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Abstract—Efficient bandwidth allocation has been a popular 
research topic during the last few years. It is a challenging issue 
to provide guaranteed quality of service (QoS) for network 
applications while still obtaining high network utilization. As a 
promising approach to achieve tradeoff between network 
utilization and the provisioning of QoS, the concept of effective 
bandwidth has been widely accepted. However, it requires a full 
characterization of the underlying process to calculate its 
effective bandwidth, which is not trivial. And it is also well known 
that the pure effective bandwidth allocation is conservative. To 
bypass modeling the underlying traffic and overcome the 
conservative nature of effective bandwidth, we propose a robust 
adaptive effective bandwidth allocation (AEBA) algorithm. We 
study the performance of the robust AEBA method under the 
dynamic weighted round-robin (DWRR) scheduling with a set of 
simulations using both self-similar traffic and traditional Poisson 
traffic as input. The simulation results show that our approach 
allows different QoS requirements to be satisfied while effectively 
exploiting the statistical multiplexing gain occurring among 
multiple traffic classes at the same time. The simulation results 
also show that our approach is robust in that it does not need any 
assumptions about the underlying traffic. 
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I. INTRODUCTION 
Effective Bandwidth, or its synonyms, equivalent 

bandwidth or equivalent capacity, has been the subject of 
intense research activities since the idea was proposed by Hui 
in the seminal paper [1] in1988. Afterward, many researchers 
have contributed to develop the appropriate notion of effective 
bandwidths by investigating different traffic models.  

The general notion of effective bandwidth is that: given the 
system parameters such as the buffer space B and channel 
capability C, we wish to know how to estimate the required 
bandwidth, say αj, for a set of traffic sources with the QoS 
requirement in terms of buffer overflow probability ε, such 
that P{queue length ≥  B} ≤  ε if 

∑
j

αj Nj ≤  C                                                          (1) 

where Nj is the number of sources of type j and αj is the 
effective bandwidth of source type j.  

From a practical standpoint, two essential characteristics of 
effective bandwidths are defined in [2]:  

• Independence property: the effective bandwidth of a 
traffic stream is independent of the other streams with 
which it is mixed; it is only a function of the traffic 
stream’s parameters. 

• Additive property: Effective bandwidths are additive, 
i.e., the sum of the effective bandwidths of a set of 
independent traffic streams is equal to the effective 
bandwidth of their superposition. 

In the literature, there are many approaches to estimate 
effective bandwidth for a bursty source. In general, we can 
categorize them into two classes: the first one includes the 
analytic approaches based on traditional queueing theory.  By 
hypothesizing the traffic models, an explicit expression for the 
effective bandwidths for some traffic sources (such as Markov 
and fBm processes) can be obtained. There are rich researches 
about such approaches, see, for example, [3] [4] [5] etc.  

The second categorization is to use Kelly’s mathematical 
definition to calculate the effective bandwidths for different 
kinds of traffic. Based on large deviation theory, Frank Kelly 
defined a mathematical framework [6] for effective bandwidth 
of a stationary arrival process as follows: 

α(s,t) =
st
1

logE[esX[0,t]]    0<s,t<∞,                        (2)  

where s is the space-scale parameter and t is the time-scale 
parameter, X[0,t] denotes the amount of data that arrives from a 
source during the interval of length t.  

Formula (2) has been the most widely accepted effective 
bandwidth form since Kelly defined it. The problem with 
respect to its practical usage is to find the appropriate values for 
s and t (network operating point). In general, there are two 
methods to calculate this operating point. One is many sources 
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asymptotic [7] method, which assumes that as the number of 
independent input increases, the buffer size and service rate per 
input stay fixed; the other one is the large buffer asymptotic, 
which is concerned with how buffer overflow probability 
decays as buffer size increases. 

In many sources asymptotic method, the following formula 
is used to estimate the values of s and t. 
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  (3) 
where N is the number of combined sources entering the link, 
b, c are the buffer and capacity per source, I is called the 
asymptotic rate function. The following two facts about many 
sources asymptotic approach make it only suitable for off-line 
effective bandwidth estimation: One is that, to estimate the 
effective bandwidth, the whole trace of the traffic source is 
needed beforehand. The other one is that sup-inf calculation 
can be very computationally intensive, particularly with long 
traffic traces.  

In large buffer asymptotic, originally, the effective 
bandwidth is calculated as the time parameter t tends to be 
infinite [8]. In practice, we may choose a suitable time interval 
for t for on-line measurement-based effective bandwidth 
estimation. The space parameter is calculated as follows: 

s=-ln(Ploss/B)                                           (4) 

where B is the buffer size.  

As a promising approach to achieve the tradeoff between 
network utilization and the provisioning of QoS, the concept of 
effective bandwidth has been widely accepted. However, from 
(2), we can see that it requires a full characterization of the 
underlying process to calculate its effective bandwidth, which 
is not trivial. And it is also well known that the pure effective 
bandwidth allocation is conservative [9]. To bypass modeling 
the underlying traffic and overcome the conservative nature of 
effective bandwidth, we propose a robust adaptive effective 
bandwidth allocation (AEBA) algorithm. To provide the 
service differentiation for different traffic classes, we adopt the 
dynamic weighted round robin (DWRR) scheduling using the 
robust AEBA to study the statistical QoS assurance for 
multiple traffic classes.     

The rest of this paper is organized as follows: In Section II, 
we describe the dedicated and robust AEBA methods. Then in 
Section III, we evaluate the performance of the robust AEBA 
using a set of simulations with Poisson, ON-OFF, and self-
similar traffic as input. Finally, in Section IV, we draw the 
conclusions. 

II. DEDICATED AND ROBUST EFFECTIVE BANDWIDTH 
ALLOCATION 

A. Dynamic Weighted Round Robin Scheduling 
To provide service differentiation for multiple traffic 

classes, we study the performance of effective bandwidth under 
DWRR scheduling instead of FIFO queueing discipline in a 
self-sizing network [10]. We consider a class-based DWRR  
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Figure 1.  Dynamic weighted round robin scheduling 

scheduling where packets of different classes are scheduled 
according to their measured arrival rates, as shown in Fig. 1. 

At the incoming edge of the network, the incoming traffic 
streams are classified into different classes and isolated into 
separate buffers. Each class of traffic has similar traffic 
characteristics and same QoS requirement. Here, we consider 
the packet loss probability as the QoS requirement of interest. 
It is difficult to achieve a priori link dimensioning in self-
sizing networks, a traffic prediction method is required. Noting 
that the most effective way to predict the traffic is to use the 
latest second to predict the next second, the latest minute to 
predict the next minute, there is not too much benefit to 
increase the number or lengths of the accounted time intervals 
in the past [5]. We use the effective bandwidth estimated in the 
current time window to predict the bandwidth to be allocated in 
the next time window. According to the additive and 
independence properties of effective bandwidths, we may wish 
to allocate the overall bandwidth according to the sum of the 
effective bandwidth of individual classes and adjust the weights 
assigned to each class according to its effective bandwidth 
estimated in the current time window. The scheduler visits each 
queue in a weighted round-robin fashion. According to the 
buffer occupancy and the allocated bandwidth of each traffic 
class, the weights are adjusted dynamically. 

B. Adaptive Effective Bandwidth Allocation 
When using the sum of per-class effective bandwidth as the 

overall bandwidth requirement, we impose a linear relationship 
on the effective bandwidth allocation under DWRR scheduling 
where such linearity does not hold. Due to the effect of 
statistically multiplexing multiple classes together, the 
bandwidth required to carry a set of classes with a certain QoS 
demand for each class might be less than the sum of the 
bandwidths that would be needed to carry each class separately 
with the same QoS requirement. However, due to the coupled 
interactions among different classes, it is very difficult to 
calculate the multiplexing gain. To exploit the statistical 
multiplexing gain among multiple traffic classes, we develop 
the adaptive effective bandwidth allocation approach as shown 
in Fig. 2.  
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Figure 2.  Adaptive effective bandwidth allocation 

It is a two-step bandwidth allocation procedure: (1) we use the 
effective bandwidth as a rough approximation of the bandwidth 
to be allocated; (2) we adjust the bandwidth to be allocated 
according to the measured QoS.  

According to the measured loss ratios in each window and 
the measured overall loss ratio, we adjust the value of 
multiplexing gain factor g, which adjusts the bandwidth to be 
allocated for the next window in the following way: 

BWnext=Min{Max{EB(1-g),average rate},peak rate},   (5) 

where BWnext is the bandwidth to be allocated for the next 
window and EB is the effective bandwidth estimated in the 
current window.  

There are two important thresholds related to the AEBA 
operation, which characterize each class: Thlosshigh, the upper 
threshold of the packet loss ratio for each class; and Thlosslow, 
the lower threshold of the packet loss ratio for each class.  

0<Thlosslow<Thlosshigh< Target loss ratio                     (6) 

We also define two step control parameters, Ssmall and 
Slarge, for adjusting the value of g: 

  Slarge>Ssmall>1                                                             (7) 

  If the measured loss ratios are lower than Thlosslow in two 
successive windows, the over-allocation may have occurred. 
We increase the value of g by multiplying g with Ssmall, which 
will reduce the bandwidth allocation according to (5). If the 
measured loss ratio in the current window is higher than 
Thlosshigh, with high probability, g is too large. We reduce the 
value of g to the former value by dividing it with Ssmall. If the 
measured overall ratio is higher than Thlosshigh at the same 

time, we need to reduce the loss ratio in the next several 
windows to reduce the overall loss ratio to the target loss ratio. 
To achieve this goal, we reduce the value of g by dividing it 
with Slarge.  If the measured loss ratio in a window falls 
between [Thlosslow, Thlosshigh], we don’t change the value of 
g. By this way, we can measure the multiplexing gain: 

dwidhfectiveBanMeasuredEf
dwidthlocatedBanActuallyAldwidthfectiveBanMeasuredEfGain −= .(8) 

C. Dedicated Adaptive Effective Bandwidth Allocation 
Method 
The effective bandwidth of one source is determined by its 

traffic characteristic and its associated QoS requirement. Since 
the notion of effective bandwidth was originally introduced to 
simplify the call admission procedure in the packet-switched 
networks, a lot of researchers have shown the existence of 
effective bandwidths for a large class of traffic models. For 
example, in [8], the following effective bandwidth formula for 
a Poisson traffic source with average arrival rate of λ events per 
time unit is derived: 

EBPoisson =
s

e s 1−λ ,                                         (9)                   

where s=-lnPloss/B. 

Another effective bandwidth formula which is often 
mentioned in literature is Gaussian approximation [3]. 
Assuming that the distribution of the aggregate arrival rate of a 
set of traffic streams can be accurately approximated by a 
Gaussian distribution, the effective bandwidth for such 
aggregate traffic is derived as: 

C=m+ )2ln()ln(2 πσ −− Ploss ,                   (10) 

where m is the mean aggregate rate, σ is the standard 
deviation of the aggregate rate. We should note that Gaussian 
approximation is a bufferless model, (10) is obtained from the 
approximation for the inverse of Gaussian distribution of the 
aggregate rate, of which the cumulative tail probability beyond 
C does not exceed Ploss. 

And in [5], Norros modeled the aggregated connectionless 
traffic as the fractional Brownian motion traffic and derived its 
associated effective bandwidth. 

Since the traffic of different applications will exhibit 
different statistical characteristics, for example, some exhibit 
short-range dependence (SRD) characteristic and others exhibit 
long-range dependence (LRD) characteristic, we may wish to 
use different effective bandwidth approaches for different 
classes of traffic to get better performance. We name this 
method as dedicated AEBA approach in the following 
discussion. 

D. Robust Adaptive Effective Bandwidth Allocation 
However, it is often not feasible to get the reliable traffic 

models that can capture the statistical characteristics of the 
actual traffic, the assumptions made about the traffic in 
effective bandwidth approach may not be in agreement with the 
actual traffic. Recent research on statistical QoS has attempted 
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to estimate the required bandwidth without assuming a specific 
traffic model [11]. Therefore, we prefer to use a robust AEBA 
approach, which would bypass modeling the underlying traffic.  

We choose (2) to calculate the effective bandwidth in 
AEBA algorithm. For practical purpose, the block estimator 
[12] is applied to (2) to make it suitable for real-time on-line 
measurement: 

∑
=

−=
N

i

ittisXe
Nst

ts
1

],)1[(1log1),(α ,                                        (11) 

where N is the window size.          

III. SIMULATION RESULTS 
To evaluate the performance of our proposal, we do 

simulations with the heterogeneous traffic as input. We use 
both SRD traffic and LRD traffic as input. 

We set the initial value of the multiplexing gain factor 
g=0.05, upper loss ratio threshold Thlosshigh=0.98*target loss 
ratio, lower loss ratio threshold Thlosslow=0.8*target loss 
ratio, small step control parameter Ssmall=1.1 and large step 
control parameter Slarge=1.3. 

A. Traffic Profiles 
Table I gives the traffic profiles for each class. Without loss 

of generality, we use the Poisson traffic source, the 
superposition of the Fractal Renewal Point Process (Sup_FRP) 
[13] and the superposition of ON-OFF sources to generate 
packet-based traffic. To obtain general results, we use a 
variable packet size to make the traffic more realistic.  

TABLE I.  TRAFFIC PROFILES 

Traffic Sources Class 1 Class 2 Class 3 

Target loss ratio 0.001 0.01 0.05 
Traffic models Poisson Sup_FRP 

(H=0.7) 
ON-OFF (50) 
ON:   0.362s 
OFF:  0.65s 

Arrival rate (packet/s) 1000 1000 50 when ON 
Buffer size (Packet) 50 100 20 

Packet size (Byte)          Poisson (100) 
Dedicated Poisson Block  

Estimator 
Gaussian 
Approximation 

Effective 
Bandwidth 

Method Robust          Block Estimator 

  

B. Simulation Results with Dedicated AEBA Approach   
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Figure 3.  Measured loss ratio with dedicated effective bandwidth approach 
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Figure 4.  Measured multiplexing gain with dedicated AEBA approach 

The simulation results in Fig.3 and Fig.4 show that the 
different QoS requirements of all classes can be satisfied at the 
same time.  

Meanwhile, the overall multiplexing gain of around 9.85% 
is achieved. For class 1, the multiplexing gain is around 
4.75%, for class 2, it is around 7.68%, and for class 3, it is 
around 16.57%. 

C.  Simulation Results with Robust AEBA Approach 
The simulation results in Fig.5 and Fig. 6 show that the 

different QoS requirements of all classes can also be satisfied 
with the robust AEBA approach. 

Meanwhile, the overall statistical multiplexing gain of 
around 5.56% is achieved. For class 1, the multiplexing gain is 
around 4.25%, for class 2, it is around 7.77%, and for class 3, it 
is around 5.56%. 
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Figure 5.  Measured loss ratio with robust AEBA approach 
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Figure 6.  Measured multiplexing gain with robust AEBA approach 
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Figure 7.  Comparison of the calculated effective bandwidth of two 

approaches 
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Figure 8.  Comparison of the actually allocated bandwidth of two 

approaches 

D. Comparison of Dedicated and Robust AEBA Approaches 
The simulation results show that there is a significant 

difference of the overall multiplexing gains of these two 
approaches. However, we should note that, as shown in Fig.7, 
the calculated effective bandwidths are different in these two 
cases since we use different effective bandwidth methods to 
measure them. And as shown in Fig. 8, the actually allocated 
bandwidths are almost the same with these two approaches. 
Since the QoS requirements of all classes can be satisfied with 
both methods and the bandwidth consummation are almost the 
same with these two methods, we may conclude that the robust 
AEBA approach has the same performance as the dedicated 
AEBA approach. 

Comparing the simulation results shown in figures 4 and 6, 
we can find that the difference between the multiplexing gains 
achieved by these two approaches is mainly caused by class 3, 
which is shown more explicitly in Fig.9. The reason is that, the 
Gaussian approximation does not fully exploit the amount of 
statistical gain that can be achieved since it does not take into 
account the effect of buffer. Since the buffer will absorb some 
of the traffic fluctuations, the actual allocated bandwidth could 
be much less than the upper bound calculated with (10). 

The reason that the actually allocated bandwidths are  
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Figure 9.  Comparison of the measured multiplexing gain of class 3 with 

two approaches 

almost the same with these two methods is due to the AEBA 
algorithm which will adjust the bandwidth to be allocated 
according to the measured loss ratio adaptively.  

IV. CONCLUSION 
We have evaluated the performance of the dedicated AEBA 

approach and the robust AEBA approach with heterogeneous 
traffic combined with both LRD and SRD traffic as input. The 
simulation results show that the robust AEBA approach can 
also allow the different QoS requirements of all traffic classes 
to be satisfied at the same time with almost the same network 
resources consumed by the dedicated AEBA method. And both 
methods can overcome the conservative nature of effective 
bandwidth and exploit the multiplexing gain among multiple 
traffic classes effectively.  

The robust AEBA approach is robust in that it does not 
require the a priori knowledge about the underlying traffic, 
which makes it more practically useful than the dedicated 
AEBA approach.  
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