

Analysis of SIP Retransmission Probability

Using a Markov-Modulated Poisson Process Model
Yang Hong, Changcheng Huang, James Yan

Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada

E-mail: {yanghong, huang}@sce.carleton.ca, jim.yan@sympatico.ca

Abstract—As a main signaling protocol for multimedia sessions

in the Internet, SIP (Session Initiation Protocol) introduces a

retransmission mechanism to maintain the reliability for its real-

time transmission. However, retransmission will make the server

overload worse. Recent collapse of SIP servers due to emergency-

induced call volume indicates that the built-in SIP overload

control mechanism cannot prevent the server from overload

collapse under heavy load. In this paper, we apply a MMPP

(Markov-Modulated Poisson Process) model to analyze the

queuing mechanism of SIP server under two typical service states.

The MMPP model allows us to investigate the probability of SIP

retransmissions. By performing numerous experiments

statistically to verify SIP retransmission probability calculated by

MMPP model, we find that high retransmission probability

caused by short demand surge or reduced server processing

capacity during maintenance period may overload and crash a

server. We run simulations using time-series directly to observe

and analyze the system performance of an overloaded SIP server.

This is much faster than event-driven simulation. Numerical

results demonstrate that low resource utilization corresponds to

low retransmission probability. However, a utilization as low as

20% cannot always guarantee a SIP system stability upon a

temporal server slowdown or a short period of demand burst.

Index Terms—SIP, MMPP, Overload, Resource Utilization,

Retransmission Probability

1. INTRODUCTION

SIP (Session Initiation Protocol) [1] has been widely

deployed for significantly growing session-oriented

applications in the Internet, such as Internet telephony, instant

messaging and video conference. As a signaling protocol, SIP

is responsible for creating, modifying and terminating session

in a mutual real-time communication [2]. 3GPP (3rd

Generation Partnership Project) has adopted SIP as the basis of

the IMS (IP Multimedia Subsystem) architecture [3-5].
Recent collapse of SIP servers due to emergency-induced

call volume or “American Idol” flash crowd [11] highlighted

the need for better solutions to manage the performance of SIP

servers under overload. RFC 5390 [9] identified the various

reasons that may cause server overload in a SIP network.

These include but not limited to poor capacity planning,

dependency failures, component failures, avalanche restart,

flash crowds, denial of service attacks, etc. In general,

anything that may trigger a demand burst or a server

slowdown can bring server overload and lead to server crash.

SIP introduces a retransmission mechanism to maintain

reliability [5]. But if an original SIP message arrives at its

destination with an unexpected long delay, the unnecessary

retransmissions are triggered, thus bringing more overhead

rather than more reliability to the SIP network. Such redundant

retransmissions increase the memory and CPU loads for a SIP

server, which may cause a system overload and deteriorate the

signaling performance [6, 7]. In an overload situation, the

throughput drops down to a small fraction of the original

processing capacity, thus poses a serious problem for a SIP

network [8].

SIP works independently of the underlying transport layer

where TCP (Transmission Control Protocol) and UDP (User

Datagram Protocol) are located. SIP RFC 3261 [1] suggests

that SIP retransmission mechanism should be disabled for

hop-by-hop transaction when running SIP over TCP to avoid

redundant retransmissions at both SIP and TCP layer.

However, it should be noted that this does not solve the

overloading problem mainly because of the following three

reasons [8-13]: (1) TCP control mechanism is designed for the

congestion caused by limited network bandwidths in the

transport layer [13], while the overload in SIP networks is

caused by limited CPU processing capacities of SIP servers in

the application layer [8-12]. While TCP’s “receiver window”

can handle the CPU shortage at the TCP layer of the receiver,

due to the different functions at different layers, TCP is not

aware of CPU overload happening at the SIP layer; (2) For a

SIP message which traverses multiple SIP servers, TCP

becomes hop-by-hop in the transport layer. When overload

happens at one server, TCP congestion control mechanism can

only move the overload to its upstream servers rather than to

cancel the overload [8]. Therefore hop-by-hop TCP cannot

provide overload control for end-to-end SIP messages; (3)

TCP implementation is much heavier than UDP in the sender

and the receiver. TCP congestion control mechanism that

makes TCP heavy is designed for congestion caused by

bandwidth exhaustion. It is not effective for server overload

control, thus becoming overhead for SIP applications.

Furthermore, TCP congestion control mechanism introduces

unpredictable delay which is not acceptable for real-time

signaling protocols.

Some people may think that this problem can be easily

solved by enhancing SIP with an end-to-end congestion

control mechanism similar to TCP. Unfortunately this solution

does not work because it ignores a major difference between

TCP and SIP. TCP is designed for the end-to-end congestion

control where each source sends large number of packets to a

destination. TCP achieves the congestion control purpose by

reducing the sending rate of each source [13]. However, each

SIP UA (User Agent) only sends very few signaling messages

to its destination for session management. Therefore TCP

cannot reduce its sending rate effectively. Similar observation

can be found in [8].

Experimental evaluation of SIP servers showed the

overload collapse behaviour in [8]. Some solutions have been

proposed to prevent SIP overload. For example, a queue-based

control scheme was proposed to prevent the overload by

rejecting some requests under the heavy load in [7]. Three

window-based feedback algorithms were proposed to adjust

the message sending rate of the upstream SIP servers based on

the queue length [11]. Both centralized and distributed

overload control mechanisms for SIP were investigated in [8].

An overload control scheme was discussed in [12]. It has been

revealed that retransmission mechanism is a main factor to

make the overload condition worse. This motivates us to

investigate the impact of the retransmission mechanism on the

SIP overload. A demand burst or routine server maintenance

such as database synchronization may accumulate the

messages to create a long queue. When the server resumes its

normal service, the initial long queue size may continue to

stimulate the retransmissions and crash the server even the

effective resource utilization is low. It would be interesting to

obtain the retransmission probability, using which the service

providers can decide whether the SIP server would handle

overload effectively when they perform configuration

management of a SIP network. Modeling and analysis can

develop in-depth knowledge to the SIP queuing mechanism

and the probability of the retransmission, thus help more

researchers find an effective solution to avoid SIP overload

caused by the SIP retransmissions. On the other hand, Markov

model has been used to investigate the queue size probability

of a data handling switch which receives data traffic from the

sources with “on” and “off” states, while the data service rate

remains constant in [14]. The data switch is quite different

from the SIP server which processes signalling traffic with

varying service rates at different service states (as described

later).

The contributions of this paper are: (1) Applying a MMPP

(Markov-Modulated Poisson Process) model to analyze the

queuing mechanism of SIP under two typical service states; (2)

Investigating the probability of SIP retransmissions using

MMPP model; (3) Run simulations using time-series directly

to observe and analyze the system performance of SIP server.

We will demonstrate that a resource utilization as low as 20%

cannot prevent a SIP server overload during a short period of

maintenance service and such overload continues to spread

even at time when the normal service resumes (i.e., the

original message arrival rate of SIP server is only 20% of its

processing capacity).

2. SIP RETRANSMISSION MECHANISM OVERVIEW

To briefly describe the basic SIP operation, we only

consider originating UA, SIP P-server (Proxy-server) and

terminating UA, as shown in Fig. 1. Fig. 1 illustrates a simple

network topology for SIP signaling. An originating UA

initiates a session by sending a SIP request to P-Server 1

which forwards the request to P-Server 2 allocated to a

terminating UA. A respective response is generated to reply to

each request for establishing the session between the

originating UA and the terminating UA via P-Servers. Each P-

Server is responsible for the routing of SIP requests and

responses.

Fig. 1 depicts a typical procedure of a session

establishment. To set up a call, an originating UA sends an

“Invite” request to a terminating UA via two P-servers. The P-

server returns a provisional “100(Trying)” response to confirm

the receipt of the “Invite” request. The terminating UA returns

an “180(Ring)” response after confirming that the parameters

are appropriate. It also evicts a “200(OK)” message to answer

the call. The originating UA sends an “ACK” response to the

terminating UA after receiving the “200(OK)” message.

Finally the call session is established and the multimedia

communication is created between the originating UA and the

terminating UA through the SIP session. The “Bye” request is

generated to finish the session thus terminating the

communication.

Figure 1: A typical procedure of session establishment

SIP has two types of message retransmission: (a) A
message that travels from an originating UA to a terminating
UA is confirmed on a hop-by-hop basis. For each hop, the
sender starts the first retransmission of the original message at
T1 seconds, and the time interval doubles after every
retransmission (exponential back-off), if the corresponding
reply message is not received. The last retransmission is sent
out at the maximum time interval 64xT1 seconds. Thus there is
a maximum of 6 retransmissions. The default value of T1 is
0.5s. The hop-by-hop “Invite”-“100(Trying)” transaction
shown in Fig. 1 follows this rule [1]. (b) A message that
travels from an originating UA to a terminating UA is
confirmed on an end-to-end basis. a sender starts the first
retransmission of the original message at T1 seconds, the time
interval doubling after every retransmission but capping off at
T2 seconds, if the corresponding reply message is not received.
The last retransmission is sent out at the maximum time
interval 64xT1 seconds. Default value of T2 is 4s, thus there is
a maximum of 10 retransmissions. The end-to-end “OK”-
“ACK” and “Bye”-“OK” transactions shown in Fig. 1 follows
this rule [1].

2.1. Queuing Dynamics OF SIP RETRANSMISSION MECHANISM

Before investigating the retransmission probability using

MMPP model, we would like to describe the queuing

dynamics of an overloaded SIP server with retransmission

Invite
Invite

Invite 100Trying
100Trying

200OK

180Ringing
180Ringing

180Ringing
200OK

200OK

ACK
ACK

ACK

Session Data

Bye
Bye

Bye

200OK
200OK 200OK

SIP

 Proxy-1
Terminating

UA

Originating

UA
SIP

 Proxy-2

mechanism first. Let us consider a scenario with a single

overloaded server among a group of SIP servers. We make the

following assumptions in accordance with SIP RFC 3261 [1]:

(a) For the round trip delay between two neighbouring

SIP servers, the queuing and processing delays are dominant,

while transmission and propagation delay is negligible [11].

This assumption is valid because signaling messages typically

are constrained by server rather than link bandwidth;

(b) Time is divided into discrete time slots. This allows

us to run simulations using time-series directly to observe the

dynamic SIP behaviour based on discrete time model. It is

easy to see that the errors caused by the discrete model can be

made arbitrarily small by making the interval of a timeslot

smaller and smaller;

(c) The SIP RFC 3261 [1] does not specify the queuing

and scheduling discipline to be deployed by a SIP server. We

assume that within a time slot, the original request messages

enter the tail of the queue prior to the retransmitted request

messages. The impact of this specific priority scheme will be

negligible when the interval of the time slot is very small. The

server processes the existing messages in the queue according

to the FIFO (First-In First-Out) service discipline. The buffer

size of the SIP server is infinite;

(d) The upstream and downstream servers for the single

overloaded server have infinite capacity to process all original

and retransmitted messages immediately without any delay;

(e) Given the proportionate nature and the general

similarity of the retransmission mechanisms between the

“Invite” and “non-Invite” messages in a typical session [1], we

will focus on the hop-by-hop Invite-100(Trying) transaction

and ignore other end-to-end transactions. In the mean time, the

hop-by-hop Invite-100(Trying) transaction is the major

workload contributor due to its role for call setup and its hop-

by-hop retransmission mechanism [1]. Such queuing dynamic

description can be naturally extended to include end-to-end

transactions due to the general similarity between end-to-end

retransmission and hop-by-bop retransmission as discussed

earlier.

Figure 2: Queuing dynamics of an overloaded SIP server

((n) denotes original message arrivals, r(n) denotes retransmitted message

arrivals, q(n) denotes queue size, (n) denotes service rate)

As shown in Fig. 2, the overloaded server receives the

original Invite requests with an aggregate rate (n) at time slot

n. We can obtain the queue size q(n+1) at next time slot n+1

based on the information at the current time slot n, i.e.,
)]()()()([)1(nnrnnqnq . (1)

where q(n) denotes the queue size; r(n) denotes the

retransmitted messages; (n) denotes the processed messages.

(n)+r(n) give the total arrival messages at current time slot n.

Adding q(n) and deducting (n) would generate a new queue

size q(n+1) in the next time slot n+1, as described by Eq. (1).

We use []+ to show that the queue size in each time slot should

be nonnegative.

According to the SIP retransmission mechanism, we can

obtain the total retransmitted messages r(n) at current time slot

n as

6

1
)()(

j j nrnr , (2)

where rj(n) denotes the jth retransmission for the original

request messages arriving at time n-Tj (where Tj=(2j-1)T1) and

there are maximum 6 retransmissions for every original

request message (i.e., 1≤ j≤ 6).

At time n-Tj, the original message arrivals were (n-Tj) and

the queue size was q(n-Tj). To decide how many of these

messages will be retransmitted, we need to know how many of

them are still in queue at time n. The overloaded SIP server

can process
jT

k j kTn
1

)(messages during the past Tj

time slots. After Tj time slots, the remaining messages of those

queued prior to the time slot n-Tj becomes

])(-)-q([
1

jT
k jj kTnTn .

The newly arrival original messages (n-Tj) entered the

queue prior to the retransmitted messages r(n-Tj), according to

Assumption (c). Without counting r(n-Tj), the remaining

messages in the queue becomes

])-(-)-q()-([
1

jT
k jjj kTnTnTn .

This may include both the original arrival messages at time

n-Tj and the queued messages right before the time slot n-Tj.

However, only the remaining original arrival messages (n-Tj)

need to be retransmitted at time n, so we use minimum

function to obtain rj(n) as

)}-(n ,])-(-)-q()-(min{[)(
1 j

T
k jjjj TkTnTnTnnr j

 (3)

Eqs. (1), (2) and (3) present a time series model which gives a

complete description of the dynamic behaviour of an

overloaded SIP server. The SIP time series model allows us to

run fluid-based simulations later on. This is much faster than

event-driven simulation which is almost infeasible with a

regular simulator due to the large number of timers in SIP

protocol.

3. ANALYSIS OF SIP QUEUING MECHANISM USING MMPP

MODEL

Overload introduces a long queuing delay to SIP server,

which would trigger a series of retransmissions to make the

overload worse. Understanding the retransmission probability

can help the service providers to take actions to prevent

excessive retransmissions and overload collapse. We can

obtain the retransmission probability by analyzing SIP queuing

mechanism using MMPP (Markov-Modulated Poisson Process)

model [15]. Since most of SIP servers need to update and

)(n

100Trying Response

)(nr

)(nq

Invite Request

synchronize their user databases regularly, a typical

application scenario is considered for our queuing analysis, in

which the SIP server works in one of the two states alternately.

The first state is the normal service with a mean service rate 1

and the second state is the maintenance period with a mean

service rate 0, both assumed to be Poisson distributed. The

mean time for the normal service is 1/ second, while the

mean time for the maintenance is 1/α second, both assumed

to be exponential distributed. Then the system leaves normal

service state with a mean rate , while it leaves the

maintenance state with a mean rate α. The SIP traffic arrives in

the server with a mean rate , and the arrival rate is assumed

to be Poisson distributed. Transition between the normal

service state and the maintenance state can be governed by an

underlying continuous Markov chain. We define pij as the joint

probability that the queue size q is equal to i (the queue state

with i≥ 0) under the service state j (j=0,1), that is, pij=P[queue

size=i, service state=j], where j=0 and j=1 represent the

maintenance state and the normal service state respectively.

The doublet (i, j) defines a two-dimensional state space.

Assumption (c) indicates that the state space ranges from 0 to

infinity in the i direction; from 0 to 1 in the j direction. Fig. 3

depicts the resultant two-dimensional state space with

transitions between two service states.

The marginal probability matrix Pi, that the queue size is i,

is given by

][10 iii ppP . (4)

Figure 3: MMPP model for buffering q messages at two multiplexed service

states

According to the queuing theory [15], the balance matrix-

vector equation for the zero queue size (i=0), can be expressed

as,

1

0
1011000 0

0

1
1

PPBPBPP

(5)

For the queue size i≥1, the balance matrix-vector equation can

be expressed as,

1

0
1

1

0
1

21101

0

0

1

1
0

0

iii

iiii

PPP

APAPAPP

(6)

Combining Eq. (5) and (6), the complete set of balance matrix-

vector equations for the entire two-dimensional chain of the

MMPP model can be represented as,

PCP . (7)

][10 iPPPP . (8)

where P consists of the two element vector Pi, and C is the

transition probability matrix and can be represented as,

2

12

012

011

00

000

00

0

0

00

A

AA

AAA

AAB

AB

C . (9)

The sum of all the probability is equal to 1, i.e., the sum of all

two-element row vector Pi can expressed as

1
0

i iP . (10)

The desired solution for Pi is given by [15]

01 iRPP ii , (11)

where R is a 2x2 matrix with 0<rk<1 (1≤ k≤ 4) [15]. Using

recursive substitution [15], we can obtain

0
43

21
00

 i

rr

rr
PRPP

i
i

i . (12)

where R is a 2x2 matrix with 0<rk<1 (1≤ k≤ 4) [15]. The

minimal, nonnegative solution for R can be obtained by the

following matrix equation [15]

2
2

10 ARRAAR . (13)

Recursive Solution for R

In order to obtain a recursive solution for the matrix R, we

rewrite Eq. (13) as
1

12
2

0]][[AIARAR . (14)

By setting an initial value to R=0, we can reach a minimal and

nonnegative solution for R by substituting R into Eq. (14)

iteratively [15]. A stable SIP system requires that all the

elements of R should be less than 1.

Solution for the probability of zero queue size

Assuming that the matrix R has been found, in order to obtain

the probability of all the queue sizes described by Eq. (12), we

need to find the probability of zero queue size.

Eqs. (5) and (11) can lead to an eigenvector equation as [15]

100001000
ˆˆ]ˆˆ[ˆ RBPBPppP . (15)

By solving Eq. (15), we can obtain the two elements of

eigenvector as

))(1())(1(

)]()1)(1[(
ˆ

03240131

033241
00

rrrrrr

rrrrr
p

 , (16)

))(1())(1(

)]()1)(1[(
ˆ

03240131

013241
01

rrrrrr

rrrrr
p

 . (17)

1,0 1,1

2,0 2,1

i,0 i,1

0,0 0,1

1

1 0

0

q,0 q,1

By carrying out the normalization, we can obtain the

probability of the zero queue size as

]ˆˆ[ˆ][0100001000 ppPppP , (18)

where is the normalized parameter. Replacing iP̂ by the

value iRP0
ˆ using Eq. (12), the sum of all the elements of iP̂ is

given as /1]1;1[)(ˆ 1
0 RIP . Since the sum of all the

elements of Pi is equal to 1, i.e., 1]1;1[)(1
0 RIP , we can

obtain the normalized parameter as

])1;1[)(ˆ/(1 1
0

 RIP . (19)

Assumption (a) and RFC3261 [1] indicate that a queuing delay

q/≥ T1 (i.e., q≥ T1) can trigger the retransmissions for newly

arrival original request messages. Once the retransmissions are

triggered, the mean arrival rate of SIP messages (including

original messages and retransmitted messages) would increase

to overload the server. Such overload would increase the

retransmission probability in return, and may stimulate up to

six retransmissions and collapse the server eventually.

Therefore it is useful to investigate the probability that the

retransmissions would happen.

When the queue size q of a SIP server starts to exceed T1,

the 1st retransmission for the newly arrival original messages is

triggered after a determined retransmission timer T1. Prior to

the 1st retransmission, the mean arrival rate of the request

messages remained little changed. Therefore, in the normal

service state, the probability of qi1≥ 1T1 in a single time slot

becomes

T

TT
i ii i

RIRp
RIRIpRIp

pp
jj

]10[)(
]10[))((]10[)(

)1,5.0i(P)1,0i(P)5.0q(P

15.0
0

15.0
0

1
0

15.0
0 10 1

11i1

1

1

1

. (20)

Similarly in the maintenance state, the probability of qi0≥0.50

without retransmissions in a single time slot becomes

T

TT
i ii i

i

RIRp
RIRIpRIp

pp
jjiq

]01[)(
]01[))((]01[)(

)0,5.0i(P)0,0(P)5.0(P

15.0
0

15.0
0

1
0

15.0
0 00 0

000

0

0

0

. (21)

Then the total probability which can trigger the

retransmissions becomes the sum of P(qi1≥ 0.51) and P(qi0≥

0.50), i.e.,

)5.0(P)5.0(PP 0011rt ii qq . (22)

Once the 1st retransmission is triggered, the retransmitted

messages come with the original messages to increase the

mean arrival rate significantly and enhance the server

overload. If the server cannot handle with the overload

effectively, maximum six retransmissions would be triggered

and may crash the server eventually.

4. PERFORMANCE EVALUATION AND SIMULATION

In order to investigate the retransmission probability

effectively, we perform the simulations in the following four

scenarios.

4.1. Scenario A: Validity of time-series simulation

We use Eqs. (1) to (3) to conduct time-series simulation.

This will significantly reduce the simulation time comparing

to the traditional event-driven simulation where a large

number of timers for retransmissions need to be tracked. In

order to investigate the retransmission probability, we need to

perform thousands of simulation replications. For the event-

driven simulation, each message transmission corresponds to

an event. When the overload happens, the messages are built

up, and the server needs to increase the number of timers to

maintain the message retransmissions. The timers used to track

millions of events may exceed the CPU capacity extremely,

thus cause the server crash and terminate the simulations

unexpectedly. Therefore, event-driven simulation approach

employed by [8] is not suitable for numerous simulation

replications.

In order to verify the validity of time-series simulation, we

consider a scenario with reference to [8]: A demand burst of

6000 messages arrive at a SIP server and create an initial

queue size at time t=0s. In the mean time, the server has a

constant original message arrival rate =200 messages/sec and

a constant service rate =1000 messages/sec, thus the effective

resource utilization =/=0.2. The default timer for the first

retransmission is T1=0.5s [1]. Each timeslot is 10ms.

Fig. 4 shows that the queue size decreased linearly with

800 messages/sec at the beginning.

At time t=T1=0.5s, the SIP server had processed 500

messages, the first retransmission for the residual 5500

original messages in the initial queue happened (as shown in

Fig. 5(a)). The new 100 original messages arriving between

t=0s and t=T1=0.5s joined the queue together with 5500

retransmitted SIP messages, so the queue size became 11,100

messages. The new arrival original messages at time t=0s

started to trigger the first retransmissions (as shown in Fig.

5(b)).

0 5 10 15 20 25 30 35 40 45 50
0

0.5

1

1.5

2

2.5
x 10

4

Time (sec)

Q
u
e
u
e
 s

iz
e
 (

m
e
s
s
a
g
e
s
)

Figure 4: Queue size (messages) versus time

0 5 10 15 20 25 30 35 40 45 50
0

1000

2000

3000

4000

5000

6000

Time (sec)

R
e
tr

a
n
s
m

is
s
io

n
 r

a
te

 (
m

e
s
s
a
g
e
s
 p

e
r

ti
m

e
 s

lo
t)

(a) full view

0 5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

20

Time (sec)

R
e
tr

a
n
s
m

is
s
io

n
 r

a
te

 (
m

e
s
s
a
g
e
s
 p

e
r

ti
m

e
 s

lo
t)

(b) enlarged view

Figure 5: Retransmission rate (messages per time slot) versus time

At time t=T2=1.5s, the SIP server had processed another

1000 messages. The second retransmission for the residual

4500 original messages in the initial queue happened (as

shown in Fig. 5(a)). The new arrival original messages at time

t=0s started to trigger the second retransmissions, while the

new arrival original messages at time t=0.5s had started to

trigger the first retransmissions. The retransmission rate of

new arrival original messages increased from 200

messages/sec to 400 messages/sec (as shown in Fig. 5(b)). The

queue size jumped to 15,000 messages.

At time t=T3=3.5s, the SIP server had processed another

2000 messages. The third retransmission for the residual 2500

original messages happened (as shown in Fig. 5(a)). The

retransmission rate of new arrival original messages increased

from 400 messages/sec to 600 messages/sec (as shown in Fig.

5(b)). The queue size jumped to 16,700 messages and then

decreased linearly with 200 messages/sec until the queue

reached a steady value of 15,800 messages at time t=8s (as

shown in Fig. 4).

At time t=8s, the retransmission rate of new arrival original

messages increased from 600 messages/sec to 800

messages/sec (as shown in Fig. 5(b)), thus the total incoming

traffic rate of both original messages and retransmitted

messages was equal to the service rate =1000 messages/sec

(or '
1 =5/=1). Between the time t=3.5s and t=8s, 900 new

incoming original messages and 2700 incoming retransmitted

messages entered the SIP server, thus the queue size reached

and stayed at a steady queue size as 16700+900+2700-

4500=15800 messages, well match the theoretical analysis.

However, at time t=19s, the retransmission rate of new

arrival original messages increased from 800 messages/sec to

1000 messages/sec. The total incoming traffic rate of both

original messages and retransmitted messages was larger than

the service rate =1000 messages/sec (or '
2 =6/=1.2>1).

Therefore, after the time t=19s, the queue size increased

linearly and continuously with 200 messages/sec, which would

bring a SIP server crash eventually (as shown in Fig. 4). Our

numerical result of time-series simulation corresponds to the

event-driven simulation results in [8]. However our simulation

is much faster than the event-driven simulation in [8] because

our approach doesn’t need to track the timers for individual

messages. This is especially useful when large number of

replications need to be to estimate the probability of rare

events as will be seen in the next subsection.

4.2. Scenario B: Validity of Retransmission Probability for

MMPP Model

In order to investigate the retransmission probability using

MMPP model (as described by Eqs. (4)-(22), we consider a

scenario: the mean service rate at the normal service state is

1=1000 messages/sec; the mean service rate at maintenance

state is 0=200 messages/sec; the mean arrival rate of the SIP

original messages is =199 messages/sec; the mean time at the

normal service state 1/; the mean time at the maintenance

state 1/α; all are assumed to be exponential distributed. Each

time slot is 10 ms; T1 is 500ms. We have perform SIP

parameter tuning on numerous simulation scenarios. Due to

the page limit, we only consider three sub-scenarios with

different mean time of maintenance and normal service in this

paper: (I) 1/=5sec, 1/α=50s and the overall effective mean

utilization is equal to 22.0)/()(01 ; (II)

1/=5sec, 1/α=500sec and 0.2; (III) 1/=50sec, 1/α=5000s

and 0.2.

Probability Calculation

Using recursive solution based on Eq. (14), we can obtain

R=[0.9663 0.0057; 2.4x10-5 0.199]. (23)

From Eqs. (19) to (21), we can obtain p00=0.003 and

p01=0.7277. Prior to the 1st retransmission, from Eqs. (21) and

(22), we can obtain
-11

1i1 2.5x10)1,500i(P)5.0q(P j , (24)

0.003)0,100i(P)5.0q(P 0i0 j , (25)

0.003)5.0q(P)5.0q(PP 0i01i1rt . (26)

The theoretical probability shows that the retransmission

probability of the normal service state with 20% resource

utilization is much less than that of the maintenance state with

99.5% resource utilization. This means that low resource

utilization corresponds to low retransmission probability.

Similarly using recursive solution, we can obtain the

retransmission probability for sub-scenario II as P(qi1≥ 0.51)

=2.7x10-12, P(qi0≥ 0.50)=3.2x10-4 and Prt3.2x10-4, the

retransmission probability for sub-scenario III as P(qi1≥ 0.51)

= 3.2x10-8, P(qi0≥ 0.50)= 2.7x10-3 and Prt2.7x10-3.

Based on the theoretical probability obtained by MMPP

model, we select the simulation parameters for the three sub-

scenarios: (I) 10,000 replications and simulation time for each

replication is 600s; (II) 100,000 replications and simulation

time for each replication is 3000s; (III) 100,000 replications

and simulation time for each replication is 10,000s.

The probability calculated by our MMPP model does not

take the retransmission into account. Therefore, in order to

make the verification of our MMPP model accurate, we turn

off the retransmission mechanism during the simulation in this

scenario. We define an overload event as the event which can

trigger the retransmissions at the end of each simulation

replication. We use “1” and “0” to indicate the overload event

and the under-load event.

0 0.5 1 1.5 2 2.5 3 3.5 4
-4

-3.8

-3.6

-3.4

-3.2

-3

-2.8

-2.6

-2.4

-2.2

-2

SubScenario No.

lo
g
1
0
(O

v
e
rl
o
a
d
 E

v
e
n
t

P
ro

b
a
b
ili

ty
)

Confidence Interval

Theoretical

Figure 6: Overload event probability versus sub-scenario No.

For Sub-Scenario I, 28 overload events were recorded

among 10,000 replications. The sample mean was

310*8.2 X , and the standard error was -410*5.3/ N ,

thus the 95% confidence interval became NX /*96.1 ,

i.e., 3.8*10-3 and 1.8*10-3. Then one can see that the

theoretical retransmission probability calculated by Eq. (26)

was located within the confidence interval, i.e.,

3.8*10-3<Prt=3*10-3<1.8*10-3. In the mean time, we also find

that all 28 overload event happened during the maintenance

period, well match our theoretical analysis described by Eqs.

(24) to (26).

Fig. 6 shows the statistical graph for three simulation sub-

scenarios. All the probabilities p have been scaled using

log10(p). The probability of the overload event and its 95%

confidence interval are depicted. The theoretical probability

calculated by our MMPP model is also depicted. The

theoretical probabilities of all three sub-scenarios are located

within the confidence interval of our replications. This

demonstrated that the retransmission probability calculated by

MMPP model is correct according to the statistics [16].

4.3. Scenario C: Server Crash due to Retransmission

Retransmission introduces the overload during the

maintenance period, but the server can cancel the overload

most of time after it resumes its normal service. If the total

arrival rate of the original and retransmitted messages exceeds

the normal service rate, the queue size will approach infinity to

crash the server eventually.

To avoid the messages to accumulate unlimitedly in a SIP

server, the total average incoming rate should be less than the

normal service rate 1. Assume that there are i retransmissions,

a conservative condition to avoid overload collapse is:

1)1(/)1(1 ii ,

which is equivalent to

)1(1 i , (27)

or

 /)1(ji . (28)

To achieve this, we need to guarantee that all the original

messages are not retransmitted more than j times.

To avoid j+1 retransmissions for the original messages

waiting for service in the queue size, we obtain a stability

condition for the queue size as

1
1

11)12(/)(TTtq j
j
 ,

or

11)(jTtq . (29)

If the queue size accumulated during the maintenance period is

less than the conservative stability bound described by Eq.

(29), the server can cancel the overload after it resumes its

normal service. Therefore the server crash probability should

be less than the theoretical retransmission probability

calculated by MMPP model. The retransmission probability

can therefore be used as an upper bound.

We select two replications of sub-scenario III in Section

4.2, at which the retransmission was triggered and the

overload event happened. We observe the transient

performance of the server overload in details. If the total mean

arrival rate of original retransmitted messages is larger than

the mean service rate during the normal service period, the

queue size would increase continuously and approach to

infinity and the server will crash eventually. If the server can

cancel the overload after resuming its normal service, the

buffer would remain almost empty as the time evolves. Since

the normal service period was too long, to present our

simulation result more concisely, we only show the server

behaviour during a part of the normal service period.

0 50 100 150 200 250 300 350 400
0

1

2

3

4

5

6
x 10

4

Time (sec)

Q
u
e
u
e
 s

iz
e
 (

m
e
s
s
a
g
e
s
)

(a) full view

0 50 100 150 200 250 300 350 400
0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

Time (sec)

q
u
e
u
e
 s

iz
e
 p

e
r

ti
m

e
 s

lo
t

(b) enlarged view

Figure 7: Queue size (messages) versus time

0 50 100 150 200 250 300 350 400
0

2

4

6

8

10

12

Time (sec)

O
ri
g
in

a
l
tr

a
n
s
m

is
s
io

n
 r

a
te

 (
m

e
s
s
a
g
e
s
 p

e
r

ti
m

e
 s

lo
t)

Figure 8: Original transmission rate (messages per time slot) versus time

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

Time (sec)

R
e
tr

a
n
s
m

is
s
io

n
 r

a
te

 (
m

e
s
s
a
g
e
s
 p

e
r

ti
m

e
 s

lo
t)

Figure 9: Retransmission rate (messages per time slot) versus time

0 50 100 150 200 250 300 350 400
0

5

10

15

20

25

30

Time (sec)

S
e
rv

ic
e
 r

a
te

 (
m

e
s
s
a
g
e
s
 p

e
r

ti
m

e
 s

lo
t)

Figure 10: Service rate (messages per time slot) versus time

Figs. 7 to 10 show the dynamic performance of an

overloaded SIP server. Between the time t=0s and 100s, the

server performed its normal service, and the buffer was almost

empty. At time t=100s, the server started its routine

maintenance, the mean service rate decreased to 200

messages/sec (as shown in Fig. 10), thus the queue size larger

than 100 messages would bring a queuing delay longer than

0.5s thus stimulate the retransmissions. The messages started

to accumulate and the queue size increased to reach a peak

around 4699 messages at time t=150s (as shown in Fig.

7(b)).In the mean time, maximum 3 retransmissions were

triggered (as shown in Fig. 9). After the server resumed

normal service at time t=150s, the server can process these

accumulated messages with a mean rate of 1000 messages/sec,

so the queue size decreased until the buffer was empty at time

t=166s (as shown in Fig. 7(b)). The server cancelled the

overload effectively. The server maintained almost empty

buffer for about 5000s. As discussed, only 100s of normal

service period was shown, while around 4900s normal service

period was omitted. At time t=250s, the server started its

maintenance service again. The queue size increased

continuously and triggered maximum 5 retransmissions that

made the total arrival message arrival rate exceeded the

normal service rate (as shown in Fig. 9). After the server

entered the normal service state at time t=300s, the initial

queue size is larger than 28,600 messages. The SIP server

cannot handle the overload effectively. The queue size tended

to infinity (as shown in Fig. 7(a)), thus eventually crashes the

server.

In summary, although the effective mean utilization is as

low as 20%, if the accumulated messages in the SIP server

during the short maintenance period cannot be processed

effectively in the normal service period, the server cannot

avoid the overload and crash. Goodput collapse persists even

after the server resumes its normal service and increases its

capacity a lot.

5. CONCLUSIONS

We have investigated the SIP retransmission mechanism

which may cause server crash upon SIP overload. We have set

up an MMPP model to describe the SIP queuing mechanism

and then calculate the probability of SIP retransmission. We

have performed thousands of simulation replications to verify

the retransmission probability obtained by our MMPP model.

The event-driven simulation requires large number of timers to

track outstanding messages. When overload happens, the

messages are built up. This may drive the number of timers to

an extreme value which takes so much memory that it crashes

the simulator eventually and terminate the simulation

unexpectedly. Therefore, event-driven simulation approach is

not suitable for the scenarios where a large number of

replications are required or where the queue sizes can be very

large. To solve this problem, we have run simulation using

time-series approach which does not need to track timers at all

and therefore is very scalable. Our study indicated that a short

term queue build-up may cause the server to crash. We

discovered that a large queue size introduced by a demand

burst or a temporal server slowdown can overload and crash a

SIP server with effective resource utilization as low as 20%.

The retransmission probability calculated by our MMPP

model is the upper bound of the server crash probability,

which can help the service providers to make proper capacity

planning and the maintenance scheduling.

In our future work, we will make sensitivity analysis on

parameter tuning and discuss the consequences on the server

stability. We will consider limited memory modeling in

practical systems and take into account potential effects in

derived traffic attenuation.

ACKNOWLEDGMENT

We appreciate the financial support from the NSERC grant

#CRDPJ 354729-07 and the OCE grant #CA-ST-150764-8.

This work is also supported in part by Nortel Networks.

REFERENCES

[1] J. Rosenberg et al., “SIP: Session Initiation Protocol,” RFC 3261,

IETF, June 2002.

[2] J. Rosenberg and H. Schulzrinne, “SIP: Locating SIP Servers,”

RFC 3263, IETF, June 2002.

[3] 3GPP TS 24.228 v5.f.0 (2006-10), “Signaling flows for the IP

Multimedia call control based on SIP and SDP; Stage 3 (Release

5),” October 2006.

[4] 3GPP TS 24.229 v8.5.1 (2008-09), “IP Multimedia call control

protocol based on SIP and SDP; Stage 3 (Release 8),” September

2008.

[5] J. Rosenberg and H. Schulzrinne, “Reliability of provisional

responses in the Session Initiation Protocol (SIP),” RFC 3262,

IETF, June 2002.

[6] M. Govind, S. Sundaragopalan, K. S. Binu, and S. Saha,

“Retransmission in SIP over UDP - Traffic Engineering Issues,”

Proceedings of International Conference on Communication and

Broadband Networking, Bangalore, May 2003.

[7] M. Ohta, “Overload Control in a SIP Signaling Network,”

Proceeding of World Academy of Science, Engineering and

Technology, pp. 205—210, March 2006.

[8] V. Hilt and I. Widjaja, “Controlling Overload in Networks of SIP

Servers,” Proceedings of 16th IEEE International Conference on

Network Protocols (IEEE ICNP), Orlando, Florida, pp. 83-93,

October 2008.

[9] J. Rosenberg, “Requirements for Management of Overload in the

Session Initiation Protocol,” RFC 5390, IETF, December 2008.

[10] V. Hilt, I. Widjaja, and H. Schulzrinne, “Session Initiation

Protocol (SIP) Overload Control,” IETF, Internet-Draft, draft-

hilt-sipping-overload-05, July 2008.

[11] C. Shen, H. Schulzrinne, and E. Nahum, “SIP Server Overload

Control: Design and Evaluation,” Proceedings of IPTComm,

Heidelberg, Germany, July 2008.

[12] R.P. Ejzak, C.K. Florkey and R.W. Hemmeter, “Network

Overload and Congestion: A Comparison of ISUP and SIP,” Bell

Labs Technical Journal, 9(3), pp.173-182, 2004.

[13] W. R. Stevens, TCP/IP Illustrated, Volume 1, Addison-Wesley,

Boston, 1994.

[14] D. Anick, D. Mitra, and M. M. Sondhi, “Stochastic theory of a

data-handling system with multiple sources,” Bell System

Technical Journal, 61(8), pp. 1871-1894, 1982.

[15] M. Schwartz, Broadband Integrated Networks, Prentice-Hall,

1996.

[16] G.R.Grimmett, and D.R. Stirzaker, Probability and Random

Processes, 2nd Edition. Clarendon Press, Oxford, 1992.

