
Vulnerability Evaluation for Securely Offloading
Mobile Apps in the Cloud

He Zhu, Changcheng Huang and James Yan
Department of Systems and Computer Engineering, Carleton University

Ottawa, ON, Canada
{hzhu, huang}@sce.carleton.ca, jim.yan@sympatico.ca

Abstract—The increasing complexity and explosive growth of

smartphone applications, together with the more prevalent use of
cloud computing, have inspired strong motivation for offloading
computation of mobile apps to the cloud. However, there exist
vulnerabilities in apps if they are offloaded in public cloud
environment. In this paper, we argue that keeping sensitive
information to a local device with other information offloaded
would significantly reduce threats from the cloud while enjoy the
benefits of cloud computing. Our mechanism divides an app into
multiple parts and offloads the less vulnerable parts. To decide
which parts should be kept locally to a mobile device, we develop
an approach that can decide the impact of a component part
(down to an individual object) on the overall vulnerability of an
app. We demonstrate how our approach can be implemented
with real mobile cloud applications.

Index Terms— Mobile Cloud Computing, Cloud Security,
Offloading Apps.

I. INTRODUCTION
Cloud computing provides computational resources with

high availability and reasonable prices. Meanwhile, state-of-
the-art mobile apps, such as face recognition, image and video
processing, have increased the consumption of on-demand
computational resources. Therefore, offloading apps to have
them run on cloud servers has emerged [1] [2] [3] [4] as an
attractive solution in order to exploit the capacity and
efficiency of cloud computing. Offloading applications into the
cloud would also save limited power of mobile devices and
accelerate the speed of executing applications.

One critical issue to resolve in offloading apps is how to
manage the security risks of cloud computing [5] [6]. Many
mobile apps use and store personal information related to
banking, health, business, messaging and so on. Sensitive
information sent to the remote cloud has a good chance to be
exposed to either service providers or malicious customers who
have access to the same hardware [6].

Traditional ways to protect remote execution and data
storage include mutual authentication, authorization and data
encryption for the whole app. If every single part of the app
was armored by well-prepared security protections, the system
would be safe enough but the cost would also rocket up and not
be acceptable for commercial use, because too much
information has to be encrypted unnecessarily [7]. The
redundant encryption and decryption operations hurt both
energy efficiency and user experience. We need to consider the

tradeoffs between security and usability, and to maximize the
system security subject to a tolerable delay and resource cost.

Recent research focuses on the advantages of offloading
mobile applications into remote locations, including both cloud
servers and ubiquitous computation facilities nearby. Various
systems and architectures have been proposed [1] [2] [3] [4] [8]
[9] [10], usually aiming at higher computing power and lower
energy consumption for resource-constrained mobile platforms.
Resource allocation optimization schemes have been presented
[11] [12] with the purpose of minimizing energy consumption.
However, there is little discussion about the security of
offloading, and mature solutions towards secure offloading
cannot be found.

In this paper, we present a mechanism to offload less
vulnerable app parts. This approach faces some challenges.
First, the complex call relationships of classes and functions
within an app make it difficult to highlight the vulnerable parts.
Second, it is tricky to determine the level of protection for the
parts because of the tradeoffs between security and
performance. Besides, no mature systems have been built to
break down and offload apps. To address these challenges, we
present the following contributions in this paper:
• We propose a novel graph-based analytical model, namely

object dependency graph (ODG). Rather than focus on the
whole app as in existing work, we divide an app into
multiple parts according to the instances of classes created
at runtime, and connect them by their dependencies. The
vulnerability of each part may propagate along its
dependencies and can be evaluated by our model. The
ODG structure enables us to identify problematic objects
due to dependencies.

• We determine the vulnerability level of all app parts and
make offloading decisions jointly so that cloud resources
can be best utilized, while the security level is not violated.
To our best knowledge, we are the first to take this
approach.

• We design an algorithm based on the ODG model that can
run on all popular smartphone OS’s. Experimental results
based on Android OS are illustrated in this paper. The
unique point of our solution is the configurable location
where the analysis is made. Our analytical algorithms can
run either on local devices or in the cloud with the
necessary inputs.

108978-1-4799-0568-3/13/$31.00 c©2013 IEEE

Fig. 1. The system architecture of the vulnerability-based secure offloading
framework.

The remaining sections are organized as follows. Section II
describes the system architecture. The Object Dependency
Graph (ODG) and the vulnerability model are introduced in the
next two sections. Section V shows the evaluation results. The
last section concludes the paper.

II. SYSTEM ARCHITECTURE
Our system is designed to address the security issues

arising when mobile devices use public cloud computing
services. These issues are mostly caused by the multi-tenancy
feature [13] in cloud computing.

A. Basic Idea
The basic idea of the system is to divide an app into

components and to keep the components that have the biggest
impact on the vulnerability of the app to a local mobile device.
Our idea is novel since existing research work on offloading
components of apps mostly focuses on energy efficiency rather
than on security. A key factor of our approach is the concept of
vulnerabilities of an app and its components.

Defining the vulnerability is a challenging task because it
refers to risks that may happen. Suppose a large number of
copies of an app have been sold. We consider the ratio of the
number of compromised instances of a component in the app to
the number of instances of the component in use. In theory, this
ratio will converge to a probability when the total number of
copies of the app in use goes to infinity. The higher this
probability is, the more vulnerable the component will be. We
define this probability as the vulnerability of the object.

B. System Modules
To realize this basic idea, the system solution needs three

functions. The first one is to partition an app into multiple parts.
The second is to quantify how vulnerable each part is to ensure
offloading the right ones. Therefore, it is paramount to build an
analytical model for calculating vulnerabilities of app parts and
their impacts on the overall vulnerability of the app for making
our offloading decisions. Finally, the system must be able to
actually carry out the decisions by offloading the appropriate
objects to cloud servers. Meanwhile, we also need to consider
the cost of data communications between local and offloaded
objects.

public class CallRel {
private B ob;
private C oc;
private D od;

public void a1() {

 ob.m1();
}
public void a2(C oc) {
 this.oc = oc;
 …
}
public void a3() {
 od = ob.m2();
}

}
CallRel cr = new CallRel();

Fig. 2. The three methods in this class illustrate three types of call relationships.
(1) Method calls: Object cr has a call relationship with ob, because Method
cr.a1() invokes ob.m1(). (2) Method parameters: Object cr has a call
relationship with oc, because oc is a parameter of method cr.a2(). (3)
Method returns: Object od has a call relationship with ob, because its value is
set by the return of ob.m2().

Corresponding to the three functions are the three modules
in our system as shown in Fig. 1. The remote call tracker is to
properly divide the app into multiple parts to be ready for being
evaluated and offloaded. The vulnerability analyzer is to
quantify the vulnerabilities and to make optimal offloading
decisions. It takes method call statistics from the smartphones
as input, and outputs the offloading decisions. The offloading
agent is the actual module to fulfill the offloading jobs.

III. OBJECT VULNERABILITY
In object-oriented programming (OOP), objects are basic units
of a running app as they are instantiated from encapsulated
class definitions [14]. An object will be identified as a local
object when it runs on the smartphone. And it will be called a
remote object if it runs in the cloud.

A. Call Relationship and Message Passing
A call relationship refers to any method invocation or

remote message passing that creates dependencies between two
objects. The objects depend on each other according to how
they are functionally related. On the smartphone side, the
method calls defined in classes reveal the dependencies among
objects. The forms of method calls are listed below.
• Method Calls: a method in an object calls a method in

another object. For example, Object cr in Fig. 2 has a call
relationship with ob, because Method cr.a1() invokes
ob.m1().

• Method Parameters: a method in an object has another
object’s reference as its parameter. Refer to Fig. 2, Object
cr has a call relationship with oc, because oc is a
parameter of method cr.a2().

• Method Returns: the value of an object is set by a method
call of another object. In Fig. 2, Object od has a call
relationship with ob, because its value is set by the return
of ob.m2().

When the app is partly offloaded and the objects are at
different locations, the call relationships would be in form of
remote message passing. Depending on the locations and types
of objects, there are two types of remote message passing:

CallRel cr;

B
ob;

C
oc;

CallRel cr;

c
r
.
a
1
-
>
o
b
.
m
1
(
)

c
r
.
a
2
(
o
c
)

od->ob.m2()

Remote Call Tracker

Runtime App Logger

Call Relationship Extractor

Call Statistics Reporter

Vulnerability Analyzer

ODG Builder

Cloud-originated Vulnerability Assessment

Object Location Selector

Object Location Selector

Offloading Agent

Phone-side Offloading Agent Cloud-side Offloading Agent

Smartphone Side Cloud Side

2013 IEEE 2nd International Conference on Cloud Networking (CloudNet): Full Paper 109

Fig. 3. The processes of initiator attacks and observer attacks. For both attacks,
the attacker has the control of a compromised object shown by (1). For initiator
attacks, the attacker cannot compromise the target object directly along (2), as
there are access control mechanisms to protect illegal accesses. However,
attackers may take the compromised object as a proxy, and propagate the
vulnerabilities to the target object as illustrated by (3) through the call
relationship of (4). The direction of the vulnerability propagation and that of the
call relationship are the same. For observer attacks, if the target object calls the
compromised object through the call relationship of (6), then the compromised
object may send a forged response that could compromise the target object. So
the vulnerabilities propagate from the compromised object to the target object,
whose direction is opposite to the call relationship.

• Local-remote Message is the message passed between a

local and a remote object. Smartphones communicate with
cloud services through local-remote messages. And the
propagation of vulnerabilities by these messages will
affect the information on smartphones directly.

• Remote-remote Message stands for the message passed
between two objects in the cloud. The remote-remote
messages do not interact with the smartphone directly, but
they may propagate vulnerabilities as well and threat the
information security indirectly.

Both method calls and remote message passing enable
attacks to gain access to other objects by exchanging data,
which lead to the propagation of vulnerabilities, also known as
propagated vulnerabilities. We start the analysis from the call
relationships, and then define the propagated and the cloud-
originated vulnerability.

B. Propagated Vulnerabilities
The propagated vulnerability of an object is defined as the

probability that an attack originates from any other object and
propagates to the object through call relationships or message
passing. The propagated vulnerability could come from either
direction of the call relationship by two types of attacks below:
• Initiator Attacks enable an attacker to take a compromised

object of an app as a proxy. The private resources of the
app can be reached through the proxy object on behalf of
the attacker. The vulnerability in this case propagates from
the object initiating method calls or message passing to the
target object being called or passed to. Back to the
example in Fig. 2, if ob has been attacked, it may behave
incorrectly, such as missing necessary functions and
performing malicious operations. Those behaviors also
affect Function cr.a1() and then Object cr.

• Observer Attacks work in a different way compared to
initiator attacks. When a compromised object is called,
other objects calling it may pass parameters to it. Those
parameters may contain sensitive information. Thus the

vulnerabilities can be propagated from the target object
being called to the one calling it. In Fig. 2, if cr has been
compromised, attackers may get sensitive information by
accessing ob. Similar scenarios happen with message
passing too.

The processes of both types of attacks are also described in Fig.
3. The results of vulnerability propagation along opposite
directions of call relationships are equal: whichever attacks
propagate, the fact that both objects from such call relationship
or message passing become compromised remains the same.
Thus the ODG can be modeled as an undirected graph.

C. Cloud-originated Vulnerabilities
The cloud-originated vulnerability is caused by interactions

between an object and the cloud environment hosting it. It is
defined as the probability that an object is compromised due to
the weaknesses or the attacks from the cloud environment.
Specifically, it may be caused by memory and CPU cache
leaks [15], or side/covert channels in the cloud [6]. Because it
may be very hard to identify the exact sources that induce the
cloud-originated vulnerability, we consider the compromised
object as the originator if the vulnerability is caused by the
cloud environment.

A feasible way to evaluate cloud-originated vulnerabilities
is through measurement. To this end, the reputation-based
systems can be adopted [13]. Being widely used in mobile Ad-
Hoc Networks [16], E-mail Anti-spam [17], online shopping
[18] and social networks [19], reputation systems provide us
practical solutions to estimate cloud-originated vulnerabilities.
It is possible to estimate the cloud-originated vulnerability of a
component based on cross-analysis of the vulnerabilities of
multiple apps if they share one or more components.

The research on the cloud-originated vulnerabilities will be
discussed dedicatedly in the future and will be out of the scope
of this paper. In this paper, we will focus on the propagated
vulnerability as it is less studied. We will take the cloud-
originated vulnerability of each object as a known variable.

D. Object Vulnerabilities
The vulnerability of an object can be defined now as the

probability of that object to be compromised due to either
cloud-originated or propagated vulnerability. The mathematical
descriptions of the definitions above will be modeled in the
next section.

IV. OBJECT DEPENDENCY GRAPH
We model all objects in an app as a set of vertices , and

all their call relationships as a set of undirected edges . They
form an undirected graph for the app, namely
Object Dependency Graph (ODG). The ODG of an app reflects
the dependencies of objects propagating vulnerabilities. In the
following sections, we will use either "objects" or "vertices" for
objects in ODGs. We will also use "call relationships" or
"edges" for dependencies of objects.

We begin the modeling of the ODG with to denote the
event of the originator being compromised for its cloud-
originated vulnerability, and as the probability of to
occur, also known as the cloud-originated vulnerability:

. Let denote the index of the path the attack
takes from to the target object , and let denote that path.
Let be the event that o has incurred a cloud-originated
attack and the attack has propagated to d along such that

Access Control
Compromised

Object

Target Object

Attacker

Compromised Object

Target Object

Attacker

(2)
(3) (4) (5)

(1) (1)

(6)

Initiator Attack Observer Attack

110 2013 IEEE 2nd International Conference on Cloud Networking (CloudNet): Full Paper

 (1)

Let denote the probability of to occur. For , ,
and , can be removed if there is only one path from to

. Then they are denoted by , , and . Also let
denote an edge in the ODG and be its propagated
vulnerability. We suppose the vulnerability propagation is only
related to the features of the edge itself. Then the event of the
vulnerability propagation along each edge is independent
Hence we have the propagated vulnerability along . The
propagated vulnerabilities need to be calculated based on
observed vulnerabilities and the topology of the ODG. The
calculation method will be shown in the following sections.
The results can be reused if duplicated objects are found.

 (2)

Given Equation (2) above, and let denote the event that is
compromised for any reason, so that can denote the
object vulnerability of d. The propagated vulnerability of ,
denoted by , is the probability that an attack originates from
any object and then propagates to :

 (3)

The object vulnerability is denoted by , where

 (4)

A. Vulnerability Propagation Model in ODGs
In this section, an analytical model is to be built to evaluate

the vulnerability of an arbitrary vertex in a general ODG.
Before we start, without loss of generality, the following
assumptions are made for calculation simplicity:

• Each object has the same cloud-originated
vulnerability ;

• Each relationship has the same probability
 to propagate an attack.

Refer to the method in [20] that was used in reliability
theory, we define the two sets below:
• Minimal path sets, denoted by ,

is the set of all minimal paths. A minimal path is a set of
edges that comprise a path, but the removal of any one
edge will cause the resulting set not to be a path. In other
words, if all the edges in a minimal path are compromised
while all other edges are working properly, the target
object will be compromised. If any one of the edges in the
minimal path subsequently is not compromised, the target
object will not be compromised because of this path. Fig.
4 shows an example of the minimal path set. The four
minimal paths are illustrated by different line dashes. The
minimal path sets can be found via a depth-first search
(DFS) that traverses all minimal paths.

• Minimal cut sets, denoted by ,
is the minimal sets of edges whose failure of vulnerability
propagation ensure the failure of the attack propagating
from to . is defined as the number of minimal cut
sets. Again, Fig. 4 shows an example of the minimal cut

set. The minimal cut sets can be found via the CARA
algorithm [21] originally used in the fault tree.

According to Equation (1) and (2), the probability of the
vulnerability propagation from to along a specific path
can be given by the function below:

 (5)

Since is a Bernoulli random variable, we may also
compute by taking its expectation. That is,

 (6)

Suppose there are minimal paths between and ,
then . Let be the probability that is
compromised and the vulnerability is propagated by any
minimal path from to . Hence

 (7)

Now we use an example to show the calculation of
propagated vulnerability. An ODG with 4 minimal paths from

 to is shown in Fig. 4. We calculate below for this ODG:

(8)

Based on the fact that all events are Bernoulli random variables,
we have . Replacing the propagated vulnerability of
each edge with and , we have

(9)

As we can see above, the calculation of the propagated
vulnerability is tedious especially when more paths exist
between two objects. It would be useful if we obtain the
bounds of propagated vulnerabilities instead.

Recall the definition of in Equation (2). Let be the
index of the current minimal cut set in . Let be the index
of the current minimal path set in . Let be an edge in the
current minimal cut set or minimal path set .

2013 IEEE 2nd International Conference on Cloud Networking (CloudNet): Full Paper 111

Fig. 4. An ODG with . As an example of the minimal path sets, it has
four minimal paths: , distinguished by different line
dashes. If consider the graph as an example of the minimal cut sets, there are
4 minimal cuts in grey lines: .

With we can infer that any successful minimal cut set
shall block the propagation of vulnerabilities. So the fact that
all minimal cut sets have failed would guarantee a successful
attack. Therefore should be greater than or equal to the
probability that no minimum cut set in is satisfied. For any
minimal cut set , the probability of the event that all of the
edges in have failed to propagate the vulnerability is

. Then is the probability
that at least one edge in can propagate the vulnerability.
Define the events by

 (10)

Hence the probability of is

 (11)

Since the vulnerability will propagate if and only if all of the
events occur, we have

(12)

The last inequality above indicates the lower bound of .
Replace according to Equation (11), we have

 (13)

On the other hand, with we can infer that at least one
minimal path set in should be satisfied to ensure the
propagation. For any minimal path set , the probability of
the event that can propagate the vulnerabilities is

. So the probability that at least one edge in

cannot propagate is . Define the events

 by

 (14)

Hence the probability of is

 (15)

Since will not be attacked by if and only if all of the
events occur, we have

(16)

Equivalently,

 (17)

The last inequality above indicates the upper bound of .
Replace according to Equation (16), we have

 (18)

Considering the lower bound and the upper bound, we have
the following bounds for the function of propagated
vulnerability:

 (19)

By listing Algorithm 1, we have implemented the function
to calculate the bounds of propagated vulnerabilities. It takes
the topology of the ODG as the input. Then it uses standard
algorithms to find and . After that we consider the
vulnerabilities of all edges of all paths in and for the
bounds Algorithm 2 outputs. The output value is the lower and
upper bounds of the joint vulnerability of a path. We choose
the upper bound during the calculation to estimate the path
vulnerability aggressively. And then we finally get the
propagated vulnerability between two objects.

B. The impact of offloading on object vulnerability
Now that the vulnerability of each object is available, it

becomes easier to answer which objects should be kept locally
and which can be offloaded. Simply keeping an object with
highest vulnerability on the local device does not necessarily
make it safer. Staying locally for an object reduces its cloud-
originated vulnerability because no eyes would watch it
directly from the cloud. But it does not reduce the propagated
vulnerability. Meanwhile, separating objects working closely
together may cause significant communication cost.

o

y

d

x
rod

1

rod
2

rod
3

rod
4cod

1

cod
2 cod

3

cod
4

LEGENDS

112 2013 IEEE 2nd International Conference on Cloud Networking (CloudNet): Full Paper

(a) The ODG after the first piece of
news has been retrieved, including
both original objects and Android
APIs. The vertices colored with
darker green have larger degrees.

(b) The O
original o
the scale
greatly bu
vulnerable

Fig. 5. An Android application called TrendCraw fetc
Internet. The figures show ODGs of all objects an
respectively.

We choose to keep objects generating th

on other nodes. Those originators are kept o
rather than in the cloud. To calculate the
object , we first calculate the differen
vulnerability of each object with and witho
which is called the absolute impact. If
vulnerability of the object is with and
absolute impact from to , denoted by , i

Then we can calculate the ratio
vulnerability of because the difference is so
removal of . We name the ratio the relative

, denoted by , where . Final
relative impact of each node over all node
result by , also known as the impact factor
Given that is the total number of object i
be calculated with the equation below:

Algorithm 1 Propagated Vulnerability Algo
1 function pva(o, d):
2 upperBound = 1
3 for each path p1 in do
4 t1 1
5 for each edge e1 in p1 do
6 t1 t1 p(e1)
7 end for
8 upperBound upperBound (1 –
9 end for
10 upperBound 1 - upperBound
11 lowerBound 1
12 for each path p2 in do
13 t2 1
14 for each edge e2 in p2 do
15 t2 t2 (1 - p(e2))
16 end for
17 lowerBound lowerBound (1
18 end for
19 result (lowerBound, uppererBound
20 return result
21 end function

DG only displaying
bjects. It simplifies

of the problem
ut can still identify

objects.

ching news feeds from
nd only original ones,

he greatest impact
on mobile devices

e impacts of each
nce between the
out in the ODG,
f the propagated
d without , the
is then

(20)

accounts for the
olely caused by the
e impact from to
lly, we average the
es and denote the
r for the originator.
n the ODG, can

 (21)

orithm (PVA)

– t1)

 t2)

d)

Table 1. Parameter

App Name
From O

Packages

TrendCraw 2
MyExpense 3

iMetro 22

The impact factor reflects w
object could bring to the OD
factors should be kept running
to avoid its cloud-originated vu

The security impact facto
object can bring to the system
impact factors should be kept
cloud-originated vulnerability.

V. EVALUATION AND

The ODG model has been e
if vulnerable objects can be c
best to keep our results general
pick three open-source samp
categories from Google Play
ReThey are listed as follows:
• TrendCraw fetches new

periodically, and then displ
• MyExpense manages the d

not have Network-related a
• iMetro provides subway

cities all over the world. It
from the Internet according

Table 1 illustrates parame
packages written specifically fo
are called original packages, w
libraries are called imported
notice the significant differe
original packages and those of
impacts of imported packages a
vulnerabilities so that we can
number of objects in this paper.
of the two methods. This si
purpose only and it does not co
approach. We treat the vuln
packages as separated tasks.
imported packages are known
vulnerability of the package
Moreover, we build a databas
imported packages. The vuln
packages only needs to be com
can directly use the existing r
imported packages.

Fig. 6. Standard process of experiment
With the ODG support library, the ap
related logging. After uploading the lo
the offloading decision to the smartpho

rs of the sample apps

Original Packages Imported
Packages Classes Activities

9 3 183
24 11 194

145 20 192

what the vulnerability of a single
DG. Objects with larger impact

on the local mobile device so as
ulnerability.
or reflects the vulnerability an
m. Objects with larger security
on the local device to avoid its

D NUMERICAL RESULTS
evaluated with real apps to verify
correctly identified. We try our
l. In our current experiments, we
ple applications from different
y store and third-party stores.

ws feeds from the Internet
lays the contents to users.

daily expense of the user. It does
actions.
maps and station schedules of

t downloads subway information
g to users' selection.
eters of the sample apps. The
or the apps (rather than imported)
while those imported from other

packages. From the table we
ence between the numbers of
imported ones. We assume that

are merged into cloud-originated
n focus on a relatively smaller
. Fig. 5 compares the differences
implification is for illustration
ompromise the generality of our

nerability analysis of imported
After the vulnerabilities of all

n, we are able to calculate the
that imports those packages.

se storing the vulnerabilities of
nerabilities of the widely-used
mputed once. The later requests
results of vulnerabilities of the

ts on existing open-source Android apps.
pks can be converted to support ODG-
ogs to the cloud, the analysis will return
one.

2013 IEEE 2nd International Conference on Cloud Networking (CloudNet): Full Paper 113

A. Standard Process of Experiments
In our experiments, we import both the s

apps and our library supporting the OD
changes are made to the original source code
the object calls. Then we recompile all app
ODG-enhanced Android installation packag
of .APK, and copy them to smartphones. O
the app to log every object and the call relat
dynamically at runtime, and to save the f
storage card. The flow chart of the standard p
Fig. 6.

There are two conditions to make the exp
One is to keep the generality of the objec
logging method. The other is to ensur
complexity of the offloading decision algori
satisfies the conditions as below:

To keep the generality of our process so t
are required to apply the ODG model to
introduce the aspect-oriented programming
[22] to enable logging right before the occ
related events, such as method calls and obj
AOP intercepts the built-in lifecycles of the
specific working flow. Therefore it is ea
automated analysis for apps with the ODG m

B. Experimental Results
In order to evaluate the offloading res

model, we implement two other offloading
CloneCloud (CCD) [3] and ThinkAir (TAR)
time, energy cost and security levels of the
compared.

1) Offloading Algorithm Execution Time
In our analysis on the sample apps, it tak

the CCD and TAR mechanisms to perfor
offloading decisions with the strategies above
shown in Table 2.
Table 2. Time taken for analyzing apps with the three of

App Name
Offloading Analysis T

CloneCloud ThinkAir
TrendCraw 20937 18561
MyExpense 37115 33753

iMetro 61512 54917

org.ametro.render.RenderProgram

Fig. 7. The vulnerabilities of three objects under diff
org.ametro.render.RenderProgram has a f

0.1
0.60

200

400

600

800

1000

0.1 0.3 0.5 0.7 0.9

Pr
op

ag
at

ed
 V

ul
ne

ra
bi

lit
y

(
)

O
bj

ec
t V

ul
ne

ra
bi

lit
y

 (
)

10
00

Self-originated Vulnerability ()

source code of the
DG model. Minor
e to enable logging
ps to generate the
ge files in format

Our library enables
tionships it creates
file in its external
process is shown in

periments practical.
ct call relationship
re the acceptable
ithm. Our solution

that fewer changes
o a new app, we

(AOP) paradigm
currence of ODG-
ject creations. The
app rather than its

asy to implement
model.

sults of our ODG
analytical models:
[4]. The execution

e three models are

kes more time than
rm one round of
e applied, which is

ffloading mechanisms

Time (ms)
r ODG

22428
40756
65970

2) Impact of System-wide Vu
When all objects are running

objects are more sensitive to s
because cloud-originated vuln
they run in different clouds.
change together depending on
panorama of the response to sy
Figure 9 shows the vulnerabilit
iMetro with different and
categorized by the types of obje

From the figure we can
org.ametro.render.Rende

increased much faster than
indicates its higher sensitivity t
change. Checking the causes
different numbers of neighbo
objects with larger number of
two-hop neighbors, tend to hav
they accumulate more propaga
9 with Fig. 8, we can infer the
sum of one-/two-hop neigh
propagated vulnerability.

To demonstrate the impa
offloading decisions in the OD
objects are offloaded in ea
comparison. We show resu
smartphones and the number
cloud below.

Fig. 8. The number of one- and two-ho
of objects to system-wide vulnerability
about 3 times more neighbors.

0

RenderProgram

RenderStation

RenderStationName

org.ametro.render.RenderStation org.ametro

ferent cloud-originated vulnerabilities () and propagated vulnerabi
faster increasing speed of vulnerability when and rise.

0
00

200

400

600

800

1000

0.1 0.3 0.5 0.7 0.9

Pr
op

ag
at

ed
 V

ul
ne

ra
bi

lit
y

(
)

O
bj

ec
t V

ul
ne

ra
bi

lit
y

 (
)

×
10

00

Self-originated Vulnerability ()

0

200

400

600

800

1000

0O
bj

ec
t V

ul
ne

ra
bi

lit
y

 (
)

10
00

Se

ulnerability Change
g in the cloud, we wonder which
system-wide vulnerability hike,

nerabilities change jointly when
Propagated vulnerabilities also

n the strength of attacks. As a
ystem-wide vulnerability change,
ties of objects in the sample app
d . The vulnerabilities are
ects, i.e., the classes of objects..
conclude that the first object
rProgram has its vulnerability
the other two objects. That

to the system-wide vulnerability
of the fact, we have noticed

ors for the listed objects. The
f neighbors, including one- and
ve higher vulnerabilities because
ated vulnerability. Combine Fig.
positive correlation between the

hbors of one object and its

act of object vulnerabilities to
DG model, the same numbers of
ach of the three models for
ults for the energy cost on
of sensitive APIs called in the

op neighbors may impact the sensitivity
y change. Object RenderProgram has

10 20 30 40COUNT

Object Count
Two-hop Neighbor
One-hop Neighbor

.render.RenderStationName

ilities (). The object with class type

0
0

0.1 0.3 0.5 0.7 0.9 Pr
op

ag
at

ed
 V

ul
ne

ra
bi

lit
y

(
)

elf-originated Vulnerability ()

114 2013 IEEE 2nd International Conference on Cloud Networking (CloudNet): Full Paper

Fig. 9. Normalized phone-side energy cost with the three offloading schemes
under different percentages of objects offloaded. The ODG model costs slightly
more energy at the smartphone side comparing with the other two mechanisms.
But it can still save around 10% of the energy with 14% of the objects
offloaded.

3) Phone-side Energy Cost
As one of the primary goals of offloading, the energy costs

of the three apps are measured. Since the goal of energy saving
and secure offloading are conflicting, we choose the security
factor as priority in our ODG model: the object with the least
security impact shall be offloaded first. When the security
impact of the objects is the same, we choose the one that can
save most energy for offloading. Meanwhile, the energy factor
is taken as the ending condition in our experiments: for all
offloading mechanisms, at most 14% of the total objects are
offloaded. We choose the model PowerTutor [22] as the
measurement tool of energy cost at the smartphone side. After
normalizing the energy cost data, the changes of costs are
illustrated in Fig. 9. We notice that the ODG model consumes
more energy at the smartphone side comparing with the other
two mechanisms. But it can still save around 10% of the energy
with 14% of the objects offloaded.

4) Sensitive APIs Accessible by the Cloud
We choose to trace the running locations of sensitive APIs

related to retrieving user’s personal information, phone
identities and geographical data, because they are related to
security issues of mobile apps. We take the approach from [23]
to locate the sensitive APIs and analyze the offloading results
from the same experiment groups conducted in last section. In
our case, an API will be marked as vulnerable either when they
run in the cloud or when they can be accessed from the cloud
due to object dependencies. From Fig. 10 the ODG model
exposes significantly less sensitive APIs to the cloud for all
three sample apps.

VI. FUTURE WORK
Our future work will first focus on quantifying the cloud-

originated vulnerabilities. The calculation of propagated
vulnerabilities depends on the cloud-originated vulnerabilities.
Thus it directly affects accuracy of the ODG-based system.
Like some intrusion detection systems (IDS), we can employ
machine learning technology to find features that could impact
cloud-originated vulnerabilities.

Besides, we need an optimization model to determine the
objects to be offloaded once all vulnerabilities have been
estimated. The model outputs the optimal offloading results
and is responsible for all consequent communication costs and
delay.

Fig. 10. The numbers of sensitive APIs accessible by the cloud with the three
offloading schemes under different percentages of objects offloaded. The
ODG model shows significant less sensitive APIs exposed to the cloud.

VII. CONCLUSION
In this paper, we focus on offloading apps securely without

putting vulnerable parts in the cloud. A model named the object
dependency graph (ODG) is proposed to analyze the security
of mobile apps according to objects they have created at
runtime. With the knowledge of cloud-originated and
propagated vulnerabilities of runtime objects, the objects’
vulnerabilities are calculated taking into account the multipath
vulnerability propagation. We have applied our model to real
Android apps and have shown that compared to other two
existing offloading mechanisms, our offloading approach
yields more secure results.

30

40

50

60

70

80

90

100

0 2 4 6 8 10 12 14

N
or

m
al

iz
ed

 P
ho

ne
-s

id
e

E
ne

rg
y

C
os

t (
%

)

Objects Offloaded (%)

CCD-Trend

TAR-Trend

ODG-Trend

CCD-iMetro

TAR-iMetro

ODG-iMetro

CCD-
MyExpense
TAR-
MyExpense

0

5

10

15

20

25

30

0 2 4 6 8 10 12 14

Se
ns

iti
ve

 A
PI

s A
cc

es
ib

le
 b

y
C

lo
ud

Objects Offloaded (%)

CCD-Trend

TAR-Trend

ODG-Trend

CCD-iMetro

TAR-iMetro

ODG-
iMetro
CCD-
MyExpense
TAR-
MyExpense
ODG-
MyExpense

2013 IEEE 2nd International Conference on Cloud Networking (CloudNet): Full Paper 115

REFERENCES
[1] M. Satyanarayanan, P. Bahl, R. Caceres and N. Davies, "The case for

vm-based cloudlets in mobile computing," Pervasive Computing, IEEE,
vol. 8, pp. 14--23, 2009.

[2] B. G. Chun and P. Maniatis, "Augmented smartphone applications
through clone cloud execution," 2009.

[3] B. G. Chun, S. Ihm, P. Maniatis, M. Naik and A. Patti, "Clonecloud:
elastic execution between mobile device and cloud," 2011.

[4] S. Kosta, A. Aucinas, P. Hui, R. Mortier and X. Zhang, "Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading," 2012.

[5] C. Cachin, I. Keidar and A. Shraer, "Trusting the cloud," ACM SIGACT
News, vol. 40, pp. 81--86, 2009.

[6] T. Ristenpart, E. Tromer, H. Shacham and S. Savage, "Hey, you, get off
of my cloud: exploring information leakage in third-party compute
clouds," 2009.

[7] Y. Chen and R. Sion, "On securing untrusted clouds with cryptography,"
2010.

[8] X. Zhang, J. Schiffman, S. Gibbs, A. Kunjithapatham and S. Jeong,
"Securing elastic applications on mobile devices for cloud computing,"
2009.

[9] B.-G. Chun and P. Maniatis, "Dynamically partitioning applications
between weak devices and clouds," 2010.

[10] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R.
Chandra and P. Bahl, "MAUI: making smartphones last longer with code
offload," 2010.

[11] H. Liang, D. Huang, L. X. Cai, X. Shen and D. Peng, "Resource
allocation for security services in mobile cloud computing," 2011.

[12] Y. Wen, W. Zhang and H. Luo, "Energy-optimal mobile application
execution: Taming resource-poor mobile devices with cloud clones,"

2012.
[13] P. Resnick, K. Kuwabara, R. Zeckhauser and E. Friedman, "Reputation

systems," Communications of the ACM, vol. 43, pp. 45--48, 2000.
[14] R. L. Biddle, E. Tempero and N. Wellington, Understanding OOP

language support for reusability, Department of Computer Science,
Victoria University of Wellington, 1995.

[15] Y. Khmelevsky and V. Voytenko, "Cloud computing infrastructure
prototype for university education and research," 2010.

[16] S. Buchegger and J.-Y. Le Boudec, "A Robust Reputation System for
P2P and M bile Ad hc Netw rks P2P and Mobile Ad-hoc Networks,"
2004.

[17] J. Golbeck and J. Hendler, "Reputation network analysis for email
filtering," 2004.

[18] P. Resnick and R. Zeckhauser, "Trust among strangers in Internet
transactions: Empirical analysis of eBays reputation system," 2002.

[19] J. D. Work, A. Blue and R. Hoffman, Method and system for reputation
evaluation of online users in a social networking scheme, Google
Patents,

[20] S. M. Ross, Introduction to probability models, Academic press, 2009.
[21] L. Rosenberg, "Algorithm for finding minimal cut sets in a fault tree,"

Reliability Engineering & System Safety, vol. 53, pp. 67--71, 1996.
[22] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. Lopes, J.-M.

Loingtier and J. Irwin, "Aspect-oriented programming," ECOOP, pp.
220--242, 1997.

[23] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao and L.
Yang, "Accurate online power estimation and automatic battery behavior
based power model generation for smartphones," 2010.

[24] W. Enck, D. Octeau, P. McDaniel and S. Chaudhuri, "A study of android
application security," 2011.

116 2013 IEEE 2nd International Conference on Cloud Networking (CloudNet): Full Paper

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

