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Abstract — Leveraging the traditional virtual network 

concept, some recent research works have proposed the Virtual 

Data Center (VDC) as an abstraction to capture both bandwidth 

and compute/storage resource requirements for an application. 

However a virtual node in a VDC is limited to a virtual machine 

(VM), which can only be embedded onto a single physical 

machine. This condition limits the applicability of the VDC 

abstraction and the potential of deploying parallel computing. In 

this paper, we propose a new abstraction based on our 

Application Centric Network Virtualization (ACNV) approach. 

Specifically, we model a service application offered by a service 

provider as a virtual network of service function nodes, which 

closely matches the service provider’s view on the architecture of 

the application. An infrastructure provider that hosts the 

application decides how to map the virtual network to the 

substrate network. Different from the VDC abstraction, each 

virtual node in our proposed abstraction can be split and mapped 

onto multiple physical machines, which allows the infrastructure 

provider to provide auto scaling for the application with variable 

number of physical machines for exploring the full benefits of 

parallel computing. We also allow multiple virtual nodes to be 

mapped and colocated in the same physical machine to minimize 

resource fragmentation and communication overhead. Extensive 

simulation results show that the proposed ACNV abstraction 

outperforms existing VDC-like approaches in achieving optimal 

resource usage. 

Keywords—Architecture; Distributed network; Network 

topology, Distributed application; Modeling technique, Distributed 

programming  

I. INTRODUCTION  

Cloud computing is becoming the world-wide computing 
paradigm for low-cost computing services. Today’s cloud 
computing is built upon massive datacenters that deploy large 
number of commodity switches and servers. While these 
switches and servers drive down the cost for cloud computing, 
they also pose significant challenges for applications to utilize 
these resources efficiently without introducing unnecessary 
overhead. Many programming models such as MapReduce [1] 
have been developed to achieve large-scale parallel computing 
with little extra cost. However it remains unsolved for an 
infrastructure provider (InP) to optimally host multiple service 
applications within its cloud infrastructure. 

 Some recent research works have proposed the Virtual 
Data Center (VDC) [2-5] as an abstraction for the interface 
between service providers (SPs) and InPs. The VDC concept 
originates from the traditional network virtualization that is 
focused on embedding multiple virtual networks (VNs) onto a 
shared network substrate [6-7]. The VDC abstraction models 
an application as a virtual network. It is assumed that an SP 
needs to convert its application into a VDC and presents this 
VDC to an InP as a requirement. The InP then tries to embed 
this VDC with the given virtual nodes and topology onto its 
infrastructure through an optimization process. Similar to the 
traditional studies on VNs [8-12], each virtual node in VDC is 
considered as a virtual machine (VM) that can only be mapped 
onto a single physical machine. This condition limits the 
applicability of the VDC abstraction and the potential of 
parallel computing.  Because an SP does not have the global 
knowledge of all applications offered by different SPs sharing 
the same infrastructure, it is difficult for an SP to decide how 
many VMs an application requires and how much resource 
each VM should have. On the other hand, an InP cannot 
optimize its resource usage by changing number of VMs for 
each application and the size of each VM although it does have 
the global view of all SPs.  

A. Cloud Services from IaaS to PaaS 

The VM as a service is mainly adopted in the Infrastructure 
as a Service (IaaS) class. Although IaaS is a popular service 
class, the interest in the so-called Platform as a Service (PaaS) 
class is growing very fast. A cloud platform offers an 
environment on which developers create and deploy 
applications and do not necessarily need to know how many 
processors or how much memory the applications will be using 
as long as their service performances are satisfied.  

Amazon Web Services (AWS) [13] is one of the major 
players in the cloud computing market. It serves as a good 
example for the migration from IaaS to PaaS. It pioneered the 
introduction of IaaS clouds in 2006. However, it advocates 
PaaS aggressively in recent years [14]. It is now considered as 
offering PaaS like services with the option of IaaS-like control 
in some cases [15]. A cloud-based application offered by a SP 
typically consists of multiple components with each component 
performing certain functions.    The output of a component can 
be routed to other components through messaging queues that 
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help decouple different components and enable asynchronous 
processing [14].   Bundling a component with operating system 
and associated configuration can create an Amazon machine 
image (AMI). Instances (or VMs) can be instantiated from 
AMIs as needed and run on one or multiple physical machines. 
Elasticity can be achieved by combining the CloudWatch, Auto 
Scaling, and Elastic Load Balancing features, which allow the 
number of instances to scale up and down automatically based 
on a set of customizable rules, and traffic to be distributed 
across available instances.  

B. System Description 

With PaaS becoming popular, we need a new abstraction 
that better characterizes the interface between SPs and InPs. In 
this paper, we propose a new interface abstraction based on our 
Application Centric Network Virtualization (ACNV) approach. 
Specifically, we model an application as a virtual network in 
which a virtual node represents a functional component of the 
application. As we can see from last paragraph, this virtual 
network closely matches the view and implementation as seen 
by the SP. The InP can embed this virtual network onto its 
substrate network through an optimization process. In contrast 
to the VDC abstraction, our abstraction allows a virtual node to 
be mapped onto multiple substrate nodes to help realize load 
balancing and achieve parallel computing. We also allow 
multiple virtual nodes to be mapped and colocated in one 
physical machines. This kind of many-to-many mapping 
enables full flexibility to maximize the efficiency of resource 
usage.   

Furthermore, we propose to classify nodes into three 
categories based on their roles in a network for both virtual 
nodes and substrate nodes: transit nodes that relay traffic, but 
do not originate/sink traffic; stub nodes that originate and sink 
traffic, but do not relay traffic; and hybrid nodes that do both. 
Because a hybrid node can be decomposed into a transit node 
attached with a stub node as shown in Fig.1, we will focus on 
the first two types of nodes in this paper. 

 

Fig. 1. Illustration of decomposing a hybird node into a transit node attached 

with a stub node. 

A substrate transit node (STN) such as a switch is typically 
limited by its transit bandwidth capacities rather than by its 
compute or storage resources. An SP can define some virtual 
transit nodes (VTNs) for an application that can help elaborate 
its communication requirements for the application. This issue 
has been studied in detail in [3] under two special virtual 
topologies. In this paper, we propose a generic formulation that 
can map arbitrary topologies with any given traffic patterns. 
We allow a VTN to be split onto multiple STNs selected by the 
SP as well as multiple VTNs to colocate in the same substrate 
node. These different options provide great flexibility to 

accommodate different traffic patterns and therefore are helpful 
in mitigating various congestion problems [3]. 

Substrate stub nodes (SSN) are limited by their compute 
and storage resources. Different from existing VN models, we 
also allow a virtual stub node (VSN) to be split onto multiple 
SSNs in addition to colocating multiple VSNs at the same 
SSN.  

With the above extensions, we can model various 
applications that are supported by today’s datacenters. For 
example, MapReduce is a distributed programming framework 
that is widely used in Today’s datacenters [1]. It includes a 
mapping stage and a reducing stage. In the mapping stage, a 
large number of Mapper tasks run in parallel to perform 
filtering and sorting. The outputs of the mapping stage are 
shuffled to a large number of Reducer tasks that perform 
summary operations in parallel. Using our modeling approach, 
a MapReduce application can be modeled as a VSN (Node 1) 
that represents the Mapper function, one VTN (Node 2) that 
represents the shuffling process, and another VSN (Node 3) 
that represents the Reducer function as shown in Fig. 2. The 
three nodes are connected into a linear topology that greatly 
simplifies an SP’s view on the application. The SP only needs 
to specify CPU load requirements for Nodes 1 and 3 and the 
bandwidth requirements for the two virtual links and Node 2. 
The InP will decide how to map this virtual network to its 
substrate network. With node splitting, Nodes 1 and 3 can be 
mapped onto large clusters of SSNs respectively to support 
parallel computing while Node 2 can be mapped onto a cluster 
of STNs through the optimization process discussed later as 
illustrated in Fig.2. The two virtual links will be mapped onto a 
large number of substrate paths to utilize the rich connectivity 
within a datacenter network.  

 

Fig. 2. Modeling MapReduce computation with virtual nodes. S stands for 
servers; T stands for Top of Rack switch; A stands for aggregation switch. 

Another area our new abstraction can be applied to is 
Network Function Virtualization (NFV). Traditionally a 
service function chain (SFC) consists of a set of dedicated 
network service boxes such as firewall, load balancers, and 
application delivery controllers that are concatenated together 
to support a specific application. With a new service request, 
new devices must be installed and interconnected in certain 
order. This can be a very complex, time-consuming, and error-
prone process, requiring careful planning of topology changes 
and network outages and incurring high OPEX. This situation 
is exacerbated when a tenant requires different service 
sequences for different traffic flows or when multiple tenants 
share the same infrastructure network. NFV is a new concept 
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built upon network virtualization. It involves the 
implementation of network service functions in software that 
can run on a range of industry standard high volume servers, 
switches, and storage.  To handle large volume of traffic, each 
service function can be mapped to multiple physical machines 
with auto scaling to achieve parallel processing and load 
balancing. It is easy to see that our abstraction can be applied 
to NFV based SFCs with each service function modeled as a 
virtual node. 

The remaining part of this paper is organized as follows: 
Section II will describe our formulation process. Numerical 
results will be presented in Section III. Section IV will briefly 
review related literature and highlight the key contributions of 
this paper. Section V will conclude this paper. 

II. NETWORK MODEL AND PROBLEM FORMULATION 

In this section, we first describe our network model that can 
capture all mapping scenarios. We then formulate the 
optimization process as a Linear Programming (LP) problem. 
Instead of limiting our discussion to specific applications or 
datacenter topologies, we will consider scenarios as general as 
possible so that our approach can be applied to a wide range of 
applications. Fig. 3 shows an example with an arbitrary virtual 
network being mapped to an arbitrary substrate network. We 
will use this example to illustrate the formulation process. 

A. Substrate Network 

A substrate network is modeled as a weighted directed 
graph and denoted as           , where    is the set of 
substrate nodes and    is the set of substrate links.  Each node 
      has a location      . 

Each substrate link       between two substrate nodes    
and    has the bandwidth capacity value      .  

Different from existing approaches [8-12], we divide    
into two subsets: the set of all SSNs denoted by     such as 
Nodes A, B, G, I, and J in Fig. 3 and the set of all STNs 
denoted by     such as Nodes C, D, E, F, and H in Fig. 3. 
           and           because a substrate 
node is either a stub node or a transit node but not both. Each  
        has a CPU capacity value       . To simplify 
notations, we do not consider memory and storage resources in 
this paper. Our approach can be generalized to include those 
resources easily. Interested readers can see the treatments in [4-
5] as an example. We assume an SSN will not carry transit 
traffic, which is the typical case for today’s datacenters. But we 
assume there are unlimited bandwidths among colocated VSNs 
enabled by Hypervisor because the bandwidths within a 
substrate server are rarely exhausted due to the short distance 
and large amount of memory available. 

Most of today’s switches or routers are non-blocking 
internally (i.e. the internal switch fabric speed is much faster 
than each output port speed). Traffic can only be blocked by 
limited bandwidths of output ports as defined earlier by the 
link bandwidths.  Therefore we assume that STNs have 
unlimited internal bandwidths and limited port bandwidths. We 
will focus on how VTNs can satisfy their transit bandwidth 
requirements through mapping onto one/multiple STN(s). Our 

approach in this paper can be generalized to the cases in which 
the internal bandwidths of STNs are limited. 

 

Fig. 3. An example of a virtual network and its associated substrate network. 

B. VN Request 

We model each VN as a weighted directed graph, denoted 
by                    , where    is the set of virtual 
nodes,    is the set of virtual links,   is the arrival time of the 
VN request and   is the duration of the VN request. The set of 
all virtual networks hosted by the substrate network at time   is 
denoted by                        . Whenever the 
context is clear, we simply write         as   . We denote 

the ith virtual link of a virtual network as   
     

    
  , where 

  
  and   

  are the corresponding start and end virtual nodes. 
Each virtual link has an associated bandwidth requirement 

    
  .  

Similarly, we divide    into two subsets: the set of all 
VSNs denoted by     such as Nodes a, d, and e in Fig. 3 and 
the set of all VTNs denoted by     such as Nodes b and c in 
Fig. 3. An SP may prefer mapping a virtual node onto some 
specific physical nodes or dictating some virtual nodes to be 
mapped onto different physical nodes. To facilitate this kind of 
requirements, it is assumed that each virtual node       has 
a location        and a mapping radius      . Let 
               denote the distance between the virtual node 
   and an arbitrary substrate node    (measured in any metrics 
as defined by the SP such as hop count or delay in a datacenter 
network). If                    ) and    is the same 
type of node as    (i.e. they are either both stub nodes or 
transit nodes),    will be called a candidate node for the virtual 
node    to be mapped onto. By defining candidate node, we 
allow an SP to specify some rules for substrate node selection. 
It should be noted that        does not need to be a physical 
distance. For example, it can be a hop count. Then by setting 
       , we can limit the candidate servers to those under 
the same Top of Rack (ToR) switch. This will maximize 
performance while lowering reliability. If an SP wants to 
maximize reliability, distance can be defined as a measure of 
zones. Then the optimization process can lead to selecting 
servers located in different zones.   

We do not allow VTNs to be mapped onto SSNs and vice 
versa because they have different types of resources. The set of 
all candidate nodes for    is denoted as       .  The substrate 
link that connects two candidate nodes of a virtual node is 
called internal substrate link. For example, in Fig. 3, the 
candidate set of the VSN e includes Nodes I and G; the 
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candidate set of the VTN c includes Nodes D, E, and H. Link 
(E, H) is an internal link. It is interesting to note that, Nodes e 
and d can be partially colocated at Node I, similarly Nodes b 
and c at E. 

The set of all VSNs hosted by an SSN         is 
denoted as         (e.g. Nodes d and e hosted by Node I) and 
the set of all VTNs hosted by an STN is denoted as 
               (e.g. Nodes b and c hosted by Node E). 
Each VSN         requires a CPU capacity value       .  
We assume that        can be arbitrarily split and mapped 
onto any number of SSNs selected by an SP. This assumption 
is valid because new computing models such as MapReduce 
can distribute a computation to hundreds or thousands of 
machines as they are being used in today’s datacenters. The 
granularity is small enough to be considered as real number. 

For each         ,  let        denote the set of all its 
adjacent virtual links. Different from VSNs, we assume each 
VTN has certain transit requirement rather than CPU load. A 
VTN typically has multiple ports. The transit capacity between 
each pair of virtual links incident to the virtual node must be 
specified in order to ensure traffic can be carried through the 
virtual node without any congestion. This means the SP must 
specify a traffic pattern within each VTN. 

We assume each pair of adjacent virtual links require a 

transit bandwidth value        
    

   , where      
    

  , 

  
    

        , identifies a virtual transit link, and   
  is the 

incoming virtual link and   
  is the outgoing virtual link. A 

virtual transit link can only be mapped to a set of paths in the 
substrate graph made up by the internal substrate links of the 
VTN. The set of all virtual transit links of an    is denoted by 

       . Clearly        
    

    depends on     
   and     

  , 

as well as all other virtual transit links. This will make our 
formulation results very different from existing research 
studies that do not consider traffic pattern within a virtual node 

at all. We will discuss how to select        
    

    in detail 

later. 

C. VN Mapping  

In this paper, we consider the online network virtualization 
problem, which is more realistic in real world. We assume VN 
requests arrive dynamically. For each VN request, the InP has 
to decide whether it has enough resources to host the requested 
VN, assuming existing VNs will not be reallocated. If the 
request is acceptable, the InP has to map the VN request to the 
substrate network. We consider the cases that allow both node 
colocation and node splitting.  These scenarios are certainly 
more challenging than the traditional setting that only 
considers colocation at most. We address the challenge by 
treating VSNs and VTNs differently. We first need to know 
how many resources are available at any time, upon which we 
can decide whether a new VN request can be granted. 

For an    ,  we denote the CPU capacity value assigned to 
an arbitrary candidate node             as            
      

     where                      For 
           , we set             . We have 

                                             

       



The residual CPU capacity of an SSN at any time t can then 
be defined as following 

    
                                

                



A virtual link is mapped onto multiple paths in the substrate 
network. The bandwidth value for a virtual link    
  assigned to a substrate link       is denoted by         .   

For        , its transit bandwidth requirement for each 
virtual transit link is also mapped onto multiple paths in the 
substrate network. We denote the bandwidth value of a virtual 
transit link         assigned to an arbitrary substrate link    as 
        .  

We can calculate the remaining bandwidth of a substrate 
link as following: 

    
                

                   

    

      

              

                     

D. Augmented Graph 

Similar to the approach adopted in [10], we also create an 

augmented substrate graph            
 
  for the graph 

          . For each      , a corresponding meta-node 
      is created. Each candidate substrate node of       is 
connected to the meta-node through a bidirectional meta-link 

with infinite bandwidth. We set                      

and   
 
                                , which 

form            
 
 . The set of all meta-links incident to a 

meta-node       is denoted by     
  . If   

  and   
  are the 

start and end nodes of a virtual link,        
   and    

    
   will denote the corresponding meta-nodes. The 

augmented graph for the example in Fig. 3 is shown in Fig. 4. 

 

Fig. 4. The augmented graph for the example shown in Fig. 3. 

E. Virtual Stub Node Mapping 

With all existing studies [2-12], the bandwidth for a virtual 
link is typically given independently from the CPU capacity 
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requirements of its associated VSNs. This is fine if a virtual 
node is mapped onto a single substrate node. In this paper, we 
allow a virtual node to be mapped onto multiple substrate 
nodes. A new challenge will emerge with this new model. The 
CPU requirement of the virtual node is assigned to multiple 
candidate substrate nodes while the bandwidth requirement of 
its any adjacent virtual link is mapped to multiple substrate 
links associated with different candidate nodes. There is an 
issue on whether the traffic originated/terminated from/at a 
substrate node for a virtual link should be somehow correlated 
to the CPU capacity assigned to the substrate node. 

An easy option is to keep bandwidth assignments 
independent from CPU assignments as the way existing 
research studies have done for non-splitting node mapping [2-
12]. However this may oversimplify the problem because it is 
unlikely that a node providing lots of CPU power will generate 
very little communication traffic. To this end, a more practical 
assumption is that the traffic originated/terminated from/at an 
SSN for a virtual link is proportional to the CPU power 
assigned to the substrate node for the associated virtual node. 
This approach keeps linear relationships among all variables 
while making allocated bandwidth for each substrate node 
correlated to the CPU load assigned to the node. We will 
follow this approach in this paper. More details can be found in 
remarks about Eqs. (13), (15), (16), and (20) later. An example 
on how the bandwidth requirement of virtual link (a, c) in Fig. 
3 is split is shown in Fig. 5. 

 

Fig. 5. An example to show how the bandwidth requirement of virtual link 

(a, c) in Fig. 3 is split.  

F. Traffic Pattern for Virtual Transit Node 

As we mentioned earlier, an SP needs to specify a 
bandwidth requirement for each virtual transit link within a 
VTN. This requirement will be mapped onto the internal 
substrate links of the VTN in the substrate network. An internal 
substrate link is a link that connects two candidate nodes of the 
same VTN (e.g. link (D, E)  in Fig.4).  

It is a challenging task for an SP to specify the bandwidth 
requirement for each virtual transit link because virtual transit 
links of a VTN are interdependent. This challenge is best 
illustrated with Fig. 6, in which a virtual node with four input 
virtual links and four output virtual links is shown together 
with some traffic patterns. In Fig. 6(a), the traffic pattern is 
uniform in the sense that no more than one virtual link is 
sending traffic to the same output virtual link at the same time. 
Fig. 6(b) shows a more difficult situation where all input 
virtual links are trying to send traffic to one output virtual link 
with their full capacities at the same time (e.g. an incast flow 

pattern). In reality, traffic patterns are rarely like the two 
extreme cases we have just shown.  

Other than interdependency, the bandwidth requirement of 
a virtual transit link also depends on the bandwidths of input 
and output virtual links. In this paper, similar to prior studies, 
we assume the bandwidths of all virtual links are given by the 
SP. Clearly, there is no point to request for the bandwidth of a 
virtual transit link much larger than the bandwidths of the 
corresponding input and output virtual links. The impact of 
traffic patterns are also discussed in [3] under two special 
virtual topologies. Our approach here is more general. 

 

 

Fig. 6. A virtrual node with four input virtual links and four output virtual 

links under two different traffic patterns. 

To characterize traffic patterns, we define the term 
distribution ratio denoted by      

    as such that      
    

fraction of the traffic coming in from the ith input virtual link 
will be carried by the virtual transit link to jth output virtual 
link. Wherever the context is clear, we will simply drop the 
part in brackets to simplify our notation. Clearly we have  

    

    
            

        
                                

As an example, we use Fig. 7 to illustrate the traffic flows 
for VTN c in Fig. 3 with virtual link (a, c) as the incoming link. 
The traffic coming from Node a is split into three streams 
leading to Nodes b, d, and e respectively with the ratios as 
shown in Fig. 7.  

 

Fig. 7. An illustration on how traffic from a virtual link (a, c) is split into 

three output streams within VTN c. 

It is easy to see the following conditions must be satisfied 
in order to make a VTN non-blocking. 
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Eq. (5) makes sure that the virtual node is non-blocking 
internally while Eq. (6) makes sure the output ports are non-
blocking. 

Similarly, we can define      
    as the fraction of output 

virtual link j’s traffic received through a virtual transit link 
from input virtual link i. We will also drop the part in brackets 
wherever the context is clear. Therefore we have 

    
       

  

        
      

             
        

    
                  

Clearly, 

            
                               

    
           



Then, Eq. (6) can be simplified to the following one. 

       
          

          
    

        

By combining Eqs. (5) and (9) , we have 

       
          

    
           

    

         
    

                    

It is wasteful to set        
    

    larger than        
  . 

The conditions defined in Eq. (10) will help an SP reduce 
resource waste and prevent congestion. In this paper, we 
assume that an SP will provide a traffic pattern for each VTN, 
which satisfies Eq. (10). The SP can do so by analyzing its user 
traffic history or through online measurements. This process is 
very similar to the process that an InP builds and dimensions 
its physical networks. Our focus in this paper will be on 
mapping the traffic patterns specified by an SP onto the 
substrate network.  

G. Objective 

An InP typically wants to maximize its revenue while 
minimize its cost. However, revenue depends on many 
marketing factors which are subject to change. In this paper, 
we focus on minimizing the cost of accepting a new VN 
request as other works [8-12]. The cost of embedding a VN 
request is defined as the sum of the costs of all substrate 
resources allocated to the VN. 

H. Linear Programming Formulation 

Upon receiving a new VN request, an InP will first 
calculate the remaining resources using Eqs. (2) and (3). The 
InP will then try to map the VN request onto the remaining 
resources with the objective that will minimize the overall cost 
while satisfying the requirements of the VN. To this end, we 
provide two sets of cost weights so that different resources can 
be combined into a cost function that can be minimized. 
Specifically,     is the cost weight assigned to a substrate link 
     . The cost of the link is proportional to its normalized 
bandwidth usage with a maximum value     when its total 

bandwidth is fully allocated. Similarly,     is the cost weight 
assigned to a substrate node  . These weights can stay 
unchanged for all VN requests or change from one VN request 
to another. The InP can manipulate the weights for adjusting 
the significance of each specific resource as needed. For 
example, if some physical links have higher costs due to 
distances or other physical constraints, the InP may set the 
weights for those links higher so that they have less chance to 
be selected. If the InP cannot find a mapping that satisfies the 
VN request, the request will be rejected.   

Because we assume that a virtual node can be divided 
arbitrarily and mapped onto a large cluster of substrate nodes 
as we argued earlier, we can formulate our embedding process 
as a two-level Multi-Commodity Flow (MCF) problem. The 
first-level commodities are the virtual links with their 
corresponding bandwidths as their demands, where each 
demand can be routed through multiple paths in the substrate 
network.  

The second-level commodities are virtual transit links of 
each VTN. We set the demand of each virtual transit link to 
satisfy Eq. (10), which is routed through internal substrate links 
of a VTN via one or multiple paths. Due to the dependency 
between first-level and second-level commodities, the flows of 
second-level commodities must match the flows of 
corresponding first-level commodities as defined by Eq. (10).  

In this paper we assume a virtual transit link can be mapped 
onto any paths routed through internal substrate links of a 
VTN. However in real networks, various physical, protocol, or 
administrative limitations may be imposed when the traffic of a 
virtual transit link is divided and distributed over different 
substrate links. These limitations can be formulated as extra 
constraints during the optimization process. 

Variables: 

    
 : A variable denoting the total amount of flow from 

  to   on a link   
 
              

        
   for the 

 th virtual link   
    

    
  , where   and   are two 

neighboring substrate nodes. This variable describes 
how the bandwidth of a virtual link   is mapped onto a 
substrate link      . 

    
   

: A variable denoting the total amount of flow from 
  to  , where                 , for the virtual 

transit link that connects incoming virtual link   
  

     to an outgoing virtual link   
      . This 

variable describes how the bandwidth of a virtual transit 

link      
    

   is mapped onto an internal substrate link 

     . 

    : A variable denoting the percentage of the CPU 
capacity weight value of the VSN       assigned to 
a candidate node        .  

Objective: 

Minimize  
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Constraints: 

-Capacity Constraints: 

    
 

    

     
   

                    
    

      

           

                 

                                      

        

 

-Flow Constraints: 

    
  

            
    

  

    
    

            
    

  

  

                     
        

            

    
     

      
                 

       

         
         

     
     

      
                

       

         
         

     
 

       
  

     
            

                     

     
 

       
  

     
            

                     

      
 
     

   

       

       
      

   
   

       

 

                        
    

             

-Meta Constraints 

                                      

       

 

-Domain Constraints 

   
                                         

   
   

                     
    

                       

                                              

Remarks: 

 Function (11) is the objective function that tries to 
minimize the total cost while balancing the loads across 
different substrate links and substrate nodes. For the 
load of each link, we count both the bandwidths 
allocated for virtual links and the bandwidths allocated 
for virtual transit links.   is a small positive number 
used to avoid dividing by zero. The load of each link or 
node is normalized by its residual capacity. Therefore 
the links or nodes which have less residual capacities 
tend to have higher costs. This will encourage balanced 
loads across the whole network.     and    are cost 
weights used by an InP to control the significance of the 
corresponding link or node.       and    
 .        and         can be calculated using Eqs. (2) 
and (3) respectively. 

 Constraints (12) and (13) are the link and node capacity 
bounds. 

 Constraint (14) is the flow conservation conditions for 
virtual link commodities. Each flow can only traverse 
STNs and the candidate nodes of the two ending virtual 
nodes of a virtual link to avoid using an SSN as transit 
node. It should be noted that constraint (14) allows 
source and destination virtual nodes of a virtual link 
mapped onto the same substrate node.  Take Node E in 
Fig. 3 as an example. Node E can serve as both source 
and destination of the virtual link (b, c). 

 Constraints (15) and (16) ensure the traffic originated 
from or sunk at a substrate node for a virtual link is 
proportional to the allocated CPU capacity from the 
associated VSN to the substrate node as we argued 
earlier.   

 Constraints (17) and (18) ensure the bandwidth 
requirement for each virtual link where the 
corresponding virtual nodes are VTNs is satisfied. 

 Constraint (19) is a variation of flow conservation 
conditions for each virtual transit link as second-level 
commodity. It makes sure first-level flow amounts (i.e. 

   
 

and    
 ) and second-level flow amounts (i.e. 

   
   

and    
   

) satisfy Eq. (10) at flow level. Specifically, 

      
 

 is the amount of the traffic carried away by jth 

virtual link from Node u for the virtual transit link 

     
    

  .    
   

  is the amount of traffic carried away by 

the internal link (u, v) from Node u for the virtual transit 

link      
    

  .        
  is the amount of traffic carried 

into Node u from ith virtual link for the virtual transit 

link      
    

  .    
   

is the amount of traffic carried into 

Node u by the internal link (v, u) for the virtual transit 

link      
    

  .  

 Constraint (20) is the normalization requirement for 
CPU capacity assignments. It allows a VSN to be 
mapped onto multiple candidate SSNs. 

 Constraints (21), (22) and (23) denote the real domain 
constraints. 
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III. NUMERICAL RESULTS 

In this section, we present our numerical results. Because 
our network model is significantly different from all existing 
approaches, it is difficult to make a fair comparison with the 
existing ones directly. Therefore we take a two-step approach. 
In the first step, we assume all substrate and virtual nodes to be 
homogeneous nodes where substrate nodes have limited CPU 
resources and unlimited transit bandwidths while virtual nodes 
only have CPU requirements. Under this context, the 
differences between our model and the existing ones are 
limited to different mapping options.  Our attention is then 
focused on the impacts of node splitting and colocation in 
comparison with the existing ones. In the second step, we will 
include node types as evaluation factors. Because it is hard to 
make a fair comparison under this situation, we will focus on 
the performances of our VN model with varying parameters 
without comparing with existing approaches.   

A. Homogeneous Node Model 

In this subsection, we consider the case in which all nodes, 
both substrate and virtual, are homogeneous. All substrate 
nodes have limited CPU capacities and unlimited transit 
bandwidths. This assumption is similar to most of existing 
approaches.   

There are quite a few papers on NV in recent years. It is 
hard to choose which one to compare with. We decided to 
choose [10] as the competitive one for several reasons. First of 
all, the paper is well accepted in academic world and widely 
cited; Second, the paper provides detail information about its 
simulation process. This allows us to reproduce their results 
with excellent accuracy. Third, the paper uses random 
generated topologies that are consistent with our general 
approach described in the last section. We do not want to limit 
our simulation to specific topology that cannot demonstrate the 
generality of our approach. 

In specific, we choose D-ViNE (Deterministic node 
mapping with MCF link mapping) in [10] as our reference 
model. The reason is that D-ViNE shows the best performance 
among all algorithms discussed in [10]. As most of existing 
studies [2-12] on NV, D-ViNE only allows one-to-one 
mapping. Node splitting and node colocation are not allowed. 
Although the study in [12] has considered colocation, the 
available information is limited, making it hard to reproduce 
the results. We denote our scheme as ACNV (Application-
Centric Network Virtualization) for convenience of 
description.  We expect that our ACNV approach will 
outperform D-ViNE significantly because ACNV allows 
many-to-many mapping that can take advantage of node 
splitting and node collocation for reducing resource 
fragmentation and communication overhead. 

1) Simulation Setup 
We have implemented a discrete event simulator that 

captures the dynamic processes of service request arrivals as 
well as online network optimization and resource allocations. 
The optimization tool we used is glpk [19].  

A substrate network was generated with 50 nodes in 25×25 
grids using GT-ITM tool [20]. The links that connect each pair 
of substrate nodes were randomly generated using Waxman 2 

model with α=0.5 and β=0.2 [20].  There were 123 links in 
total.  

As discussed in the last section, both allocated bandwidth 
and CPU resources are normalized by their corresponding link 
or node residual capacities in the cost function (11). Therefore, 
the absolute values of link and CPU capacities do not matter in 
terms of the optimization results. It is their relative values that 
make differences. In our setup, we try to see the impacts of 
both link and node capacities. Therefore, we chose     
    ,              . The CPU resources of the 
substrate nodes and bandwidth resources of the substrate links 
were generated randomly with real numbers uniformly 
distributed in the same range between 50 and 100. In this way, 
we did not specifically try to favor one resource over the other.   

VN requests arrived in Poisson processes with varying VN 
arrival rates from average four VNs per 100 time units to eight 
VNs per 100 time units. Each VN request had an exponentially 
distributed lifetime with a mean of 1000 time units. In each VN 
request, the number of virtual nodes was randomly generated 
by a uniform distribution between 2 and 10. Links between 
each pair of virtual nodes were also generated using Waxman 2 
model with α=0.5 and β=0.2.  The bandwidth requirements of 
virtual links were uniformly distributed between 0 and 50 
while the CPU requirements of virtual nodes were uniformly 
distributed between 0 and 20 which is small because D-ViNE 
does not support node splitting. Virtual nodes were randomly 
located on 25×25 grids. The results will highly favor our 
ACNV. Each simulation was run for 50000 time units that are 
long enough (50 times longer than the average lifetime of a 
virtual network) to have sufficient number of independent 
samples so that statistical errors are negligible. The average 
number of the generated virtual networks for each simulation 
ranges from 2000 to 4000, which are extremely large, making 
our results highly reliable. Therefore, there is no need to show 
confidence intervals.  

2) Performance Metrics 
We use the following most common metrics for 

performance evaluation. 

 Acceptance ratio: This metric measures the percentage 

of the number of VN requests accepted during the 

given simulation time period. 

 Average node utilization: This metric is computed by 

averaging the time-averaged utilizations over all 

substrate nodes.   

 Average link utilization: This metric is the average of 

the time-averaged utilizations of all substrate links. 

 Average number of colocated nodes: This metric is 

calculated by averaging the time-averaged number of 

colocated nodes over all SSNs/STNs. 

 Average number of mapped nodes: This metric is 

calculated by averaging the number of mapped nodes 

over all VSNs/VTNs. 

 

3) Comparative Results  
We consider two major factors that may affect the 

performance of VN embedding. One is the VN arrival rate that 
decides the load of the substrate network. The other is the 
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mapping radius between the locations of virtual nodes and their 
candidate nodes. We set the mapping radius to be the same for 
all virtual nodes of a VN to simplify parameter setting.   

We first look at the results with varying VN arrival rates 
from average 4 to 8 arrivals per 100 time units while the 
mapping radius D of VNs is set to 10. Fig. 8(a) shows the 
acceptance ratio vs. VN arrival rate. While both D-ViNE and 
our ACNV show similar trend with increasing load, the 
acceptance ratios of ACNV are always higher than the ones of 
D-ViNE.  From Fig. 8(b), we can see that the average node 
utilization of ACNV is higher than D-ViNE. This is not a 
surprise. Although all three mapping options (one-to-one, 
splitting, colocation) do not reduce actual CPU resource usage 
for a single virtual node, with higher acceptance ratio, the total 
accepted CPU load is higher for ACNV. Therefore the average 
node utilization is higher, which clearly indicates the reduction 
of fragmented resources. 

 
                           (a)                                                           (b) 

 

 
                                 (c)                                                        (d) 

Fig. 8. (a) Comparison of acceptance ratios for ACNV and ViNE under 

varying VN arrival rate; (b) Comparison of average node utilizations of 

ACNV and ViNE with increasing VN arrival rate; (c) Comparison of average 

link utilizations of ACNV and ViNE with increasing VN arrival rate; (d) 
Average number of substrate nodes a virtual node is mapped onto and average 

number of colocated virtual nodes with increasing VN arrival rate. 

 On the other hand, average link utilization behaves 
completely different as shown in Fig. 8(c). Here the average 
link utilization of ACNV is significantly lower than D-ViNE.  
This clearly shows the gain of collocation by reducing 
communication overhead. Lower link utilization and higher 
acceptance ratio will certainly bring higher revenue for InPs. 

We now study the inter-relationship between node splitting 
and colocation. The objective function as formulated in Eq. (7) 
depends on both node and link utilizations. Because CPU loads 
cannot be reduced through either node splitting or colocation 
for a single virtual node, the objective function is targeted at 
balancing loads in terms of CPU resources although the gain is 
not significant.  Node splitting can certainly be helpful in 
achieving load balance. On the other hand, link utilizations can 
be reduced significantly through colocation. Therefore the 
objective function will strongly favor colocation. Nevertheless, 

because a virtual node can be both split and colocated, node 
splitting can provide more options for colocation through 
partial colocation and therefore be helpful in reducing 
bandwidth requirements.  Fig. 8(d) shows the average number 
of substrate nodes a virtual node is mapped onto and the 
average number of colocated nodes.  From Fig. 8(d) we can see 
that the average number of colocated nodes is around 2.5 to 2.6 
while the average number of nodes a virtual node is mapped 
onto is around 1.1. Both are relative stable with increasing 
load. These results show that, with modest colocation and node 
splitting, significant link bandwidth saving can be achieved. 

The opportunities that a virtual node can be mapped to 
multiple substrate nodes and multiple virtual nodes can be 
colocated partially or fully certainly depend on the mapping 
radius. The larger the mapping radius is, the higher the number 
of candidate nodes is. To test the impacts of mapping radius, 
we varied the mapping radius from 2 to 15 while fixing the 
average arrival rate to 8 arrivals per 100 time units. Fig. 9(a) 
shows how the average number of colocated nodes and average 
number of mapped nodes of our ACNV scheme change with 
increasing mapping radius. Clearly, the average number of 
colocated nodes benefits more than the average number of 
mapped nodes due to the drive to minimize link usage. 
Although the average numbers are relative small, we found the 
maximum numbers can be as large as 5 for the number of 
mapped nodes and 9 for the number of colocated nodes, both 
are quite large for the small substrate network we have setup. 

Figs. 9(b) and 9(c) show the average node and link 
utilization, respectively.  Fig. 9(d) demonstrates the acceptance 
ratio. From these three figures we can see that, when the 
mapping radius is small, there are very few candidate substrate 
nodes for each virtual node. In most cases, VN requests are 
simply rejected because one or more virtual nodes cannot find 
any candidate node at all.  Node splitting and colocation will 
not be helpful under this kind of situations. The results of 
ACNV and D-ViNE are nearly the same.  

 
                                  (a)                                                             (b) 

 
                                    (c)                                                        (d) 

Fig. 9. Results with homogeneous nodes: (a) average number of mapped 

nodes and average number of colocated nodes; (b) comparison of average 

node utilizations of ACNV and ViNE; (c) comparison of average link 

utilizations of ACNV and ViNE; (d) comparison of acceptance ratios for 
ACNV and ViNE. 
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When the mapping radius is increased, acceptance ratios for 
both ACNV and D-ViNE increase dramatically because more 
virtual nodes can find candidate nodes. When acceptance ratios 
reach above 55%, lacking of link or node resources becomes 
the key factor instead of the number of candidate nodes. Here 
colocation can play a very important role by reducing the link 
bandwidth usage.  It can be seen that ACNV shows consistent 
higher average node utilization because more virtual nodes are 
admitted and lower link utilization because of the benefits of 
colocation.  

It is interesting to note that, when     , the acceptance 
ratio of D-ViNE is actually higher than ACNV. This seems to 
contradict with the average node utilization in Fig. 9(b).  As 
observed in [10], acceptance ratio as a metric can sometimes be 
misleading because an InP can accept a large number of VNs 
with low resource requirements and reject a small number of 
VNs with heavy resource requirements.  Because D-ViNE only 
supports one-to-one mapping, a VN request with high CPU 
requirements will likely be rejected if any one virtual node of 
the VN request cannot find a candidate substrate node that has 
enough CPU resource to host the virtual node, while under 
ACNV, the virtual node can be split and accommodated 
through multiple substrate nodes. This situation typically 
happens when CPU resource is the main bottleneck part. Large 
mapping radius means more candidate nodes that lead to more 
alternative paths. For D-ViNE, bottleneck moves from link 
bandwidths to CPU resources with increasing number of 
alternative paths. This explains the differences between Figs. 
9(b) and 9(d). 

B. Heterogeneous Node Model 

In this subsection, we consider heterogeneous node model 
where VSNs have CPU resource requirements while VTNs 
have transit bandwidth requirements. SSNs are limited by CPU 
capacities while STNs are not limited by either CPU capacities 
or internal transit bandwidths (i.e., STNs are internally non-
blocking) as we discussed in Section II. Each substrate link has 
a bandwidth capacity limitation and each virtual link has a 
bandwidth requirement.  

1) Simulation Setup 
A substrate network was generated using GT-ITM tool with 

a transit-stub graph which includes one domain with 25 transit 
nodes in 25×25 grids. The links connecting transit nodes were 
generated in pure random with probability 0.3. Each transit 
node is attached with a stub node in 5×5 grids around its 
attached transit node. There were in total 50 nodes that 
included 25 transit nodes and 25 stub nodes and 121 links. 
Link bandwidth capacities were generated uniformly between 
50 and 100. CPU capacities of stub nodes were also generated 
uniformly between 50 and 100.  

VN requests were also created using GT-ITM tool with 
transit-stub graphs. Each graph had one domain with a random 
number of VTNs, which range from 2 to 10 nodes with an 
average of 5 nodes in 25×25 grids. The virtual link between 
each pair of virtual nodes was generated randomly with 
probability 0.8.  Each VTN was attached with a VSN which 
was located in 5×5 grids around its attached VTN. The CPU 
requirement of each VSN was generated randomly between 0 

and 15. VN arrival patterns are similar to the ones described in 
last subsection. 

2) Transit Bandwidth Requirements 
It is difficult to choose distribution ratios and bandwidths of 

virtual links while still satisfying Eq. (10) for the average 2000 
to 4000 VNs we generated. Therefore we decided to setup the 
bandwidths of virtual links randomly between 0 and 3. Instead 
of defining different transit bandwidth requirements for 
different virtual links, we can define a uniform transit 
bandwidth requirement of a VTN based on a minimum (or 
maximum) bandwidth requirement for each virtual link 
incident to the VTN.  Specifically, we define the following 
minimum (or maximum) virtual link bandwidth requirement 
for each VTN: 

                       
  

Accordingly, we can define corresponding scaling factor for 
each virtual link as follows: 

  
       

       

    
  

                                 

We will drop the parts in bracket wherever the context is clear. 

Other than bandwidths of virtual links, distribution ratios 
also have impacts on transit bandwidth assignment as we 
discussed in Section II. In our simulation setup, we assumed a 
uniform traffic pattern which is widely adopted for typical 
switch design.  Let        denote the degree of node    . 
Then we set  

     
    

 

        
        

    
                     

Eq. (26) implies a VTN will distribute the incoming traffic 
from a virtual link equally to all outgoing virtual links. 

 With Eqs. (24) and (26), from Eq. (7), we have 

     
    

 

        
        

    
                     

With the above treatments, we can adapt Eq. (19) as the 
following: 

  
    

 

      
     

   

       

 
  
    

 

      
     

   
   

       



                        
    

            

Our simulation with heterogeneous nodes were made based 
on the LP formulation in Section II with Eq. (19) replaced by 
Eq. (28). These modifications are used here simply for easy 
simulation parameter setup. If internal congestion is a concern, 
maximum value instead of minimum value can be used (may 
cause congestion at output ports). They do not affect the 
general applicability of Eq. (19). 

3) Simulation Results 
Similar to the simulation with homogeneous nodes 

discussed earlier, we considered the impacts of load and 
mapping radius.  
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We first check the results with mapping radius fixed to 10.  
Fig. 10(a) shows the average CPU utilization of substrate stub 
nodes and the average utilization of substrate links with 
increasing VN arrival rate.  Fig. 10(b) shows the acceptance 
ratio.  From these figures, we can see that both stub node CPU 
utilization and link utilization increase with increasing load 
while acceptance ratio decreases. 

The gain of node splitting and colocation is not as visible as 
homogeneous node scenario discussed earlier. The reason 
behind this is the limitation imposed on different types of 
nodes. Because we only allowed virtual nodes to be mapped 
onto the same type of substrate nodes, i.e., virtual stub nodes to 
substrate stub nodes and virtual transit nodes to substrate 
transit nodes, the numbers of candidate nodes have reduced 
dramatically. So the opportunities of splitting and colocation 
have reduced. This can be confirmed in Figs. 10(c) and 10(d), 
where Fig. 10(c) shows the average numbers of mapped and 
colocated stub nodes and Fig. 10(d) shows the average 
numbers of mapped and colocated transit nodes.  They are all 
below 2.         

 
                         (a)                                                           (b) 

 
                                 (c)                                                         (d) 

Fig. 10. (a) Average CPU utilization of substrate stub nodes and average link 

utilization of substrate links with increasing VN arrival rate; (b) Acceptance 

ratio with increasing VN arrival rate;(c) Average number of substrate stub 
nodes a virtual stub node mapped  onto and average number of colocated 

virtual stub nodes with increasing VN arrival rate; (d) Average number of 

substrate transit nodes a virtual transit node mapped onto and average number 
of colocated virtual transit nodes with increasing VN arrival rate. 

Furthermore, when load increases, the average numbers of 
mapped nodes increase while the average numbers of colocated 
nodes decrease. This result indicates saturation of both the 
CPU capacities of stub nodes and the transit bandwidth 
capacities of transit nodes as also confirmed by the dramatic 
drop in acceptance ratio in Fig. 10(b). 

One way to increase the number of candidate nodes is to 
increase the mapping radius. We changed the mapping radius 
from 2 to 15 while fixing the average arrival rate to 8 arrivals 
per 100 time units. Figs. 11(a) and 11(b) show the average 
numbers of mapped and colocated stub nodes and the average 
numbers of mapped and colocated transit nodes with increasing 
mapping radius. While both node splitting and colocation 
increase with increasing mapping radius, colocation increases 

more dramatically with stub node. As shown in Fig. 11(c), the 
average link utilization starts decreasing when mapping radius 
increases beyond 10, which is in coincidence with dramatic 
colocation increase after mapping radius reaches beyond 10 as 
shown in Figs. 11(a) and 11(b).  This clearly shows the benefits 
of colocation.  

The average node utilization shows saturation after radius 
reaches 10. Acceptance ratio as shown in Fig. 11(d) slightly 
drops after mapping radius is beyond 10. This is again because 
the stub nodes accepted more VN requests with higher CPU 
demands and blocked a large number of VN requests with 
smaller CPU demands when stub nodes become saturated.   

 
                                 (a)                                                           (b) 

 
                                 (c)                                                         (d) 

Fig. 11. Results with heterogeneous nodes: (a) average number of SSNs a 

VSN mapped  onto and average number of colocated VSNs; (b) average 
number of STNs a VTN mapped onto and average number of colocated 

VTNs; (c) average CPU utilization of sub substrate nodes and average link 

utilization of substrate links; (d) acceptance ratio. 

IV. RELATED WORK 

Network virtualization is a relatively new concept. [6] and 
[7] provide comprehensive surveys related to this area. In the 
following part, we focus on those works that are closely related 
to this paper.  

An earlier study [8] considered the one-to-one online 
mapping scenario where VN requests arrive and leave 
dynamically. This kind of network embedding problem is NP-
hard. Heuristic algorithms developed in the paper measures the 
potential of each substrate node based on the stress of the node 
and the stress of its associated links. Virtual nodes are then 
assigned to substrate nodes according to the potential of each 
substrate node. After nodes are assigned, links are assigned 
using shortest path algorithm.   

Another research study [9] extends the paper [8] by 
allowing the substrate network to split a virtual link over 
multiple substrate paths. This helps reduce the link mapping 
part to MCF Problem with each virtual link as a commodity, 
which can be solved in polynomial time. Path splitting enables 
better resource utilization by avoiding bandwidth 
fragmentation. It also provides better load balance and 
reliability under dynamic network environments. However, the 
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node mapping part was still one-to-one which is NP-hard and 
heuristic algorithms were developed in [9].  

A recent study [10] tried to solve the NP-hard node 
mapping problem by first relaxing the integer constraints for 
the node mapping to obtain a linear program and then applying 
rounding techniques to select unique node mapping. While this 
approach makes node mapping solvable in polynomial time, 
applied rounding techniques can also make the results 
suboptimal.  

A latest work [11] on network virtualization extends [10] to 
WDM (Wavelength Division Multiploexing) and flexible-grid 
optical networks. The problem was formulated as mixed 
integer linear programs (MILP). Two heuristics were 
developed to achieve suboptimal solutions by exploring the 
opportunities of traffic grooming. 

Another extension achieved in [21] is to implement 
survivable virtual network embedding by considering physical 
networks that may partially fail. Heuristic algorithms based on 
fast re-routing were developed to mitigate failures.   

Inspired by the success of VMs enabled by Hypervisor, 
there are some recent works that started considering the 
colocation scenario [12]. A complex heuristic algorithm was 
developed to find optimal colocation strategy. However the 
work in [12] has not considered the case in which a node can 
be split and mapped onto multiple nodes.  Nor has it 
considered differentiating transit nodes from stub nodes. 

[2] and [3] introduced the VDC concept where a node can 
be either a VM or a virtual switch. While VM is considered 
non-splittable, splitting a virtual switch to multiple physical 
switches is investigated under two specific virtual topologies 
called virtual cluster and oversubscribed virtual cluster in [3]. It 
demonstrates the benefit of defining a virtual network with 
virtual switches for mitigating congestion.   

[4] and [5] further studied the migration and reliability 
issues under the VDC model. However they limit the mapping 
from a virtual node to a physical node to one-to-one for both 
VM and virtual switch.     

Our approach in this paper is different from all existing 
studies in the following aspects: 

1. We defined a new abstraction for the interface between 

SPs and InPs. In our abstraction, an application is 

modeled as a virtual network of functional nodes rather 

than a virtual network of VMs. Our abstraction helps SPs 

to define their applications with models that match their 

software architectures closely. Meanwhile, it provides 

InPs more freedom to decide the number of VMs and 

their sizes for each application based on a global 

optimization process. This will help InP to auto scale each 

application based on load condition.   

2. Our abstraction naturally leads to node splitting scenario 

that has not been considered by existing research studies 

on virtual network embedding. Our approach discussed in 

this paper allows many-to-many mapping that can 

significantly maximize the benefits of parallel computing.  

3. We provided a generic way to map a VTN to multiple 

STNs. Specifically, we allow an SP to specify a traffic 

pattern for a VTN in addition to potential STNs as a 

requirement so that the optimization process can embed 

the requirement onto the STNs. This allows an InP to 

provision its network more accurately for different 

applications while giving SPs more control.   

4. Our formulation leads to LP problems that can be solved 

in polynomial time. This is an advantage over existing 

approaches that require some kind of heuristics in order to 

achieve polynomial time, which lead to suboptimal 

results.  

V. CONCLUSION 

Existing research studies on application modeling have put 
limitations on how a virtual node can be mapped onto a 
substrate node. These limitations have reduced the benefits of 
resource sharing and increased the difficulty of resource 
optimization. 

In this paper, we have developed a novel approach that 
allows node splitting as well as node colocation either partially 
or fully. Furthermore, we have considered a more realistic VN 
mapping scenario where both virtual nodes and substrate nodes 
are classified as either transit node or stub node. For VTNs, we 
introduced a new requirement called traffic pattern. These 
improvements allow us to model all applications supported by 
today’s datacenters, especially new programming models such 
as MapReduce, which explore a large cluster of servers in 
parallel. They will also be helpful to mitigate congestion 
problems caused by poor provisioning. 

We formulate virtual links and virtual transit links as two 
levels of commodities. Our formulation results in LP problems 
that are more scalable than all existing approaches. Through 
simulation, we have demonstrated our approach can 
dramatically reduce link bandwidth consumption and raise VN 
acceptance ratio. Our approach leads to higher node utilization 
that indicates reduction of resource fragmentation. 

Future research will be targeted at extending our model to 
capture migration and energy cost. 
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