
Most Balancing Algorithms for Optimal Packet
Scheduling in Multi-Server Wireless Systems

Hussein Al-Zubaidy, Changcheng Huang, James Yan,
Carleton University, Ottawa, ON, Canada, e-mail: {hussein, huang}@sce.carleton.ca, jim.yan@sympatico.ca.

Abstract—We present an algorithm to implement “most bal-
ancing” packet scheduling policies in a discrete-time multi-server
system of parallel queues with independent random queue-server
connectivity. The MB policies are characterized by minimizing
the total difference in queue lengths at every time slot. The
proposed algorithm produces the server allocation strategy that
achieves the minimum “imbalance index” at every time slot. This
algorithm has a reduced computational complexity compared to
a full-search through the set of all feasible policies. We also
provide a low-complexity approximate implementation algorithm
that performs close to the exact algorithm. Simulation results
confirm our claims.

I. INTRODUCTION AND MODEL DESCRIPTION

Emerging wireless networks are IP-based packet access
networks that are characterized by their capability of providing
high data rate on the last hop [1]. Packet scheduling in
emerging wireless networks plays a major role in achieving the
desired data rate. In these systems, there are multiple network
resources, e.g., CDMA codes, OFDMA channels, etc., to be
allocated to users at every time slot. A user might be allocated
the minimum portion or the full size of the available network
resources at every time slot depending on the implemented
packet scheduling policy [2] [3]. The connectivity of users to
the base station in any wireless system is varying with time
and can be best modelled as a random process.

The wireless system is modelled by a set of L parallel
queues with infinite capacity (see Figure 1). The time in
this system is slotted into equal length deterministic intervals.
Let Xi(n) be the number of packets in the ith queue at the
beginning of time slot n. There are K identical servers to be
shared between the L queues in the system. The service time
required per packet is assumed to have constant length that is
equal to one time slot. A server can serve one packet from a
connected, non-empty queue, at any given time slot.

The queue-server connectivity between the ith queue and
the jth server during the nth time slot is denoted by Gi,j(n)
and can be either connected (Gi,j(n) = 1) or not connected
(Gi,j(n) = 0). We assume that, for all i = 1, 2, . . . , L, j =
1, 2, . . . ,K and n, Gi,j(n) are independent Bernoulli random
variables with parameter p1. The number of arrivals to the
ith queue during time slot n is denoted by Zi(n). The arrival
processes to different queues ({Zi(n)},∀i) are assumed to be
independent of each other and independent of the processes
{Gi,j(n)} for i = 1, 2, . . . , L, j = 1, 2, . . . ,K.

1Although, the application of MB policies is not limited to systems with
symmetrical arrivals and link statistics, the MB is proven optimal for these
systems only [4]. Therefore, we limit our description to such systems.

z1

z2

zL

K

2

1

Fig. 1. Scheduler model in emerging wireless network.

A packet scheduling (or server allocation) policy decides, at
every time slot, what servers will be allocated to which queue
(or alternatively, how many packets will be withdrawn from
every queue) during that time slot. In previous work, we have
shown that the class of most balancing (MB) policies is opti-
mal [4], in that they minimize, in a stochastic ordering sense,
a range of cost functions of the system queue sizes, including
the total number of queued packets, in the aforementioned
system. An MB policy attempts to balance all queue sizes at
every time slot, so that the total sum of queue size differences
will be minimized. In [4], we used stochastic dominance
[6] and coupling arguments [7] to prove the optimality of
the MB policies. We also proved that the MB policies are
still optimal when retransmission of packets, resulted from
previously failed transmission attempts, is considered [5].

A special case of the previous model was investigated in [8].
The authors tackled a simpler problem where a single server
(i.e., K = 1) can only be allocated to one user at every time
slot. They proved that a policy which allocates the available
server to its longest connected queue is optimal. In such model,
the LCQ policy belong to the set of MB policies. Another
relevant result is the one reported in [9]. The authors studied
a system of L homogeneous, parallel queues competing for K
identical servers. At each time slot, no more than one server is
allocated to each scheduled queue. They proved that LCQ, a
policy that allocates the K servers to the K longest connected
queues at every time slot, is optimal. This policy can also
be considered as an MB policy within the model limitations
and constraints. A more recent result that has relevance to
the optimality of the MB policies is the one reported in [10].
They proved, using dynamic programming, that a maximum-
throughput and load-balancing (MTLB) policy minimizes the
expected average cost for a two-queue multi-server system.

The MB policies maybe implemented using an algorithm
that searches through the full range of the feasible action space
at every time slot. Such an algorithm poses significant com-

IEEE WCNC 2011 - Network

978-1-61284-254-7/11/$26.00 ©2011 IEEE 671

putational challenge especially for systems with large L and
K. The objective of this work is to devise an implementation
algorithm for the MB policies that has a reduced computational
complexity compared to the full search algorithm.

In this work, we present an implementation algorithm (Al-
gorithm 1) and prove that the resulted policy of that algorithm
is most balancing. In addition, we present a policy (that we
call LCSF/LCQ) and its implementation algorithm (Algorithm
2), to approximate the behaviour of MB policies. This policy
has low complexity compared to Algorithm 1 and has a
performance that is comparable to that of MB policies.

The rest of the paper is organized as follows. In section
II, we introduce notation and feasibility conditions. In section
III, we introduce the MB policies. In section IV, we present an
MB implementation algorithm. In section V, we introduce the
LCSF/LCQ policy, a practical approximation for MB policies.
In section VI, we present simulation results.

II. FORMULATION AND POLICY DEFINITION

In this section we will provide notation that we will use in
the rest of this paper. We will also provide a formal definition
and feasibility constraints for server allocation policies in the
system described earlier. We represent the policy action that
corresponds to “idling” a server by introducing a special,
“dummy” queue that we denote by queue 0. Allocating a server
to this queue is equivalent to idling that server. We assume that
queue 0 is always connected to all servers and contains only
“dummy” packets We will use the following notation:
• X(n) = (X0(n), X1(n), X2(n), . . . , XL(n))T is the

queue lengths vector (measured in number of packets)
at time slot n. We assume X0(n) = 0.

• Z(n) = (Z0(n), Z1(n), Z2(n), . . . , ZL(n))T is a vector
with its elements represent the number of exogenous
arrivals to each queue during time slot n = 1, 2,

• G(n) is an (L+ 1)×K matrix, where Gi,j(n) for i > 0
is the channel connectivity random variable. We assume
that G0,j(n) = 1 for all j, n.

• Q(n) = (Q1(n), . . . , QK(n))T is the server allocation
control vector. Qj(n) ∈ {0, 1, . . . , L} denotes the index
of the queue that is selected (according to some rule) to
be served by server j during time slot n. Note that setting
Qj(n)=0 means that server j is idled at time slot n.

• Y(n) = (Y0(n), Y1(n), Y2(n), . . . , YL(n))T is the with-
drawal control For any i, Yi(n) ∈ {0, 1, . . . ,K} denotes
the number of packets withdrawn from queue i during
time slot n.

• V(n) is a (L + 1) × K matrix. Vi,j(n) = 1{i=Qj(n)} ·
Gi,j(n), i = 0, . . . , L and j = 1, . . . ,K.

• The tuple (X(n),G(n)) denotes the “state” of the system
at the beginning of time slot n.

Where 1{A} denotes the indicator function for condition A.
Using the previous notation and given a scheduling control

vector Q(n), the withdrawal control vector is computed using:

Yi(n) =
K∑
j=1

1{i=Qj(n)}, i = 0, 1, 2, . . . , L. (1)

A. Feasibility Conditions

We assume that the state information is available to the
controller at any time slot n. Then at n, a vector Q(n) ∈
{0, 1, . . . , L}K is a feasible server allocation control if: (a) a
server is allocated to one connected queue, and (b) the number
of servers allocated to a queue cannot exceed the size of the
queue. Mathematically, these conditions may be stated using
the following (necessary and sufficient) constraints:

VT (n) · IL+1 = IK (2)
V∗(n) · IK ≤ X(n) (3)

where Il is l-dimensional vector with all entries equal 1, and

V ∗i,j(n) =
{

0, i = 0;
Vi,j(n), otherwise.

The K constraints in Equation (2) satisfies condition (a)
above. Condition (b) captured by the point-wise inequality in
(3). To insure that Inequality (3) is satisfied for the dummy
queue, we use V∗(n) instead of V(n) in the inequality. Note
that allocating more than one server to a queue is feasible.

Similarly, we say that a withdrawal vector Y(n) ∈
{0, 1, . . . ,K}L+1 is feasible (during time slot n) if there exist
a matrix V(n) that satisfies the constraints (2) and (3) s.t.

Y(n) = V(n) · IK (4)

We denote the set of all feasible withdrawal controls while
in state (x,g) by Y(x,g). For any given feasible control y(n),
we refer to q(n) as its implementation.

B. Policies for Server Allocation

For any feasible control (Y(n)), the system described earlier
evolves according to

X(n+ 1) = X(n)−Y(n) + Z(n), n = 1, 2, . . . (5)

We assume that arrivals during time slot n can only be added
after removing served packets.

A server allocation policy π (or policy π for simplicity) is
a rule that determines feasible withdrawal vectors Y(n) for
all n, as a function of the past history and current state of the
system H(n). The state history is given by the sequence of
random variables

H(1) = (X(1)), and
H(n) = (X(1),G(1),Z(1), . . . ,G(n−1),Z(n−1),G(n)),

n = 2, 3, . . . (6)

Let Hn be the set of all histories up to time slot n.
Then a policy π can be formally defined as the sequence of
measurable functions

un : Hn 7−→ ZL+1
+ ,

s.t. un(H(n)) ∈ Y(X(n),G(n)), n = 1, 2, . . . (7)

Z+ is the set of non-negative integers, ZL+1
+ = Z+×. . .×Z+,

where the Cartesian product is taken L+ 1 times.
At each time slot, the following sequence of events hap-

pens: First, G(n) and X(n) are observed. Second, Y(n) is

672

determined according to the policy in effect. Finally, Z(n) are
added and X(n+ 1) is computed.

III. MB POLICIES FOR SERVER ALLOCATION

In this section, we provide a formal description and math-
ematical characterization of the class of MB policies.

Intuitively, the MB policies “attempt to balance the lengths
of all queues in the system as much as possible, at every time
slot n”; they do so by choosing a control (y(n) ∈ Y(x,g)) that
minimizes the number of cases where a server is not allocated
to its longest connected queue. For a more formal definition
of MB policies, we first define the following:

Given a state (x(n),g(n)) and a policy π that chooses
the feasible control y(n) at time slot n, define the “updated
queue size” x̂i(n) = xi(n) − yi(n) as the size of queue
i, i = 1, . . . , L, after applying the control yi(n) and just
before adding the arrivals during time slot n. For notational
simplicity we also define x̂0(n) = 0. Furthermore, we define
the “imbalance index”, κn(π), as the total sum of differences
of the L+1-dimensional vector x̂(n) under the policy π at n
(where π selects y(n) ∈ Y(x,g) at time slot n), i.e.,

κn(π) =
L+1∑
i=1

L+1∑
j=i+1

(x̂[i](n)− x̂[j](n)) (8)

where the subscript [k] denotes the index of the kth longest
component of the vector. By convention, queue ‘0’ (the
“dummy queue”) will always have order L+1 (i.e., the queue
with the minimum length). Let ΠMB denotes the set of all
MB policies.
Definition: A Most Balancing (MB) policy is a policy π ∈
ΠMB that, at n = 1, 2, . . ., chooses feasible withdrawal
vectors y(n) ∈ Y(x,g) such that the imbalance index is
minimized at every n, i.e.,

ΠMB =
{
π : argmin

y(n)∈Y(x,g)

κn(π), ∀n
}

(9)

The set ΠMB in Equation (9) is well-defined and non-
empty, since the minimization is over a finite set. The set
of MB policies may have more than one element. This could
happen, for example, when at a given time slot n, a server k is
connected to two or more queues of equal size, which happen
to be the longest queues connected to this server. Then, serving
either one of them will satisfy Equation (9).

IV. IMPLEMENTATION ALGORITHM FOR MB POLICIES

The definition of MB policies via Equation (9) is not
constructive. Therefore, designing an algorithm to implement
an MB policy is required. A determination of an MB policy
given X(t) and G(t) can be done using a direct search
over all possible server allocations. This can be a challenging
computational task. We present next an algorithm that searches
in a subset of the feasible policies. We prove that it will
produce an MB policy. This algorithm has a complexity factor
of O(L×K!).

Recall that there are K servers to be allocated at every
time slot. These servers can be ordered in one of K! different

server orderings. We consider a given permutation (ordering)
of the K servers in the system. For this permutation we define
a “sequential LCQ server allocation” a process of allocating
the servers to queues in K steps as follows: Starting from the
first server, we assign it to its longest connected queue and
we update (i.e., reduce by one) its queue size. We continue
with the second server following the same principle until we
exhaust all servers in K steps. We will show that at least
one “sequential LCQ server allocation” corresponding to an
ordering among the K! server permutations will result in an
MB policy.

Let the set Mt
i be the set of servers connected to queue i

during time slot t. Let Mi(t) , |Mt
i| be the number of servers

that are connected to queue i during time slot t, that is

Mi(t) =
K∑
j=1

Gi,j(t) (10)

Let Qk , {i : k ∈ Mt
i} denote the set of queues that

are connected to server k during time slot t; we omit the
dependence on t to simplify notation. Let Θ denote the set of
all possible permutations of the set {1, . . . ,K}. We define a
server ordering at time n as a permutation θ(n) ∈ Θ. There
are |Θ| = K! possible server orderings. We use the subscript
[j]θ to denote the jth server to be allocated under the ordering
rule θ(n). Algorithm 1 below present the pseudo-code for the
approach we described previously.

Algorithm 1 (MB Implementation 1).

1. for t = 1, 2, . . . do
{

2. Input: X(t),G(t).Calculate: Q[k], k = 1, . . . ,K.

3. Let: κmint = L ·max
l
Xl ; maximum possible κt

4. forall θ ∈ Θ do
{

; loop |Θ| = K! times

5. X′ ←− X(t), Y′ ←− 0, Q′ ←− 0

6. for j = 1 to K
{

; allocate servers sequentially

7. Q′[j]θ = min

(
k : k ∈

{
argmax
l:l∈Q[j]θ

(X ′l |X ′l > 0)

})
8. Let: i = Q′[j]θ

9. Y ′i = Y ′i + 1

10. X ′i = X ′i(t)− 1
}

11. Compute: κθt from Equation(8)

12. if (κθt < κmint)
{

13. κmint = κθt

14. y(t)←− Y′, q(t)←− Q′, θ(t)←− θ
}

15.
} }

; End of Algorithm 1.

Theorem 1 states the main result in this section; Algorithm
1 generates an MB policy for the system in Figure 1.

673

Theorem 1. The server allocation policy obtained by applying
Algorithm 1 is an MB policy.

Proof: A policy π is an MB policy if it has the MB
property at every time slot n = 1, 2, . . ., i.e., it minimizes the
total differences between the queues’ lengths in the system at
every n. To prove Theorem 1 we have to show that Algorithm
1 produces a policy that has the MB property at all time slots.

For the proof of Theorem 1 we first introduce the following
properties of a server in a sequential server allocation during
time slot n (where the queue lengths are updated after each
server allocation) such as that used in Algorithm 1. Given a
server allocation policy2 πθ and following a server ordering
θ, we define the allocation of a server to its longest connected
queue (according to πθ) as “LCQ allocation” (equivalently we
may say that the server has the LCQ property). Otherwise, we
refer to this allocation as “NLCQ allocation” or we say that the
server has NLCQ property. We should note that the LCQ or
NLCQ properties of the servers depend on the selected server
allocation order θ.

Proceeding with the proof for Theorem 1, we consider
a policy πθ1 , that is implemented using sequential server
allocation and a server order θ1 during time slot n, such that
πθ1 has the MB property at time slot n. We assume that at
least one server has the NLCQ property (i.e., allocated to a
queue that is not its longest connected queue) according to this
implementation, since otherwise the theorem is trivially true.
We will show next that we can construct a server allocation
ordering θ2 under which πθ2 has the MB property at time slot
n and all servers have the LCQ property under θ2.

To complete the proof of Theorem 1, we will need the
following lemmas. Their proof can be found in [11].

Lemma 1. Given a server allocation ordering θ ∈ Θ at time
slot n and a policy πθ that has the MB property at time slot n,
if s[K]θ (i.e., the last allocated server under θ at time slot n)
has the NLCQ property then a policy π∗ can be constructed
in which: (i) s∗[K]θ (i.e., the last server to be allocated under
π∗) has the LCQ property at time slot n and (ii) s∗[k]θ has the
same allocation as s[k]θ ,∀k : 1 ≤ k < K, such that π∗ has
the MB property at time slot n.

Lemma 2. Given a policy πθ that has the MB property during
time slot n, swapping the order of two consecutively allocated
servers s1, s2 under πθ, the second of which (s2) has the LCQ
property, will not change the LCQ property of that server
under the new ordering.

The construction of the new ordering θ2 during time slot n
(as described earlier) is summarized in the following steps:

(1) We identify the last NLCQ allocated server (si) under
πθ1 . Denote the order (in θ1) of this server by i∗ (i.e., si =
s[i∗]θ1). Now if this is the last server to be allocated (i.e.,
i∗ = K), then go to step (4).

(2) Using Lemma 2 we can swap server si with the server
next in order, i.e., s[i∗+1]θ1 , (which has the LCQ property

2By πθ we denote a policy that is implemented using a sequential server
allocation following the order θ ∈ Θ

according to step (1)) and create a new server ordering θ′1, in
which the swapped server has order [i∗]θ

′
1 and retain it’s LCQ

property.
(3) Repeat step (2) until si is the last server to be allocated

under θ′1.
(4) Allocate server si to its longest connected queue.

According to Lemma 1 the resulting policy will have the MB
property at time slot n (with the last server has LCQ property)

(5) Repeat steps (1) to (4) until all servers have the LCQ
property. This will result in a new ordering θ2 and new policy
πθ2 that has the MB property at time slot n with all servers
having LCQ property under θ2 at the corresponding slot.

V. LCSF/LCQ TO APPROXIMATE MB POLICIES

We present a policy that approximate the behaviour of the
MB policies and a feasible implementation algorithm for this
policy. Compared to exact implementation algorithms, this
algorithm has significantly lower computational complexity
which facilitates its use in real systems (as well as simulated
systems) with large values of L and K.

We introduce the Least Connected Server First/Longest
Connected Queue (LCSF/LCQ) policy, a low-overhead ap-
proximation of MB policy, with O(L × K) computational
complexity. We show that it results in a feasible withdrawal
vector. The policy is stationary and depends only on the current
state (X(n),G(n)) during time slot n.

The LCSF/LCQ implementation during a given time slot is
described as follows: The least connected server is identified
and is allocated to its longest connected queue. The queue
length is updated (i.e., decremented). We proceed accordingly
to the next least connected server until all servers are as-
signed. In algorithmic terms, the LCSF/LCQ policy can be
described/implemented as follows:

Algorithm 2 (LCSF/LCQ Implementation).

1. for t = 1, 2, . . . do
{

2. Input: X(t),G(t). Calculate Q[l], l = 1, . . . ,K.
3. X′ ←− X(t), Y ←− 0, Q←− 0

4. for j = 1 to K
{

; allocate servers sequentially

5. Q[j] = min

(
l : l ∈

{
argmax
k:k∈Q[j]

(X ′k|X ′k > 0)

})
6. for i = 1 to L

{
7. Yi = Yi + 1{i=Q[j]}
8. X ′i = Xi(t)− Yi

} }
9. Output: y(t)←− Y,q(t)←− Q ; report outputs

10.
}

; End of Algorithm 2.

Recall that Qj denotes the set of all queues that are
connected to server j at time slot t. Let Q[i] be the ith

element in the sequence (Q1, . . . ,QK), when ordered in
ascending manner according to their size (set cardinality),

674

i.e., |Q[l]| ≥ |Q[m]| if l > m. Ties are broken arbitrarily.
Then under the LCSF/LCQ policy, the K servers are allocated
according to Algorithm 2. Note that in line 5 of Algorithm 2,
if the set Q[j] is empty, then the argmax returns the empty set.
In this case, the jth order server will not be allocated (i.e., will
be idle during time slot t). Algorithm 2 produces two outputs,
when ran at t = n: y(n) and q(n) as shown in line 9 of the
algorithm. Although allocating the available servers to their
longest connected queues in the order specified by Algorithm
2 may not be “most balancing”, the LCSF/LCQ is expected
to perform very close to MB policy.

In accordance to the definition of a policy in Equation (7),
the LCSF/LCQ policy can be formally defined as the sequence
of time-independent mappings u(x(n),g(n)) that produce the
withdrawal vector y(n) described in line 9. Lemma 3 asserts
that the mapping defines feasible controls.

Lemma 3. The policy obtained from applying Algorithm 2
results in a feasible withdrawal vector at every time slot n
and any state (x(n),g(n)).

Proof: Let y(n) and q(n) denote the outputs of Algo-
rithm 2 Let V(n) be as defined previously. We must show
that the output y(n) can be written as

y(n) = v(n) · IK (11)

and that v(n) satisfies the feasibility constraints (2) and (3).
From Algorithm 2, line 5, it can be seen that for every

server [j], only the set of queues that are connected to server
[j] are considered as candidates for allocating this server.
Therefore, vi,[j](n) = 1 is true only when gi,[j](n) = 1 and
1{i=q[j](n)} = 1 are true.From Equations (11) and (3) we can
easily see that

y(n) ≤ x(n) (12)

is a sufficient condition for Inequality (3) to hold. Note that
queue i will be selected in Algorithm 2, line 5 (to be served
by server [j]) only if its current size x′i is strictly positive. This
will ensure that the number of servers allocated to any queue
is no larger than its queue size. Therefore, yi(n) ≤ xi(n), i =
1, . . . , L, proving Inequality (12).

Constraints (2) are satisfied. To prove that, fix a server [j];
the initialization step 3 assigns this server to the dummy queue.
Observe that even though the inner for-loop in Algorithm 2 is
executed L+ 1 times, the indicator function 1{i=Q[j]} in line
7 is non-zero for only one value of i ∈ {0, 1, . . . , L}; each
server is allocated to one queue only, either the dummy queue
or the queue with the minimum index out of the outcome of
the argmax function in line 5 of Algorithm 2. Therefore

L∑
i=0

1{i=q[j](t)} = 1

is true for all j, proving equality (2).

Lemma 4. LCSF/LCQ is not an MB policy.

Proof: To prove lemma 4 we present the following
counter example. Consider a system with L = 4 and K = 7.
At time slot n the system has the following configuration:

The queue state at time slot n is x(n) = (5, 5, 5, 4). Servers
1 to 6 are connected to queues 1, 2 and 3 and server 7 is
connected to queues 1 and 4 only.

Under this configuration, we can show that the LCSF/LCQ
algorithm will result in x̂(n) = (0, 2, 3, 3, 4) (where the first
element represents the dummy queue that by assumption holds
no real packets) and κn(LCSF/LCQ) = 18. A policy π can
be constructed that selects the feasible server allocation q =
(1, 2, 3, 1, 2, 3, 4) which yields the state x̂(n) = (0, 3, 3, 3, 3)
and κn(π) = 12 < κn(LCSF/LCQ). Hence, LCSF/LCQ
does not belong to the class of MB policies.

The LCSF/LCQ policy is of particular interest for the
following reasons: (a) It follows a particular server allocation
ordering (LCSF) to their longest connected queues (LCQ)
and thus it is closely related to Algorithm 1, (b) the selected
server ordering (LCSF) and allocation (LCQ) intuitively tries
to maximize the opportunity to target and reduce the longest
connected queue in the system thus minimizing the imbalance
among queues, and (c) as we will see in Section VI, the
LCSF/LCQ performance is statistically indistinguishable from
that of an MB policy (implying that the counterexamples
similar to the one in Lemma 4 proof have low probability
of occurrence under LCSF/LCQ system operation).

VI. PERFORMANCE EVALUATION AND SIMULATION
RESULTS

We used simulation to study the performance of the system
under MB policies and to compare against the system per-
formance under several other policies. The metric we used in
this study is EQ , E(

∑L
i=1Xi), the average of the total

number of packets in the system. This metric reflects the
average queuing delay for the system under investigation and
the corresponding policy.

The policies used in this simulation are: LCSF/LCQ, as
an approximation of an MB policy; MCSF/SCQ, as an ap-
proximation of a least balancing (LB) policy, a policy that
maximizes the imbalance index. An MB policy is implemented
following Algorithm 1 and its performance was indistinguish-
able from that of the LCSF/LCQ. Therefore, in the simulation
graphs the MB and LCSF/LCQ are represented by the same
curves. For larger K, we expect small deterioration in the
performance of LCSF/LCQ compared to MB policy.

Other policies that were simulated include the random-
ized, Most Connected Server First/Longest Connected Queue
(MCSF/LCQ), and Least Connected Server First/Shortest Con-
nected Queue (LCSF/SCQ) policies. The randomized policy is
the one that at each time slot allocates each server, randomly
and with equal probability, to one of its connected queues. The
MCSF/LCQ policy differs from the LCSF/LCQ policies in the
order that it allocates the servers. It uses the exact reverse
order, starting the allocation with the most connected server
and ending it with the least connected one. However, it resem-
bles MB policies in that it allocates each server to its longest

675

Fig. 2. EQ vs. load under different policies, L = 16,K = 16, p = 0.2.

connected queue. The LCSF/SCQ policy allocates each server,
starting from the one with the least number of connected
queues, to its shortest connected queue. The difference from an
MB policy is obviously the allocation to the shortest connected
queue. This policy will result in an unbalanced queue lengths
and hence a performance that is closer to the LB policies.
These policies are implemented using an algorithm similar to
Algorithm 2 with slight modification to the order of servers
and/or the selection of the queue to be served at every step.

Figure 2 shows the average total queue occupancy versus
arrival rate under the five different policies. The system in this
simulation is a symmetrical system with 16 parallel queues
(L = 16), 16 identical servers (K = 16) and i.i.d. Bernoulli
queue-to-server (channel) connectivity with parameter p =
P [Gi,j(t) = 1] = 0.2.

The graphs show that LCSF/LCQ outperforms all other poli-
cies. It minimizes, EQ and hence the queuing delay. We also
noticed that it maximizes the system stability region and hence
the system throughput as well. As expected, the performance
of the other three policies lies within the performance of the
MB and LB policies.

The MCSF/LCQ and LCSF/SCQ policies are variations of
the MB and LB policies. The performance of MCSF/LCQ
policy is close to that of the MB policy. The difference in
performance is due to the order of server allocation. On the
other hand, the LCSF/SCQ policy shows a large performance
improvement compared to LB policy. This improvement is a
result of the reordering of allocations of servers.

The two figures also show that the randomized policy
performs reasonably well. Moreover, its performance improves
as the number of servers in the system decreases. The perfor-
mance advantage of the LCSF/LCQ over the other policies
increases as the number of servers in the system increases.
The presence of more servers implies that the server alloca-
tion action space is larger. Selecting the optimal (i.e., MB)
allocation, over any arbitrary policy, out of a large number of
options will produce better performance as compared to the
case when the number of server allocation options is reduced.
We also noticed that the stability region of the system becomes
narrower when less servers are used. This is true because fewer
resources (servers) are available to be allocated by the working
policy in this case.

Fig. 3. EQ versus load, L = 16,K = 8 and p = 0.2.

VII. CONCLUSION

In this work, we presented an implementation algorithm
for the most balancing packet scheduling policies in emerging
wireless systems. The system under investigation was modeled
using symmetric queues and multiple servers with random
server connectivities. The proposed algorithm has reduced
complexity (O(L×K)) compared to full-search algorithm. The
LCSF/LCQ policy was proposed as an efficient low-overhead
approximation of MB policies. Simulation results verified that
the LCSF/LCQ performs (in terms of the expected value) very
closely to the MB policy. In addition, the results showed that
it outperforms all other policies that we investigated. Finally,
we observed that a randomized policy can perform very close
to the optimal one in many cases, especially for K � L.

The described algorithms may also be applied to non-
symmetrical systems. Because of space constraints, we left
the investigation of such systems for future work.

REFERENCES

[1] J. P. Castro, All IP in 3G CDMA Networks. USA: John wiley & Sons
Inc., 2004.

[2] P. Bender, P. Black, M. Grob, R. Padovani, N. Sindhushayana, and A.
Viterbi, “CDMA-HDR: A bandwidth-efficient high-speed wireless data
service for nomadic users”, IEEE Communication Magazine, pages 70-
77, July 2000

[3] H. R. Shao, C. Shen, D. Gu, J. Z and P. Orlik, Dynamic Resource Control
for High-Speed Downlink Packet Access Wireless Channel, IEEE
Transaction on Vehicular Technology, vol. 44, no. 1, Feb. 1995.

[4] H. Al-Zubaidy, I. Lambadaris and I. Viniotis, ”Optimal Resource Schedul-
ing in Wireless Multi-service Systems With Random Channel Connectiv-
ity, IEEE Globecom09, Honolulu, HI, USA, Dec. 2009.

[5] H. Al-Zubaidy, I. Lambadaris, I. Viniotis, F.R. Yu, ”Optimal Multi-
Server Allocation to Parallel Queues With Random Connectivity and
Retransmissions,” ICC’2010, Cape town, South Africa, May 2010.

[6] D. Stoyan, Comparison Methods for Queues and other Stochastic Models,
J. Wiley and Sons, Chichester, 1983.

[7] T. Lindvall, Lectures on the coupling method, New York: Wiley(1992).
[8] L. Tassiulas and A. Ephremides, “Dynamic server allocation to paral-

lel queues with randomly varying connectivity,” IEEE Transactions on
Information Theory, 39(2): 466 - 478, March 1993.

[9] A. Ganti, E. Modiano and J. N. Tsitsiklis, “Optimal transmission schedul-
ing in symmetric communication models with intermittent connectivity,”
IEEE Transactions on Information Theory, 53(3): 998-1008, March 2007.

[10] S. Kittipiyakul, T. Javidi, “Delay-optimal server allocation in multiqueue
multi-server systems with time-varying connectivities,” IEEE Transac-
tions on Information Theory, 55(5): 2319-2333, May 2009.

[11] H. Al-Zubaidy, Optimal Dynamic Multi-Server Allocation to Parallel
Queues With Independent Random Connectivity, Technical report: SCE-
09-02, SCE department, Carleton University, Feb. 2009.

676

