture in order to have divergent results.

REFERENCES
[1] Gartner, “Forecast: Internet of things - endpoints and associated
services, worldwide, 2016,” Gartner, Tech. Rep., January 2017.

[2] Jonghwan Hyun, Nguyen Van Tu and James Won-Ki Hong,
“Towards Knowledge-Defined Networking using In-band Network
Telemetry”, IEEE- NOMS (Network Operations and Management
Symposium), pp. 1-7, 2018.

[3] Anatoliy Malishevskiy et al., “OpenFlow-based Network
Management with Visualization of Managed Elements”, IEEE- Third
GENI Research and Educational Experiment Workshop, pp 73-74,
2014.

[4] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J.
Rexford, C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese and D.
Walker, “P4: Programming Protocol-Independent Packet Processors”,
CRC, pp. 88-94, July 2014.

[5] Salvatore Signorello, Jerome Francois, “NDN.p4: Programming
Information-Centric Data-Planes”, IEEE NetSoft Conference
(NetSoft), pp. 384-389, 2016.

[6] T. Braun, A. Mauthe, and V. Siris, “Service-centric networking
extensions,” Proceedings of the 28th Annual ACM Symposium on
Applied Computing. ACM, pp. 583–590, 2013.

[7] Abdulrahman Almohaimeed and Abu Asaduzzaman, “Introducing
Edge Controlling to Software Defined Networking to Reduce
Processing Time”, IEEE- CCWC (Annual Computing and
Communication Workshop and Conference), pp. 585-590, 2019
[8] F. Paolucci, F. Cugini and P. Castoldi, “P4-based Multi-Layer
Traffic Engineering Encompassing Cyber Security”, Optical Society
of America, 2018.
[9] Abbas Yazdinejad, Ali Bohlooli, Kamal Jamshidi, “P4 to SDNet:
Automatic Generation of an Efficient Protocol-Independent Packet
Parser on Reconfigurable Hardware”, IEEE- ICCKE (International
Conference on Computer and Knowledge Engineering), pp. 159- 164,
October 2018.

[10] Han Wang, Robert Soule, Huynh Tu Dang, Ki Suh Lee, Vishal
Shrivastav, Nate Foster, Hakim Weatherspoon, “P4FPGA: A Rapid
Prototyping Framework for P4”, ACM Symposium on SDN Research
conference, pp. 122-135, 2017.

Authorized licensed use limited to: Carleton University. Downloaded on January 20,2021 at 17:59:33 UTC from IEEE Xplore. Restrictions apply.

