
2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2570750, IEEE
Transactions on Cloud Computing

Modeling Service Applications for Optimal Parallel

Embedding

Changcheng Huang

Department of Systems and Computer Engineering

Carleton University

Ottawa, Canada

huang@sce.carleton.ca

Jiafeng Zhu

Huawei Technologies Inc.

2330 Central Expy

Santa Clara, USA

jiafeng.zhu@huawei.com

Abstract — Leveraging the traditional virtual network

concept, some recent research works have proposed the Virtual

Data Center (VDC) as an abstraction to capture both bandwidth

and compute/storage resource requirements for an application.

However a virtual node in a VDC is limited to a virtual machine

(VM), which can only be embedded onto a single physical

machine. This condition limits the applicability of the VDC

abstraction and the potential of deploying parallel computing. In

this paper, we propose a new abstraction based on our

Application Centric Network Virtualization (ACNV) approach.

Specifically, we model a service application offered by a service

provider as a virtual network of service function nodes, which

closely matches the service provider’s view on the architecture of

the application. An infrastructure provider that hosts the

application decides how to map the virtual network to the

substrate network. Different from the VDC abstraction, each

virtual node in our proposed abstraction can be split and mapped

onto multiple physical machines, which allows the infrastructure

provider to provide auto scaling for the application with variable

number of physical machines for exploring the full benefits of

parallel computing. We also allow multiple virtual nodes to be

mapped and colocated in the same physical machine to minimize

resource fragmentation and communication overhead. Extensive

simulation results show that the proposed ACNV abstraction

outperforms existing VDC-like approaches in achieving optimal

resource usage.

Keywords—Architecture; Distributed network; Network

topology, Distributed application; Modeling technique, Distributed

programming

I. INTRODUCTION

Cloud computing is becoming the world-wide computing
paradigm for low-cost computing services. Today’s cloud
computing is built upon massive datacenters that deploy large
number of commodity switches and servers. While these
switches and servers drive down the cost for cloud computing,
they also pose significant challenges for applications to utilize
these resources efficiently without introducing unnecessary
overhead. Many programming models such as MapReduce [1]
have been developed to achieve large-scale parallel computing
with little extra cost. However it remains unsolved for an
infrastructure provider (InP) to optimally host multiple service
applications within its cloud infrastructure.

 Some recent research works have proposed the Virtual
Data Center (VDC) [2-5] as an abstraction for the interface
between service providers (SPs) and InPs. The VDC concept
originates from the traditional network virtualization that is
focused on embedding multiple virtual networks (VNs) onto a
shared network substrate [6-7]. The VDC abstraction models
an application as a virtual network. It is assumed that an SP
needs to convert its application into a VDC and presents this
VDC to an InP as a requirement. The InP then tries to embed
this VDC with the given virtual nodes and topology onto its
infrastructure through an optimization process. Similar to the
traditional studies on VNs [8-12], each virtual node in VDC is
considered as a virtual machine (VM) that can only be mapped
onto a single physical machine. This condition limits the
applicability of the VDC abstraction and the potential of
parallel computing. Because an SP does not have the global
knowledge of all applications offered by different SPs sharing
the same infrastructure, it is difficult for an SP to decide how
many VMs an application requires and how much resource
each VM should have. On the other hand, an InP cannot
optimize its resource usage by changing number of VMs for
each application and the size of each VM although it does have
the global view of all SPs.

A. Cloud Services from IaaS to PaaS

The VM as a service is mainly adopted in the Infrastructure
as a Service (IaaS) class. Although IaaS is a popular service
class, the interest in the so-called Platform as a Service (PaaS)
class is growing very fast. A cloud platform offers an
environment on which developers create and deploy
applications and do not necessarily need to know how many
processors or how much memory the applications will be using
as long as their service performances are satisfied.

Amazon Web Services (AWS) [13] is one of the major
players in the cloud computing market. It serves as a good
example for the migration from IaaS to PaaS. It pioneered the
introduction of IaaS clouds in 2006. However, it advocates
PaaS aggressively in recent years [14]. It is now considered as
offering PaaS like services with the option of IaaS-like control
in some cases [15]. A cloud-based application offered by a SP
typically consists of multiple components with each component
performing certain functions. The output of a component can
be routed to other components through messaging queues that

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCC.2016.2570750

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

mailto:huang@sce.carleton.ca

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2570750, IEEE
Transactions on Cloud Computing

help decouple different components and enable asynchronous
processing [14]. Bundling a component with operating system
and associated configuration can create an Amazon machine
image (AMI). Instances (or VMs) can be instantiated from
AMIs as needed and run on one or multiple physical machines.
Elasticity can be achieved by combining the CloudWatch, Auto
Scaling, and Elastic Load Balancing features, which allow the
number of instances to scale up and down automatically based
on a set of customizable rules, and traffic to be distributed
across available instances.

B. System Description

With PaaS becoming popular, we need a new abstraction
that better characterizes the interface between SPs and InPs. In
this paper, we propose a new interface abstraction based on our
Application Centric Network Virtualization (ACNV) approach.
Specifically, we model an application as a virtual network in
which a virtual node represents a functional component of the
application. As we can see from last paragraph, this virtual
network closely matches the view and implementation as seen
by the SP. The InP can embed this virtual network onto its
substrate network through an optimization process. In contrast
to the VDC abstraction, our abstraction allows a virtual node to
be mapped onto multiple substrate nodes to help realize load
balancing and achieve parallel computing. We also allow
multiple virtual nodes to be mapped and colocated in one
physical machines. This kind of many-to-many mapping
enables full flexibility to maximize the efficiency of resource
usage.

Furthermore, we propose to classify nodes into three
categories based on their roles in a network for both virtual
nodes and substrate nodes: transit nodes that relay traffic, but
do not originate/sink traffic; stub nodes that originate and sink
traffic, but do not relay traffic; and hybrid nodes that do both.
Because a hybrid node can be decomposed into a transit node
attached with a stub node as shown in Fig.1, we will focus on
the first two types of nodes in this paper.

Fig. 1. Illustration of decomposing a hybird node into a transit node attached

with a stub node.

A substrate transit node (STN) such as a switch is typically
limited by its transit bandwidth capacities rather than by its
compute or storage resources. An SP can define some virtual
transit nodes (VTNs) for an application that can help elaborate
its communication requirements for the application. This issue
has been studied in detail in [3] under two special virtual
topologies. In this paper, we propose a generic formulation that
can map arbitrary topologies with any given traffic patterns.
We allow a VTN to be split onto multiple STNs selected by the
SP as well as multiple VTNs to colocate in the same substrate
node. These different options provide great flexibility to

accommodate different traffic patterns and therefore are helpful
in mitigating various congestion problems [3].

Substrate stub nodes (SSN) are limited by their compute
and storage resources. Different from existing VN models, we
also allow a virtual stub node (VSN) to be split onto multiple
SSNs in addition to colocating multiple VSNs at the same
SSN.

With the above extensions, we can model various
applications that are supported by today’s datacenters. For
example, MapReduce is a distributed programming framework
that is widely used in Today’s datacenters [1]. It includes a
mapping stage and a reducing stage. In the mapping stage, a
large number of Mapper tasks run in parallel to perform
filtering and sorting. The outputs of the mapping stage are
shuffled to a large number of Reducer tasks that perform
summary operations in parallel. Using our modeling approach,
a MapReduce application can be modeled as a VSN (Node 1)
that represents the Mapper function, one VTN (Node 2) that
represents the shuffling process, and another VSN (Node 3)
that represents the Reducer function as shown in Fig. 2. The
three nodes are connected into a linear topology that greatly
simplifies an SP’s view on the application. The SP only needs
to specify CPU load requirements for Nodes 1 and 3 and the
bandwidth requirements for the two virtual links and Node 2.
The InP will decide how to map this virtual network to its
substrate network. With node splitting, Nodes 1 and 3 can be
mapped onto large clusters of SSNs respectively to support
parallel computing while Node 2 can be mapped onto a cluster
of STNs through the optimization process discussed later as
illustrated in Fig.2. The two virtual links will be mapped onto a
large number of substrate paths to utilize the rich connectivity
within a datacenter network.

Fig. 2. Modeling MapReduce computation with virtual nodes. S stands for
servers; T stands for Top of Rack switch; A stands for aggregation switch.

Another area our new abstraction can be applied to is
Network Function Virtualization (NFV). Traditionally a
service function chain (SFC) consists of a set of dedicated
network service boxes such as firewall, load balancers, and
application delivery controllers that are concatenated together
to support a specific application. With a new service request,
new devices must be installed and interconnected in certain
order. This can be a very complex, time-consuming, and error-
prone process, requiring careful planning of topology changes
and network outages and incurring high OPEX. This situation
is exacerbated when a tenant requires different service
sequences for different traffic flows or when multiple tenants
share the same infrastructure network. NFV is a new concept

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCC.2016.2570750

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2570750, IEEE
Transactions on Cloud Computing

built upon network virtualization. It involves the
implementation of network service functions in software that
can run on a range of industry standard high volume servers,
switches, and storage. To handle large volume of traffic, each
service function can be mapped to multiple physical machines
with auto scaling to achieve parallel processing and load
balancing. It is easy to see that our abstraction can be applied
to NFV based SFCs with each service function modeled as a
virtual node.

The remaining part of this paper is organized as follows:
Section II will describe our formulation process. Numerical
results will be presented in Section III. Section IV will briefly
review related literature and highlight the key contributions of
this paper. Section V will conclude this paper.

II. NETWORK MODEL AND PROBLEM FORMULATION

In this section, we first describe our network model that can
capture all mapping scenarios. We then formulate the
optimization process as a Linear Programming (LP) problem.
Instead of limiting our discussion to specific applications or
datacenter topologies, we will consider scenarios as general as
possible so that our approach can be applied to a wide range of
applications. Fig. 3 shows an example with an arbitrary virtual
network being mapped to an arbitrary substrate network. We
will use this example to illustrate the formulation process.

A. Substrate Network

A substrate network is modeled as a weighted directed
graph and denoted as , where is the set of
substrate nodes and is the set of substrate links. Each node
 has a location .

Each substrate link between two substrate nodes
and has the bandwidth capacity value .

Different from existing approaches [8-12], we divide
into two subsets: the set of all SSNs denoted by such as
Nodes A, B, G, I, and J in Fig. 3 and the set of all STNs
denoted by such as Nodes C, D, E, F, and H in Fig. 3.
 and because a substrate
node is either a stub node or a transit node but not both. Each
 has a CPU capacity value . To simplify
notations, we do not consider memory and storage resources in
this paper. Our approach can be generalized to include those
resources easily. Interested readers can see the treatments in [4-
5] as an example. We assume an SSN will not carry transit
traffic, which is the typical case for today’s datacenters. But we
assume there are unlimited bandwidths among colocated VSNs
enabled by Hypervisor because the bandwidths within a
substrate server are rarely exhausted due to the short distance
and large amount of memory available.

Most of today’s switches or routers are non-blocking
internally (i.e. the internal switch fabric speed is much faster
than each output port speed). Traffic can only be blocked by
limited bandwidths of output ports as defined earlier by the
link bandwidths. Therefore we assume that STNs have
unlimited internal bandwidths and limited port bandwidths. We
will focus on how VTNs can satisfy their transit bandwidth
requirements through mapping onto one/multiple STN(s). Our

approach in this paper can be generalized to the cases in which
the internal bandwidths of STNs are limited.

Fig. 3. An example of a virtual network and its associated substrate network.

B. VN Request

We model each VN as a weighted directed graph, denoted
by , where is the set of virtual
nodes, is the set of virtual links, is the arrival time of the
VN request and is the duration of the VN request. The set of
all virtual networks hosted by the substrate network at time is
denoted by . Whenever the
context is clear, we simply write as . We denote

the ith virtual link of a virtual network as

 , where

 and

 are the corresponding start and end virtual nodes.
Each virtual link has an associated bandwidth requirement

 .

Similarly, we divide into two subsets: the set of all
VSNs denoted by such as Nodes a, d, and e in Fig. 3 and
the set of all VTNs denoted by such as Nodes b and c in
Fig. 3. An SP may prefer mapping a virtual node onto some
specific physical nodes or dictating some virtual nodes to be
mapped onto different physical nodes. To facilitate this kind of
requirements, it is assumed that each virtual node has
a location and a mapping radius . Let
 denote the distance between the virtual node
 and an arbitrary substrate node (measured in any metrics
as defined by the SP such as hop count or delay in a datacenter
network). If) and is the same
type of node as (i.e. they are either both stub nodes or
transit nodes), will be called a candidate node for the virtual
node to be mapped onto. By defining candidate node, we
allow an SP to specify some rules for substrate node selection.
It should be noted that does not need to be a physical
distance. For example, it can be a hop count. Then by setting
 , we can limit the candidate servers to those under
the same Top of Rack (ToR) switch. This will maximize
performance while lowering reliability. If an SP wants to
maximize reliability, distance can be defined as a measure of
zones. Then the optimization process can lead to selecting
servers located in different zones.

We do not allow VTNs to be mapped onto SSNs and vice
versa because they have different types of resources. The set of
all candidate nodes for is denoted as . The substrate
link that connects two candidate nodes of a virtual node is
called internal substrate link. For example, in Fig. 3, the
candidate set of the VSN e includes Nodes I and G; the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCC.2016.2570750

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2570750, IEEE
Transactions on Cloud Computing

candidate set of the VTN c includes Nodes D, E, and H. Link
(E, H) is an internal link. It is interesting to note that, Nodes e
and d can be partially colocated at Node I, similarly Nodes b
and c at E.

The set of all VSNs hosted by an SSN is
denoted as (e.g. Nodes d and e hosted by Node I) and
the set of all VTNs hosted by an STN is denoted as
 (e.g. Nodes b and c hosted by Node E).
Each VSN requires a CPU capacity value .
We assume that can be arbitrarily split and mapped
onto any number of SSNs selected by an SP. This assumption
is valid because new computing models such as MapReduce
can distribute a computation to hundreds or thousands of
machines as they are being used in today’s datacenters. The
granularity is small enough to be considered as real number.

For each , let denote the set of all its
adjacent virtual links. Different from VSNs, we assume each
VTN has certain transit requirement rather than CPU load. A
VTN typically has multiple ports. The transit capacity between
each pair of virtual links incident to the virtual node must be
specified in order to ensure traffic can be carried through the
virtual node without any congestion. This means the SP must
specify a traffic pattern within each VTN.

We assume each pair of adjacent virtual links require a

transit bandwidth value

 , where

 ,

 , identifies a virtual transit link, and
 is the

incoming virtual link and
 is the outgoing virtual link. A

virtual transit link can only be mapped to a set of paths in the
substrate graph made up by the internal substrate links of the
VTN. The set of all virtual transit links of an is denoted by

 . Clearly

 depends on
 and

 ,

as well as all other virtual transit links. This will make our
formulation results very different from existing research
studies that do not consider traffic pattern within a virtual node

at all. We will discuss how to select

 in detail

later.

C. VN Mapping

In this paper, we consider the online network virtualization
problem, which is more realistic in real world. We assume VN
requests arrive dynamically. For each VN request, the InP has
to decide whether it has enough resources to host the requested
VN, assuming existing VNs will not be reallocated. If the
request is acceptable, the InP has to map the VN request to the
substrate network. We consider the cases that allow both node
colocation and node splitting. These scenarios are certainly
more challenging than the traditional setting that only
considers colocation at most. We address the challenge by
treating VSNs and VTNs differently. We first need to know
how many resources are available at any time, upon which we
can decide whether a new VN request can be granted.

For an , we denote the CPU capacity value assigned to
an arbitrary candidate node as

 where For
 , we set . We have

The residual CPU capacity of an SSN at any time t can then
be defined as following

A virtual link is mapped onto multiple paths in the substrate
network. The bandwidth value for a virtual link
 assigned to a substrate link is denoted by .

For , its transit bandwidth requirement for each
virtual transit link is also mapped onto multiple paths in the
substrate network. We denote the bandwidth value of a virtual
transit link assigned to an arbitrary substrate link as
 .

We can calculate the remaining bandwidth of a substrate
link as following:

D. Augmented Graph

Similar to the approach adopted in [10], we also create an

augmented substrate graph

 for the graph

 . For each , a corresponding meta-node
 is created. Each candidate substrate node of is
connected to the meta-node through a bidirectional meta-link

with infinite bandwidth. We set

and

 , which

form

 . The set of all meta-links incident to a

meta-node is denoted by
 . If

 and
 are the

start and end nodes of a virtual link,
 and

 will denote the corresponding meta-nodes. The

augmented graph for the example in Fig. 3 is shown in Fig. 4.

Fig. 4. The augmented graph for the example shown in Fig. 3.

E. Virtual Stub Node Mapping

With all existing studies [2-12], the bandwidth for a virtual
link is typically given independently from the CPU capacity

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCC.2016.2570750

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2570750, IEEE
Transactions on Cloud Computing

requirements of its associated VSNs. This is fine if a virtual
node is mapped onto a single substrate node. In this paper, we
allow a virtual node to be mapped onto multiple substrate
nodes. A new challenge will emerge with this new model. The
CPU requirement of the virtual node is assigned to multiple
candidate substrate nodes while the bandwidth requirement of
its any adjacent virtual link is mapped to multiple substrate
links associated with different candidate nodes. There is an
issue on whether the traffic originated/terminated from/at a
substrate node for a virtual link should be somehow correlated
to the CPU capacity assigned to the substrate node.

An easy option is to keep bandwidth assignments
independent from CPU assignments as the way existing
research studies have done for non-splitting node mapping [2-
12]. However this may oversimplify the problem because it is
unlikely that a node providing lots of CPU power will generate
very little communication traffic. To this end, a more practical
assumption is that the traffic originated/terminated from/at an
SSN for a virtual link is proportional to the CPU power
assigned to the substrate node for the associated virtual node.
This approach keeps linear relationships among all variables
while making allocated bandwidth for each substrate node
correlated to the CPU load assigned to the node. We will
follow this approach in this paper. More details can be found in
remarks about Eqs. (13), (15), (16), and (20) later. An example
on how the bandwidth requirement of virtual link (a, c) in Fig.
3 is split is shown in Fig. 5.

Fig. 5. An example to show how the bandwidth requirement of virtual link

(a, c) in Fig. 3 is split.

F. Traffic Pattern for Virtual Transit Node

As we mentioned earlier, an SP needs to specify a
bandwidth requirement for each virtual transit link within a
VTN. This requirement will be mapped onto the internal
substrate links of the VTN in the substrate network. An internal
substrate link is a link that connects two candidate nodes of the
same VTN (e.g. link (D, E) in Fig.4).

It is a challenging task for an SP to specify the bandwidth
requirement for each virtual transit link because virtual transit
links of a VTN are interdependent. This challenge is best
illustrated with Fig. 6, in which a virtual node with four input
virtual links and four output virtual links is shown together
with some traffic patterns. In Fig. 6(a), the traffic pattern is
uniform in the sense that no more than one virtual link is
sending traffic to the same output virtual link at the same time.
Fig. 6(b) shows a more difficult situation where all input
virtual links are trying to send traffic to one output virtual link
with their full capacities at the same time (e.g. an incast flow

pattern). In reality, traffic patterns are rarely like the two
extreme cases we have just shown.

Other than interdependency, the bandwidth requirement of
a virtual transit link also depends on the bandwidths of input
and output virtual links. In this paper, similar to prior studies,
we assume the bandwidths of all virtual links are given by the
SP. Clearly, there is no point to request for the bandwidth of a
virtual transit link much larger than the bandwidths of the
corresponding input and output virtual links. The impact of
traffic patterns are also discussed in [3] under two special
virtual topologies. Our approach here is more general.

Fig. 6. A virtrual node with four input virtual links and four output virtual

links under two different traffic patterns.

To characterize traffic patterns, we define the term
distribution ratio denoted by

 as such that

fraction of the traffic coming in from the ith input virtual link
will be carried by the virtual transit link to jth output virtual
link. Wherever the context is clear, we will simply drop the
part in brackets to simplify our notation. Clearly we have

As an example, we use Fig. 7 to illustrate the traffic flows
for VTN c in Fig. 3 with virtual link (a, c) as the incoming link.
The traffic coming from Node a is split into three streams
leading to Nodes b, d, and e respectively with the ratios as
shown in Fig. 7.

Fig. 7. An illustration on how traffic from a virtual link (a, c) is split into

three output streams within VTN c.

It is easy to see the following conditions must be satisfied
in order to make a VTN non-blocking.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCC.2016.2570750

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2570750, IEEE
Transactions on Cloud Computing

Eq. (5) makes sure that the virtual node is non-blocking
internally while Eq. (6) makes sure the output ports are non-
blocking.

Similarly, we can define
 as the fraction of output

virtual link j’s traffic received through a virtual transit link
from input virtual link i. We will also drop the part in brackets
wherever the context is clear. Therefore we have

Clearly,

Then, Eq. (6) can be simplified to the following one.

By combining Eqs. (5) and (9) , we have

It is wasteful to set

 larger than
 .

The conditions defined in Eq. (10) will help an SP reduce
resource waste and prevent congestion. In this paper, we
assume that an SP will provide a traffic pattern for each VTN,
which satisfies Eq. (10). The SP can do so by analyzing its user
traffic history or through online measurements. This process is
very similar to the process that an InP builds and dimensions
its physical networks. Our focus in this paper will be on
mapping the traffic patterns specified by an SP onto the
substrate network.

G. Objective

An InP typically wants to maximize its revenue while
minimize its cost. However, revenue depends on many
marketing factors which are subject to change. In this paper,
we focus on minimizing the cost of accepting a new VN
request as other works [8-12]. The cost of embedding a VN
request is defined as the sum of the costs of all substrate
resources allocated to the VN.

H. Linear Programming Formulation

Upon receiving a new VN request, an InP will first
calculate the remaining resources using Eqs. (2) and (3). The
InP will then try to map the VN request onto the remaining
resources with the objective that will minimize the overall cost
while satisfying the requirements of the VN. To this end, we
provide two sets of cost weights so that different resources can
be combined into a cost function that can be minimized.
Specifically, is the cost weight assigned to a substrate link
 . The cost of the link is proportional to its normalized
bandwidth usage with a maximum value when its total

bandwidth is fully allocated. Similarly, is the cost weight
assigned to a substrate node . These weights can stay
unchanged for all VN requests or change from one VN request
to another. The InP can manipulate the weights for adjusting
the significance of each specific resource as needed. For
example, if some physical links have higher costs due to
distances or other physical constraints, the InP may set the
weights for those links higher so that they have less chance to
be selected. If the InP cannot find a mapping that satisfies the
VN request, the request will be rejected.

Because we assume that a virtual node can be divided
arbitrarily and mapped onto a large cluster of substrate nodes
as we argued earlier, we can formulate our embedding process
as a two-level Multi-Commodity Flow (MCF) problem. The
first-level commodities are the virtual links with their
corresponding bandwidths as their demands, where each
demand can be routed through multiple paths in the substrate
network.

The second-level commodities are virtual transit links of
each VTN. We set the demand of each virtual transit link to
satisfy Eq. (10), which is routed through internal substrate links
of a VTN via one or multiple paths. Due to the dependency
between first-level and second-level commodities, the flows of
second-level commodities must match the flows of
corresponding first-level commodities as defined by Eq. (10).

In this paper we assume a virtual transit link can be mapped
onto any paths routed through internal substrate links of a
VTN. However in real networks, various physical, protocol, or
administrative limitations may be imposed when the traffic of a
virtual transit link is divided and distributed over different
substrate links. These limitations can be formulated as extra
constraints during the optimization process.

Variables:

 : A variable denoting the total amount of flow from

 to on a link

 for the

 th virtual link

 , where and are two

neighboring substrate nodes. This variable describes
how the bandwidth of a virtual link is mapped onto a
substrate link .

: A variable denoting the total amount of flow from
 to , where , for the virtual

transit link that connects incoming virtual link

 to an outgoing virtual link
 . This

variable describes how the bandwidth of a virtual transit

link

 is mapped onto an internal substrate link

 .

 : A variable denoting the percentage of the CPU
capacity weight value of the VSN assigned to
a candidate node .

Objective:

Minimize

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCC.2016.2570750

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2570750, IEEE
Transactions on Cloud Computing

Constraints:

-Capacity Constraints:

-Flow Constraints:

-Meta Constraints

-Domain Constraints

Remarks:

 Function (11) is the objective function that tries to
minimize the total cost while balancing the loads across
different substrate links and substrate nodes. For the
load of each link, we count both the bandwidths
allocated for virtual links and the bandwidths allocated
for virtual transit links. is a small positive number
used to avoid dividing by zero. The load of each link or
node is normalized by its residual capacity. Therefore
the links or nodes which have less residual capacities
tend to have higher costs. This will encourage balanced
loads across the whole network. and are cost
weights used by an InP to control the significance of the
corresponding link or node. and
 . and can be calculated using Eqs. (2)
and (3) respectively.

 Constraints (12) and (13) are the link and node capacity
bounds.

 Constraint (14) is the flow conservation conditions for
virtual link commodities. Each flow can only traverse
STNs and the candidate nodes of the two ending virtual
nodes of a virtual link to avoid using an SSN as transit
node. It should be noted that constraint (14) allows
source and destination virtual nodes of a virtual link
mapped onto the same substrate node. Take Node E in
Fig. 3 as an example. Node E can serve as both source
and destination of the virtual link (b, c).

 Constraints (15) and (16) ensure the traffic originated
from or sunk at a substrate node for a virtual link is
proportional to the allocated CPU capacity from the
associated VSN to the substrate node as we argued
earlier.

 Constraints (17) and (18) ensure the bandwidth
requirement for each virtual link where the
corresponding virtual nodes are VTNs is satisfied.

 Constraint (19) is a variation of flow conservation
conditions for each virtual transit link as second-level
commodity. It makes sure first-level flow amounts (i.e.

and
) and second-level flow amounts (i.e.

and

) satisfy Eq. (10) at flow level. Specifically,

 is the amount of the traffic carried away by jth

virtual link from Node u for the virtual transit link

 .

 is the amount of traffic carried away by

the internal link (u, v) from Node u for the virtual transit

link

 .
 is the amount of traffic carried

into Node u from ith virtual link for the virtual transit

link

 .

is the amount of traffic carried into

Node u by the internal link (v, u) for the virtual transit

link

 .

 Constraint (20) is the normalization requirement for
CPU capacity assignments. It allows a VSN to be
mapped onto multiple candidate SSNs.

 Constraints (21), (22) and (23) denote the real domain
constraints.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCC.2016.2570750

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2570750, IEEE
Transactions on Cloud Computing

III. NUMERICAL RESULTS

In this section, we present our numerical results. Because
our network model is significantly different from all existing
approaches, it is difficult to make a fair comparison with the
existing ones directly. Therefore we take a two-step approach.
In the first step, we assume all substrate and virtual nodes to be
homogeneous nodes where substrate nodes have limited CPU
resources and unlimited transit bandwidths while virtual nodes
only have CPU requirements. Under this context, the
differences between our model and the existing ones are
limited to different mapping options. Our attention is then
focused on the impacts of node splitting and colocation in
comparison with the existing ones. In the second step, we will
include node types as evaluation factors. Because it is hard to
make a fair comparison under this situation, we will focus on
the performances of our VN model with varying parameters
without comparing with existing approaches.

A. Homogeneous Node Model

In this subsection, we consider the case in which all nodes,
both substrate and virtual, are homogeneous. All substrate
nodes have limited CPU capacities and unlimited transit
bandwidths. This assumption is similar to most of existing
approaches.

There are quite a few papers on NV in recent years. It is
hard to choose which one to compare with. We decided to
choose [10] as the competitive one for several reasons. First of
all, the paper is well accepted in academic world and widely
cited; Second, the paper provides detail information about its
simulation process. This allows us to reproduce their results
with excellent accuracy. Third, the paper uses random
generated topologies that are consistent with our general
approach described in the last section. We do not want to limit
our simulation to specific topology that cannot demonstrate the
generality of our approach.

In specific, we choose D-ViNE (Deterministic node
mapping with MCF link mapping) in [10] as our reference
model. The reason is that D-ViNE shows the best performance
among all algorithms discussed in [10]. As most of existing
studies [2-12] on NV, D-ViNE only allows one-to-one
mapping. Node splitting and node colocation are not allowed.
Although the study in [12] has considered colocation, the
available information is limited, making it hard to reproduce
the results. We denote our scheme as ACNV (Application-
Centric Network Virtualization) for convenience of
description. We expect that our ACNV approach will
outperform D-ViNE significantly because ACNV allows
many-to-many mapping that can take advantage of node
splitting and node collocation for reducing resource
fragmentation and communication overhead.

1) Simulation Setup
We have implemented a discrete event simulator that

captures the dynamic processes of service request arrivals as
well as online network optimization and resource allocations.
The optimization tool we used is glpk [19].

A substrate network was generated with 50 nodes in 25×25
grids using GT-ITM tool [20]. The links that connect each pair
of substrate nodes were randomly generated using Waxman 2

model with α=0.5 and β=0.2 [20]. There were 123 links in
total.

As discussed in the last section, both allocated bandwidth
and CPU resources are normalized by their corresponding link
or node residual capacities in the cost function (11). Therefore,
the absolute values of link and CPU capacities do not matter in
terms of the optimization results. It is their relative values that
make differences. In our setup, we try to see the impacts of
both link and node capacities. Therefore, we chose
 , . The CPU resources of the
substrate nodes and bandwidth resources of the substrate links
were generated randomly with real numbers uniformly
distributed in the same range between 50 and 100. In this way,
we did not specifically try to favor one resource over the other.

VN requests arrived in Poisson processes with varying VN
arrival rates from average four VNs per 100 time units to eight
VNs per 100 time units. Each VN request had an exponentially
distributed lifetime with a mean of 1000 time units. In each VN
request, the number of virtual nodes was randomly generated
by a uniform distribution between 2 and 10. Links between
each pair of virtual nodes were also generated using Waxman 2
model with α=0.5 and β=0.2. The bandwidth requirements of
virtual links were uniformly distributed between 0 and 50
while the CPU requirements of virtual nodes were uniformly
distributed between 0 and 20 which is small because D-ViNE
does not support node splitting. Virtual nodes were randomly
located on 25×25 grids. The results will highly favor our
ACNV. Each simulation was run for 50000 time units that are
long enough (50 times longer than the average lifetime of a
virtual network) to have sufficient number of independent
samples so that statistical errors are negligible. The average
number of the generated virtual networks for each simulation
ranges from 2000 to 4000, which are extremely large, making
our results highly reliable. Therefore, there is no need to show
confidence intervals.

2) Performance Metrics
We use the following most common metrics for

performance evaluation.

 Acceptance ratio: This metric measures the percentage

of the number of VN requests accepted during the

given simulation time period.

 Average node utilization: This metric is computed by

averaging the time-averaged utilizations over all

substrate nodes.

 Average link utilization: This metric is the average of

the time-averaged utilizations of all substrate links.

 Average number of colocated nodes: This metric is

calculated by averaging the time-averaged number of

colocated nodes over all SSNs/STNs.

 Average number of mapped nodes: This metric is

calculated by averaging the number of mapped nodes

over all VSNs/VTNs.

3) Comparative Results
We consider two major factors that may affect the

performance of VN embedding. One is the VN arrival rate that
decides the load of the substrate network. The other is the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCC.2016.2570750

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2570750, IEEE
Transactions on Cloud Computing

mapping radius between the locations of virtual nodes and their
candidate nodes. We set the mapping radius to be the same for
all virtual nodes of a VN to simplify parameter setting.

We first look at the results with varying VN arrival rates
from average 4 to 8 arrivals per 100 time units while the
mapping radius D of VNs is set to 10. Fig. 8(a) shows the
acceptance ratio vs. VN arrival rate. While both D-ViNE and
our ACNV show similar trend with increasing load, the
acceptance ratios of ACNV are always higher than the ones of
D-ViNE. From Fig. 8(b), we can see that the average node
utilization of ACNV is higher than D-ViNE. This is not a
surprise. Although all three mapping options (one-to-one,
splitting, colocation) do not reduce actual CPU resource usage
for a single virtual node, with higher acceptance ratio, the total
accepted CPU load is higher for ACNV. Therefore the average
node utilization is higher, which clearly indicates the reduction
of fragmented resources.

 (a) (b)

 (c) (d)

Fig. 8. (a) Comparison of acceptance ratios for ACNV and ViNE under

varying VN arrival rate; (b) Comparison of average node utilizations of

ACNV and ViNE with increasing VN arrival rate; (c) Comparison of average

link utilizations of ACNV and ViNE with increasing VN arrival rate; (d)
Average number of substrate nodes a virtual node is mapped onto and average

number of colocated virtual nodes with increasing VN arrival rate.

 On the other hand, average link utilization behaves
completely different as shown in Fig. 8(c). Here the average
link utilization of ACNV is significantly lower than D-ViNE.
This clearly shows the gain of collocation by reducing
communication overhead. Lower link utilization and higher
acceptance ratio will certainly bring higher revenue for InPs.

We now study the inter-relationship between node splitting
and colocation. The objective function as formulated in Eq. (7)
depends on both node and link utilizations. Because CPU loads
cannot be reduced through either node splitting or colocation
for a single virtual node, the objective function is targeted at
balancing loads in terms of CPU resources although the gain is
not significant. Node splitting can certainly be helpful in
achieving load balance. On the other hand, link utilizations can
be reduced significantly through colocation. Therefore the
objective function will strongly favor colocation. Nevertheless,

because a virtual node can be both split and colocated, node
splitting can provide more options for colocation through
partial colocation and therefore be helpful in reducing
bandwidth requirements. Fig. 8(d) shows the average number
of substrate nodes a virtual node is mapped onto and the
average number of colocated nodes. From Fig. 8(d) we can see
that the average number of colocated nodes is around 2.5 to 2.6
while the average number of nodes a virtual node is mapped
onto is around 1.1. Both are relative stable with increasing
load. These results show that, with modest colocation and node
splitting, significant link bandwidth saving can be achieved.

The opportunities that a virtual node can be mapped to
multiple substrate nodes and multiple virtual nodes can be
colocated partially or fully certainly depend on the mapping
radius. The larger the mapping radius is, the higher the number
of candidate nodes is. To test the impacts of mapping radius,
we varied the mapping radius from 2 to 15 while fixing the
average arrival rate to 8 arrivals per 100 time units. Fig. 9(a)
shows how the average number of colocated nodes and average
number of mapped nodes of our ACNV scheme change with
increasing mapping radius. Clearly, the average number of
colocated nodes benefits more than the average number of
mapped nodes due to the drive to minimize link usage.
Although the average numbers are relative small, we found the
maximum numbers can be as large as 5 for the number of
mapped nodes and 9 for the number of colocated nodes, both
are quite large for the small substrate network we have setup.

Figs. 9(b) and 9(c) show the average node and link
utilization, respectively. Fig. 9(d) demonstrates the acceptance
ratio. From these three figures we can see that, when the
mapping radius is small, there are very few candidate substrate
nodes for each virtual node. In most cases, VN requests are
simply rejected because one or more virtual nodes cannot find
any candidate node at all. Node splitting and colocation will
not be helpful under this kind of situations. The results of
ACNV and D-ViNE are nearly the same.

 (a) (b)

 (c) (d)

Fig. 9. Results with homogeneous nodes: (a) average number of mapped

nodes and average number of colocated nodes; (b) comparison of average

node utilizations of ACNV and ViNE; (c) comparison of average link

utilizations of ACNV and ViNE; (d) comparison of acceptance ratios for
ACNV and ViNE.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCC.2016.2570750

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2570750, IEEE
Transactions on Cloud Computing

When the mapping radius is increased, acceptance ratios for
both ACNV and D-ViNE increase dramatically because more
virtual nodes can find candidate nodes. When acceptance ratios
reach above 55%, lacking of link or node resources becomes
the key factor instead of the number of candidate nodes. Here
colocation can play a very important role by reducing the link
bandwidth usage. It can be seen that ACNV shows consistent
higher average node utilization because more virtual nodes are
admitted and lower link utilization because of the benefits of
colocation.

It is interesting to note that, when , the acceptance
ratio of D-ViNE is actually higher than ACNV. This seems to
contradict with the average node utilization in Fig. 9(b). As
observed in [10], acceptance ratio as a metric can sometimes be
misleading because an InP can accept a large number of VNs
with low resource requirements and reject a small number of
VNs with heavy resource requirements. Because D-ViNE only
supports one-to-one mapping, a VN request with high CPU
requirements will likely be rejected if any one virtual node of
the VN request cannot find a candidate substrate node that has
enough CPU resource to host the virtual node, while under
ACNV, the virtual node can be split and accommodated
through multiple substrate nodes. This situation typically
happens when CPU resource is the main bottleneck part. Large
mapping radius means more candidate nodes that lead to more
alternative paths. For D-ViNE, bottleneck moves from link
bandwidths to CPU resources with increasing number of
alternative paths. This explains the differences between Figs.
9(b) and 9(d).

B. Heterogeneous Node Model

In this subsection, we consider heterogeneous node model
where VSNs have CPU resource requirements while VTNs
have transit bandwidth requirements. SSNs are limited by CPU
capacities while STNs are not limited by either CPU capacities
or internal transit bandwidths (i.e., STNs are internally non-
blocking) as we discussed in Section II. Each substrate link has
a bandwidth capacity limitation and each virtual link has a
bandwidth requirement.

1) Simulation Setup
A substrate network was generated using GT-ITM tool with

a transit-stub graph which includes one domain with 25 transit
nodes in 25×25 grids. The links connecting transit nodes were
generated in pure random with probability 0.3. Each transit
node is attached with a stub node in 5×5 grids around its
attached transit node. There were in total 50 nodes that
included 25 transit nodes and 25 stub nodes and 121 links.
Link bandwidth capacities were generated uniformly between
50 and 100. CPU capacities of stub nodes were also generated
uniformly between 50 and 100.

VN requests were also created using GT-ITM tool with
transit-stub graphs. Each graph had one domain with a random
number of VTNs, which range from 2 to 10 nodes with an
average of 5 nodes in 25×25 grids. The virtual link between
each pair of virtual nodes was generated randomly with
probability 0.8. Each VTN was attached with a VSN which
was located in 5×5 grids around its attached VTN. The CPU
requirement of each VSN was generated randomly between 0

and 15. VN arrival patterns are similar to the ones described in
last subsection.

2) Transit Bandwidth Requirements
It is difficult to choose distribution ratios and bandwidths of

virtual links while still satisfying Eq. (10) for the average 2000
to 4000 VNs we generated. Therefore we decided to setup the
bandwidths of virtual links randomly between 0 and 3. Instead
of defining different transit bandwidth requirements for
different virtual links, we can define a uniform transit
bandwidth requirement of a VTN based on a minimum (or
maximum) bandwidth requirement for each virtual link
incident to the VTN. Specifically, we define the following
minimum (or maximum) virtual link bandwidth requirement
for each VTN:

Accordingly, we can define corresponding scaling factor for
each virtual link as follows:

We will drop the parts in bracket wherever the context is clear.

Other than bandwidths of virtual links, distribution ratios
also have impacts on transit bandwidth assignment as we
discussed in Section II. In our simulation setup, we assumed a
uniform traffic pattern which is widely adopted for typical
switch design. Let denote the degree of node .
Then we set

Eq. (26) implies a VTN will distribute the incoming traffic
from a virtual link equally to all outgoing virtual links.

 With Eqs. (24) and (26), from Eq. (7), we have

With the above treatments, we can adapt Eq. (19) as the
following:

Our simulation with heterogeneous nodes were made based
on the LP formulation in Section II with Eq. (19) replaced by
Eq. (28). These modifications are used here simply for easy
simulation parameter setup. If internal congestion is a concern,
maximum value instead of minimum value can be used (may
cause congestion at output ports). They do not affect the
general applicability of Eq. (19).

3) Simulation Results
Similar to the simulation with homogeneous nodes

discussed earlier, we considered the impacts of load and
mapping radius.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCC.2016.2570750

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2570750, IEEE
Transactions on Cloud Computing

We first check the results with mapping radius fixed to 10.
Fig. 10(a) shows the average CPU utilization of substrate stub
nodes and the average utilization of substrate links with
increasing VN arrival rate. Fig. 10(b) shows the acceptance
ratio. From these figures, we can see that both stub node CPU
utilization and link utilization increase with increasing load
while acceptance ratio decreases.

The gain of node splitting and colocation is not as visible as
homogeneous node scenario discussed earlier. The reason
behind this is the limitation imposed on different types of
nodes. Because we only allowed virtual nodes to be mapped
onto the same type of substrate nodes, i.e., virtual stub nodes to
substrate stub nodes and virtual transit nodes to substrate
transit nodes, the numbers of candidate nodes have reduced
dramatically. So the opportunities of splitting and colocation
have reduced. This can be confirmed in Figs. 10(c) and 10(d),
where Fig. 10(c) shows the average numbers of mapped and
colocated stub nodes and Fig. 10(d) shows the average
numbers of mapped and colocated transit nodes. They are all
below 2.

 (a) (b)

 (c) (d)

Fig. 10. (a) Average CPU utilization of substrate stub nodes and average link

utilization of substrate links with increasing VN arrival rate; (b) Acceptance

ratio with increasing VN arrival rate;(c) Average number of substrate stub
nodes a virtual stub node mapped onto and average number of colocated

virtual stub nodes with increasing VN arrival rate; (d) Average number of

substrate transit nodes a virtual transit node mapped onto and average number
of colocated virtual transit nodes with increasing VN arrival rate.

Furthermore, when load increases, the average numbers of
mapped nodes increase while the average numbers of colocated
nodes decrease. This result indicates saturation of both the
CPU capacities of stub nodes and the transit bandwidth
capacities of transit nodes as also confirmed by the dramatic
drop in acceptance ratio in Fig. 10(b).

One way to increase the number of candidate nodes is to
increase the mapping radius. We changed the mapping radius
from 2 to 15 while fixing the average arrival rate to 8 arrivals
per 100 time units. Figs. 11(a) and 11(b) show the average
numbers of mapped and colocated stub nodes and the average
numbers of mapped and colocated transit nodes with increasing
mapping radius. While both node splitting and colocation
increase with increasing mapping radius, colocation increases

more dramatically with stub node. As shown in Fig. 11(c), the
average link utilization starts decreasing when mapping radius
increases beyond 10, which is in coincidence with dramatic
colocation increase after mapping radius reaches beyond 10 as
shown in Figs. 11(a) and 11(b). This clearly shows the benefits
of colocation.

The average node utilization shows saturation after radius
reaches 10. Acceptance ratio as shown in Fig. 11(d) slightly
drops after mapping radius is beyond 10. This is again because
the stub nodes accepted more VN requests with higher CPU
demands and blocked a large number of VN requests with
smaller CPU demands when stub nodes become saturated.

 (a) (b)

 (c) (d)

Fig. 11. Results with heterogeneous nodes: (a) average number of SSNs a

VSN mapped onto and average number of colocated VSNs; (b) average
number of STNs a VTN mapped onto and average number of colocated

VTNs; (c) average CPU utilization of sub substrate nodes and average link

utilization of substrate links; (d) acceptance ratio.

IV. RELATED WORK

Network virtualization is a relatively new concept. [6] and
[7] provide comprehensive surveys related to this area. In the
following part, we focus on those works that are closely related
to this paper.

An earlier study [8] considered the one-to-one online
mapping scenario where VN requests arrive and leave
dynamically. This kind of network embedding problem is NP-
hard. Heuristic algorithms developed in the paper measures the
potential of each substrate node based on the stress of the node
and the stress of its associated links. Virtual nodes are then
assigned to substrate nodes according to the potential of each
substrate node. After nodes are assigned, links are assigned
using shortest path algorithm.

Another research study [9] extends the paper [8] by
allowing the substrate network to split a virtual link over
multiple substrate paths. This helps reduce the link mapping
part to MCF Problem with each virtual link as a commodity,
which can be solved in polynomial time. Path splitting enables
better resource utilization by avoiding bandwidth
fragmentation. It also provides better load balance and
reliability under dynamic network environments. However, the

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCC.2016.2570750

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2570750, IEEE
Transactions on Cloud Computing

node mapping part was still one-to-one which is NP-hard and
heuristic algorithms were developed in [9].

A recent study [10] tried to solve the NP-hard node
mapping problem by first relaxing the integer constraints for
the node mapping to obtain a linear program and then applying
rounding techniques to select unique node mapping. While this
approach makes node mapping solvable in polynomial time,
applied rounding techniques can also make the results
suboptimal.

A latest work [11] on network virtualization extends [10] to
WDM (Wavelength Division Multiploexing) and flexible-grid
optical networks. The problem was formulated as mixed
integer linear programs (MILP). Two heuristics were
developed to achieve suboptimal solutions by exploring the
opportunities of traffic grooming.

Another extension achieved in [21] is to implement
survivable virtual network embedding by considering physical
networks that may partially fail. Heuristic algorithms based on
fast re-routing were developed to mitigate failures.

Inspired by the success of VMs enabled by Hypervisor,
there are some recent works that started considering the
colocation scenario [12]. A complex heuristic algorithm was
developed to find optimal colocation strategy. However the
work in [12] has not considered the case in which a node can
be split and mapped onto multiple nodes. Nor has it
considered differentiating transit nodes from stub nodes.

[2] and [3] introduced the VDC concept where a node can
be either a VM or a virtual switch. While VM is considered
non-splittable, splitting a virtual switch to multiple physical
switches is investigated under two specific virtual topologies
called virtual cluster and oversubscribed virtual cluster in [3]. It
demonstrates the benefit of defining a virtual network with
virtual switches for mitigating congestion.

[4] and [5] further studied the migration and reliability
issues under the VDC model. However they limit the mapping
from a virtual node to a physical node to one-to-one for both
VM and virtual switch.

Our approach in this paper is different from all existing
studies in the following aspects:

1. We defined a new abstraction for the interface between

SPs and InPs. In our abstraction, an application is

modeled as a virtual network of functional nodes rather

than a virtual network of VMs. Our abstraction helps SPs

to define their applications with models that match their

software architectures closely. Meanwhile, it provides

InPs more freedom to decide the number of VMs and

their sizes for each application based on a global

optimization process. This will help InP to auto scale each

application based on load condition.

2. Our abstraction naturally leads to node splitting scenario

that has not been considered by existing research studies

on virtual network embedding. Our approach discussed in

this paper allows many-to-many mapping that can

significantly maximize the benefits of parallel computing.

3. We provided a generic way to map a VTN to multiple

STNs. Specifically, we allow an SP to specify a traffic

pattern for a VTN in addition to potential STNs as a

requirement so that the optimization process can embed

the requirement onto the STNs. This allows an InP to

provision its network more accurately for different

applications while giving SPs more control.

4. Our formulation leads to LP problems that can be solved

in polynomial time. This is an advantage over existing

approaches that require some kind of heuristics in order to

achieve polynomial time, which lead to suboptimal

results.

V. CONCLUSION

Existing research studies on application modeling have put
limitations on how a virtual node can be mapped onto a
substrate node. These limitations have reduced the benefits of
resource sharing and increased the difficulty of resource
optimization.

In this paper, we have developed a novel approach that
allows node splitting as well as node colocation either partially
or fully. Furthermore, we have considered a more realistic VN
mapping scenario where both virtual nodes and substrate nodes
are classified as either transit node or stub node. For VTNs, we
introduced a new requirement called traffic pattern. These
improvements allow us to model all applications supported by
today’s datacenters, especially new programming models such
as MapReduce, which explore a large cluster of servers in
parallel. They will also be helpful to mitigate congestion
problems caused by poor provisioning.

We formulate virtual links and virtual transit links as two
levels of commodities. Our formulation results in LP problems
that are more scalable than all existing approaches. Through
simulation, we have demonstrated our approach can
dramatically reduce link bandwidth consumption and raise VN
acceptance ratio. Our approach leads to higher node utilization
that indicates reduction of resource fragmentation.

Future research will be targeted at extending our model to
capture migration and energy cost.

REFERENCES

[1] J. Dean and S. Ghemawat, “MapReduce: Simplified Data Processing on

Large Clusters,” USENIX Sixth Symposium on Operating System Design
and Implementation (OSDI’04), San Francisco, CA, December, 2004

[2] C. Guo, G. Lu, H. J. Wang, S. Yang, C. Kong, P. Sun, W. Wu, and Y.
Zhang, “Secondnet: a data center network virtualization architecture
with bandwidth guarantees,” In Proceedings of the International
Conference Co-NEXT, 2010.

[3] H. Ballani, P. Costa, T. Karagiannis, and A. Rowstron, “ Towards
predictable datacenter networks,” In Proceedings of the ACM
SIGCOMM 2011, New York, NY, USA, 242-253.

[4] M. F. Zhani, Q. Zhang, G. Simon, and R. Boutaba, “VDC Planner:
Dynamic Migration-Aware Virtual Data Center Embedding for Clouds,”
In Proceedings of the IFIP/IEEE Integrated Network Management
Symposium (IM 2013), Ghent, Belgium, May 2013.

[5] Q. Zhang, M. F. Zhani, M. Jabri, and R. Boutaba, “Venice: Reliable
Virtual Data Center Embedding in Clouds,” In IEEE International
Conference on Computer Communications (INFOCOM), Toronto,
Ontario, Canada, April 27 - May 2, 2014.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCC.2016.2570750

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

2168-7161 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TCC.2016.2570750, IEEE
Transactions on Cloud Computing

[6] M.F. Bari, R. Boutaba, R. Esteves, L.Z. Granville, M. Podlesny, M.G.
Rabbani, Q. Zhang, M.F. Zhani, “Data Center Network Virtualization: A
Survey,” IEEE Communications Surveys and Tutorials, vol.15, no. 2,
Sept. 2012.

[7] A. Wang, M. Iyer, R. Dutta, G. Rouskas, I. Baldine, “Network
virtualization: technologies, perspectives, and frontiers,” IEEE Journal
of Lightwave Technology, vol.31, no.4, pp.523–537, 2013

[8] Y. Zhu and M. Ammar “Algorithms for assigning substrate network
resources to virtual network components,” IEEE INFOCOM, April
2006, Barcelona.

[9] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network
embedding: susbtrate support for path splitting and migration,” ACM
SIGCOMM Computer Communication Review, vol. 38, no. 2, pp. 17-29,
April, 2008

[10] N. M. M. K. Chowdhury, M. R. Rahman, and R. Boutaba, “Virtual
network embedding with coordinated node and link mapping,” IEEE
INFOCOM 2009, April 2009, Rio de Janeiro.

[11] S. Zhang, L. Shi, C. S. K. Vadrevu, B. Mukherjee, “Network
virtualization over WDM and flexible-grid optical networks,” Optical
Switching and Networking, Elsevier, vol. 10, no. 4, pp. 291-300, Nov.
2013.

[12] C. Fuerst, S. Schmid, and A. Feldmann, “Virtual Network Embedding
with Collocation: Benefits and Limitations of Pre-Clustering,” IEEE
International Conference on Cloud Networking, November 11-13, 2013,
San Francisco.

[13] http://aws.amazon.com.

[14] J. Varia, “Best Practices in Architecting Cloud Applications in the AWS
Cloud,” Cloud Computing: Principles and Paradigms, Wiley, 2011.

[15] D. Sullivan, “PaaS Provider Comparison Guide: Amazon AWS as a
PaaS,” http://www.tomsitpro.com/articles/amazon-aws-paas-iaas-cloud-
computing,2-608.html, September, 2013.

[16] M. Alizadeh, A. Greenberg, D.A. Maltz, J. Padhye, and et al., “Data
Center TCP (DCTCP),” in Proceedings of SIGCOMM’10, August,
2010, New Delhi, India.

[17] D. Nagle, D. Serenyi, and A. Matthews, “The Panasas ActiveScale
Stirage Cluster: Delivering Scalable High Bandwidth Storage,” 2004
ACM/IEEE Conference on Supercomputing, 2004, DC, USA.

[18] A. Phanishayee, E. Krevat, V. Vasudevan, D. G. Andersen, G. R.
Ganger, G. A. Gibson, and S. Seshan, “Measurement and Analysis of

TCP Throughput Collapse in Cluster-Based Storage Systems,” USENIX
Conference on File and Storage Technologies, February 2008, San Jose,
CA.

[19] “GNU Linear Programming Kit,” http://www.gnu.org/software/glpk/.

[20] E. Zegura, K. Calvert, and S. Bhattacharjee, “How to model an
Internetwork,” in Proceedings of IEEE INFOCOM, 1996, pp. 594–602.

[21] M. R. Rahman and R. Boutaba, “SVNE: Survivable Virtual network
Embedding Algorithms for Network Virtualization,” IEEE Transactions
on Network And Service Management, vol.10, No.2, June 2013, pp.105-
118.

Changcheng Huang received his B. Eng. in 1985 and M.

Eng. in 1988 both in Electronic Engineering from Tsinghua

University, Beijing, China. He received a Ph.D. degree in

Electrical Engineering from Carleton University, Ottawa,

Canada in 1997. From 1996 to 1998, he worked for Nortel

Networks, Ottawa, Canada where he was a systems

engineering specialist. He was a systems engineer and

network architect in the Optical Networking Group of Tellabs,

Illinois, USA during the period of 1998 to 2000. Since July

2000, he has been with the Department of Systems and

Computer Engineering at Carleton University, Ottawa, Canada

where he is currently a full professor. Dr. Huang won the CFI

new opportunity award for building an optical network

laboratory in 2001. He is an associate editor of Springer

Photonic Network Communications. Dr. Huang is a senior

member of IEEE.

Jiafeng Zhu is a Sr. Architect in Shannon Lab at Huawei

Technologies, Inc. U.S. R&D Center. His research interests

include distributed processing scheduling, cloud

storage, software define networking, network function

virtualization, and network planning.

This is the author's version of an article that has been published in this journal. Changes were made to this version by the publisher prior to publication.
The final version of record is available at http://dx.doi.org/10.1109/TCC.2016.2570750

Copyright (c) 2016 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.

http://www.tomsitpro.com/articles/amazon-aws-paas-iaas-cloud-computing,2-608.html
http://www.tomsitpro.com/articles/amazon-aws-paas-iaas-cloud-computing,2-608.html

