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Abstract—Concurrent MAC protocols can improve channel usage of wireless sensor networks (WSNs), and provide a
high-performance infrastructure for data intensive applications. Most of existing concurrent MAC protocols are based on proactively
constructed physical interference models, i.e. PRR-SINR models (PSM). However, it incurs relatively high bandwidth and energy
overheads to construct PSM for WSNs. In this paper, we propose NoPSM, which does not take PSM as base to determine
transmission concurrency. Instead, the base of NoPSM is reactively constructed interference relationships by passively analyzing
overlapping relationships among time logs of block data transmissions and corresponding reception status of each packet in blocks. In
this way, NoPSM has two salient features. Firstly, NoPSM is able to construct interference relationships among nodes quickly and
accurately along with block data transmissions without needs of network downtime. Secondly, based on the constructed interference
relationships, NoPSM can make decisions of transmission concurrency with a comprehensive criterion, which not only estimates
quality of any active links after initiating a new link, but also estimates throughput improvement gained from concurrent transmissions.
NoPSM has been implemented in Tinyos-2.1 and extensively evaluated in TOSSIM. Experimental results show that NoPSM improves
system throughput by up to 60% compared with a traditional CSMA protocol, which cannot exploit potential transmission concurrency.
Moreover, NoPSM can gain up to 55% throughput improvement as compared to an existing reactive concurrent MAC.

Index Terms—Wireless sensor network, data intensive application, concurrent transmission, interference relationship
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1 INTRODUCTION

W IRELESS sensor network (WSN) is a self-organized net-
work consisting of a large number of miniature intelli-

gent sensor nodes. Because it can be unobtrusively embedded
in the physical environment to get fine-grained observations
without human operation, lots of WSNs have been deployed
for various applications in recent years. One killer application
of WSNs is to collect real-time continuous raw data of physical
objects for high-fidelity analysis and precise prediction of disas-
trous events, such as patients-in-risk health status [1], volcano
eruption [2], and algal bloom [3]. Nodes in the WSNs for this
kind of application are tasked to sample and report sensor
readings with relatively high frequencies and high resolutions,
hence they produce intensive data traffic. For instance, each
node for health status monitoring is equipped with 3 leads of
electrocardiogram (ECG) sensors, each of which can sample
physiological data at 250 Hz with 16-bit resolution, so each
node can generate data consistently at the rate of 12 kbps. In
a WSN for volcano monitoring, echo node is equipped with
a seismic sensor and an infrasonic sensor, which are tasked
to sample seismic and acoustic data at 100 Hz with 16-bit
resolution respectively, so each node can produce data of 400
bytes every second.

So in these WSNs, a number of scattered nodes need
to transmit bulk data to a central sink node or gateway
via multi-hop relays. When premonitory signs (e.g. irregular
heart rhythm [1], ground vibration [2], and featured picture
of algae [3]) are detected, nodes may report readings with
even higher frequencies. Since the events are usually hard to
be predicted, accordingly nodes are driven to generate more
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intensive data simultaneously and unpredictably. As a result,
competition over low-data-rate low-power wireless channel
and communication interference amongst nodes in the data
intensive WSNs are more severe than in the traditional low-
duty-cycled WSNs [4]. Hence, it is more challenging to guaran-
tee transmission throughput and delivery latency for the data
intensive WSNs than for the traditional low-duty-cycled WSNs.
Although some transport layer protocols exploiting block data
transfer, like Flush [5] and RBC [6], have been proposed to
improve throughput in data intensive WSNs, Media Access
Control (MAC) protocols are supposed to be more crucial
to address this challenge than the transport layer protocols,
because MAC protocols can exploit physical layer information
to make more accurate transmission decisions for improving
channel utilization.

Recent research on the actual behaviors of the physical
layer reveals two effects in wireless networks, namely Capture
Effect [7], [8], [9] and Message In Message (MIM) [10]. The
revealed effects violate the widely adopted ’collsion as failure’
assumption and indicate the potential of concurrent transmis-
sions. In particular, in the presence of these effects, first-arrived
stronger signal of interest (SoI) can be decoded successfully
despite significant interference from other transmitters. What’s
more, a receiver can reengage onto a later-arrived stronger SoI
from an ongoing transmission or interference. By exploiting
these effects, some concurrent MAC protocols like C-MAC [11]
and OPC [12] have been proposed to improve channel uti-
lization and network throughput in data intensive WSNs.
Differing from the traditional CSMA-based MAC protocols,
which reserve channel exclusively for one pair of nodes in
their interference ranges, the concurrent MAC protocols allow
the interfering nodes to transmit packets concurrently with
the on-going nodes, if the on-going transmissions will not be
deteriorated to an intolerable degree. So it is a fundamental
problem for the concurrent MAC protocols to estimate quality
of the interfered links if a new transmission is to be initiated.
Because physical interference model characterizes quality of
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a link when it is interfered by nodes away from different
distances, it is regarded as a basis to address the problem.
Nowadays the physical interference model is empirically es-
tablished by pairwise measurements of Packet Reception Ratio
(PRR) and Signal-to-Interference-plus-Noise-Ratio (SINR) (a.k.a
PRR-SINR model) [13], [14].

However, none of Commercial-Off-The-Shelf low power
radio modules (e.g. CC1000 and CC2420 [15]) provides the
SINR information directly. Hence, PRR-SINR model cannot be
constructed directly either. In C-MAC and OPC, each node
infers PRR-SINR model through following operations: (1) any
one of its neighboring nodes alone, and all possible combina-
tions of other neighboring nodes are synchronized to trans-
mit packets to the node in turn, to measure Received Signal
Strength Indicator (RSSI) of received packets; (2) each of its
neighboring nodes is synchronized to transmit packets to the
node simultaneously with all possible combinations of other
neighboring nodes, to measure PRR; (3) the measured PRR
is paired with the associated SINR value inferred from the
RSSI measurements of step (1). Considering that empirical PRR-
SINR model has spatial and temporal variations in reality [16],
it is necessary for C-MAC and OPC to measure RSSI of each
link and update PRR-SINR model periodically, which incurs
relatively high bandwidth and energy overheads for resource
constrained WSNs. Besides that, the on-purpose RSSI measure-
ments require all the on-going nodes to stop operation (a.k.a
network downtime), which may significantly increase buffered
data to be transmitted and adversely affect delivery latency of
each packet in the data intensive WSNs.

In this paper, we propose a concurrent MAC protocol for
data intensive WSNs named NoPSM, meaning that it deter-
mines transmission concurrency without proactive construc-
tion of PRR-SINR model. Instead it determines transmission
concurrency based on explicit interference relationship among
nodes, which is reactively constructed through passively ana-
lyzing logged time sequence of block data transmission. Briefly
speaking, NoPSM transmits data packets in a block, which
consists of a batch of fixed-size data packets sent together,
as Seda [17] does. The start and end times of each block
transmission are recorded by senders and broadcasted to their
one-hop neighbors. A bitmap indicating transmission result
of each packet in the block is recorded by the receivers and
carried back with block-level ACK to the senders. Once the
receivers complete collecting time logs, they analyze the time
overlapping among transmissions of one-hop neighbors, and
infer patterns of interference. Along with time log analysis,
they infer PRR of links under corresponding interference from
statistically analyzing the bitmap recorded by themselves. The
inferred patterns of interference and corresponding PRRs are
broadcasted by the receivers to one-hop neighbors, which are
in turn used to make decisions of transmission concurrency.

The novelties of our proposed concurrent MAC protocol are
embodied in following aspects.

1) Block data transmission is first proposed to be combined
with concurrent media access control, not only for improving
network throughput [17], but also for shortening period of
estimating link quality under different patterns of interference.
Because more than one PRR can be statistically calculated in a
single round of block data transmission, if there are other nodes
transmitting data concurrently, NoPSM is able to construct
interference relationships in parallel.

2) Patterns of interference, which is described by different
combinations of interfering nodes, is deduced from analyzing
logged time sequences of block data transmissions in a dis-
tributed way. So both PRR of a link and corresponding interfer-

ing nodes, which compose the interference relationships, are
passively measured along with block data transmissions. In
other words, NoPSM does not require network downtime to
construct interference relationships.

3) A new criterion to determine allowable concurrent trans-
missions is proposed in NoPSM. It checks not only how much
deteriorating effect of initiating a new transmission will be
on the on-going transmissions, but also how much gain of
throughput will be brought in. In other words, even if any pair
of active nodes can keep data transmissions above a thresh-
old PRR under interference of a newly initiated transmission,
NoPSM will not initiate the concurrent transmission when the
increased throughput cannot compensate the decreased one.

4) Performance of NoPSM is extensively evaluated in
TOSSIM. Experimental results show that NoPSM improves
network throughput by up to 60% compared with a traditional
CSMA protocol, which cannot exploit potential transmission
concurrency. Moreover, NoPSM can gain up to 55% through-
put improvement as compared to an improved version of
CMAP [18], which is also a reactive concurrent MAC originally
designed for wireless multihop networks.

The rest of the paper is organized as follows. In section 2, we
summarize the related work. In section 3, we give an overview
of NoPSM, and then elaborate design details of NoPSM in
section 4. Evaluation method and experimental results are
presented in section 5. In section 6, we make a conclusion of
this work.

2 RELATED WORK

So far some works have been done to improve performance of
MAC protocols for carrying intensive data traffic in wireless
sensor networks. These works can be divided into following
categories.

TDMA-based MAC protocols: TDMA-based MAC proto-
col is a natural choice to improve channel utilization. Wire-
lessHART [19] is such a standardized solution which bases on
802.15.4 physical layer and uses TDMA-based scheduling to
allocate channel resource among nodes in wireless system for
industrial automation. However, TDMA-based MAC protocol
does not scale very well with number of nodes inherently,
because number of time slots in a TDMA frame is bounded by
the allowable MAC delay. Although some protocols, like ISO-
MAC [20], TreeMAC [21] and i-MAC [22], have been proposed
to maximize spatial reuse of time slots, they can be effective
only in networks with specific topology (like Tree in [21])
or with repetitive (or predictable) traffic pattern [22]. So a
stand-alone TDMA scheme has shortcomings in scalability and
flexibility. Z-MAC [23] is a hybrid scheme which combines the
strength of TDMA and CSMA for improving channel utiliza-
tion while achieving good scalability and flexibility. However,
because Z-MAC adopts a distributed neighbor discovery and
graph coloring algorithm to avoid scheduling conflict in two-
hop, it is essentially of high overhead, yet still capable of
making binary transmission decision. In contrast, NoPSM aims
to address the problem based on a CSMA scheme alone, while
making more fine-grained transmission decision.

Traffic-aware adaptation of low-duty-cycled MAC proto-
cols: Most of currently widely used MAC protocols are de-
signed for low-duty-cycled WSNs with sparse and predictable
data traffic, such as S-MAC [24] and B-MAC [25]. These proto-
cols are mainly designed for reliable data delivery among nodes
with asynchronous duty cycles through scheduled listening
or low power listening. When traffic load becomes intensive
and unpredictable, they can induce high latency and low
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throughput. Some mechanisms have been proposed to make
these MAC protocols resilient to load increase, such as X-
MAC [26], RI-MAC [27] and pTunes [28]. X-MAC and RI-MAC
adopt strobed preamble and low power probing respectively
to improve channel utilization. pTunes improves performance
of X-MAC and RI-MAC by adapting optimized protocol pa-
rameters to topology, link and traffic dynamics. However,
their performance is still bounded by the potential capability
of traditional CSMA-based scheme. Some other adaptations
exploit additional network resources, like multi-channel com-
munication [29], [30] and on-demand wake-up [31], but the
adapted MAC protocols still cannot make good use of the
limited channel bandwidth, because none of them can resolve
heavy interference in data intensive WSNs properly, which
leads to growing invalid data transmissions or persistent access
backoffs.

Concurrent MAC protocols based on proactively con-
structed PRR-SINR model: C-MAC [11] and OPC [12] were de-
signed to exploit transmission concurrency to improve through-
put of data intensive WSNs. The common working process
of these two protocols is described briefly as follows. Firstly,
both of them build PRR-SINR models in network before data
transmission. Then, during data transmission, the node that is
going to transmit data predicts SINR of each active link with its
interference. Thirdly, based on the predicted SINR and referring
to the PRR-SINR model, it determines whether a concurrent
transmission can be initiated. As pointed out in the previ-
ous session, this kind of concurrent MAC protocols require a
network downtime periodically to make RSSI measurement
at whole network scale and construct SINR-PRR model for
each node in advance, which incur high overheads. Hence, one
motivation of our work presented in this paper is to remove
the necessity of proactive construction of SINR-PRR model and
periodical RSSI measurements in designing concurrent MAC
protocols for data intensive WSNs.

Concurrent MAC protocols based on reactively con-
structed conflict relationship: CMAP [18] was designed for
wireless ad hoc networks to improve channel usage through
addressing the exposed terminal problem. It is essentially a
concurrent MAC protocol too, because it exploits potential
opportunity for the exposed nodes to transmit data concur-
rently with the sender. Differing from C-MAC and OPC, it
makes decision of transmission concurrency with reactively
constructed interference relationships rather than the proac-
tively constructed SINR-PRR model. So it is the most related
work to ours. However, they differ in the way to construct
interference relationship and to determine transmission concur-
rency. Specifically speaking, CMAP infers interferer list through
extracting the identity of the interfering node from the header
or the trailer of the corrupted packet, while NoPSM deduces
interference relationship from passively analyzing overlapped
transmission periods and corresponding PRR of block data
transmissions. Furthermore, CMAP makes binary transmission
decision based on the defer patters inferred from the interfer-
ence list, while NoPSM makes positive decision of transmission
concurrency only when it is beneficial for throughput gain of
all active nodes in the network.

In addition, it is worth pointing out that PIM [32] can also
passively derive interference relationships among nodes by
sampling and statistically analyzing the time stamps of data
transmission, without generating any measurement packets.
However, it is fundamentally different from NoPSM in follow-
ing aspects. Firstly and foremost, it is to ultimately build PRR-
SINR models among nodes for PIM through time analysis, but
for NoPSM its purpose of time analysis is to construct explicit

Fig. 1. A potential scenario of concurrent transmissions in WSNs, where
<s1, r1>, <s2, r2> and <s3, r3> are the currently active links and
<s0, r0> is the link to be initiated. The solid arrow lines represent
data transmissions, the dashed arcs represents proximate interference
ranges of the transmitters, and the dashed arrows point to the interfered
nodes.

interference relationships. Hence, PIM needs to sample RSSI of
received data along with time stamps, while NoPSM doesn’t
need. Secondly, PIM infers interference relationship in packet
level, while NoPSM does it in block level. As a result, PIM can
infer only one interference relationship in a single round of time
analysis, while NoPSM can derive more than one. Thirdly, PIM
adopts a centralized tree-based statistics collection algorithm to
do time analysis, while NoPSM does it in a distributed way.

3 OVERVIEW OF NOPSM
In this section, we demonstrate the essence that makes NoPSM
differ from traditional CSMA-based and existing concurrent
MAC protocols, and the operation sequence and particular
protocol architecture of NoPSM.

Fig. 1 demonstrates a potential scenario of concurrent trans-
missions in WSNs. Originally, <s1, r1> is the unique pair of
active nodes, and r2 and s3 are in the interference range of s1.
If with traditional CSMA-based MAC protocols, both r2 and s3
cannot be involved in any activity until the data transmission
between s1 and r1 ends. But with concurrent MAC protocols, r2
is able to reengage in receiving a stronger incoming signal from
s2 (represented by a thickened arrow line), and s3 can transmit
data to r3 if they will not corrupt data reception process at r1
(represented by a dashed arrow line). So with concurrent MAC
protocols s1, s2 and s3 can transmit data concurrently. As a
result, they improve spatial reuse of the radio channel and total
network throughput.

To assure each of the active links (e.g. <s1, r1>, <s2,
r2> and <s3, r3> in Fig. 1) of high probability of successful
data transmission when multiple interfering nodes transmit
concurrently, we need a method to estimate the qualities of
interfered links, which are usually indicated as PRR, when initi-
ating a new link. Traditional methods are based on proactively
constructed PRR-SINR model, whereas NoPSM is based on
reactively and passively constructed explicit interference rela-
tionships. The interference relationship is represented by a four-
dimensional tuple, i.e. i-vector=(IID, Link, PRR, Ns), where IID
is the set of identities of interferers that transmit concurrently
with the sender of the Link, and Ns is the number of samples
used in estimating the PRR. It is named as interference vector
(i-vector) in this paper. For instance, an i-vector ({s1, s2}, <s0,
r0>, 0.7, 15) means that the PRR of link <s0, r0> is 0.7 when
s0, s1 and s2 transmit concurrently. Moreover, it shows that the
PRR is estimated through analyzing transmission results of 15
packets.

Taking the scenario shown in Fig. 1 for example, the pro-
cedure to initiate a concurrent data transmission based on the
interference relationship is as follows. When a block of data are



1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2016.2547867, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. , NO. , MONTH YEAR 4

0

1

2

0

1

2

bACK

bACK

bACK

CCA

CCA

CCA

Ttime_logs

BOtime_log

Ttl

Twait_ack

Fig. 2. Protocol operation of NoPSM illustrated by the operation se-
quence of the 3 pairs of nodes, i.e. <s0, r1>, <s1, r1> and <s2, r2>
shown in Fig. 1.

pending for transmission at s0, the node s0 snoops the on-going
traffic flows and extracts the identity information of source
nodes (source ID) from the on-going flows. Since s0 is within
the interference range of s1 and s2, it can snoop the traffic
flows sourcing from s1 and s2. Then, the node s0 estimates
the throughput gain if it transmits concurrently with <s1, r1>
and <s2, r2> based on the i-vector table, which consists of a
set of i-vectors inferred by itself and received from neighbors.
If the throughput gain is not sufficiently large, the node s0 will
retry after a delay. Otherwise, the node s0 will transmit the data
block immediately.

After block data transmission, the receivers, i.e. r0, r1, r2 and
r3 in the above scenario, individually record a bitmap to indicate
reception status of each packet in a block, and encapsulate the
bitmap in a block level ACK (bACK), which is sent back to
the corresponding transmitter. For the transmitters, i.e. s0, s1,
s2 and s3 in the above scenario, they record the start and end
times of each data block transmitted, which are referred to as
time logs. We denote a time log as a tuple, i.e. TL=<t0, t1>,
where t0 and t1 are the start time and end time of a block
transmission respectively. It is worth noting that t0 and t1 are
not presented by wall clock time. Based on the assumption that
all the nodes are time synchronized, we let each node carry a
base time (t̂b). Then each time log can be efficiently represented
by relative time, i.e. t0 = t̂0 − t̂b and t1 = t̂1 − t̂b, where t̂0
and t̂1 are the wall clock time of transmission start and end
respectively. The time granularity of t0 and t1 is millisecond
(ms).

After they complete block data transmission, they broadcast
time logs to their one-hop neighbors. Taking the node r2 for
instance, it can receive time logs from its one-hop neighbors,
which are s0, s1, and s2. After r2 collects these time logs, it
infers different patterns of interference from the overlapping
relationships among these time logs. In particular, a partial
overlap between time log from s2 and that from s0 or s1, means
interference from s0 or s1 in that period of time. Besides that,
r2 can calculate the link quality of <s2, r2> in terms of PRR
under corresponding interference pattern through statistical
analysis of the bitmap recorded by itself, particularly through
computing the ratio of number of bit 1 to the total number of
bits in the bitmap. In such a way, the node r2 can passively infer
several interference relationships (i.e. i-vectors) after a round of
block data transmission. The inferred i-vectors are maintained

Fig. 3. Components and architecture of NoPSM.

in the i-vector table of r2, and broadcasted to the one-hop
neighbors of r2. The nodes that receive the i-vectors, i.e. s0, s1
and s2, update their i-vector tables with these i-vectors, which
are used for estimating throughput gain in further block data
transmission.

In such a way as r2 does, nodes r0, r1 and r3 infer interfer-
ence relationships and broadcast the inferred interference rela-
tionships to s0, s1 and s3 correspondingly. The above described
operation of NoPSM is illustrated by Fig. 2, which includes
block data transmission, followed by broadcasting of time logs
and i-vectors. It should be noted that initially nodes have
not yet self-inferred or received i-vectors, they always make
positive decisions on transmission concurrency to establish
interference relationships faster. Details about the approach to
infer i-vectors will be elaborated in the next section.

Architecture of functional modules composing NoPSM is
shown in Fig. 3, from which we can see that NoPSM is built
upon a physical layer abstraction, and consists of the following
three components: (1) Time Log Analysis that deduces the
interference relationship reactively and passively; (2) i-vector
Table Maintenance that maintains the interference relationship
deduced by the node itself and received from neighbors; (3)
Transmission Control that controls transmission opportunity
through a two-tiered backoff mechanism and an advantageous
transmission decision making approach.

4 DESIGN OF NOPSM
In this section, we elaborate on the design of NoPSM. We first
design a physical layer abstraction for NoPSM to support block
data transmission, and then design each component of NoPSM
to fulfil functions of concurrent transmission. The design of
NoPSM is based on the assumption that all the nodes in WSNs
are time synchronized and transmit data packet of equal length.
As used by other wireless protocols (e.g. C-MAC [11] and
OPC [12], CMAP [18] and TreeMAC [21]), snooping is used
in NoPSM for discovering active neighbors. We take it as a
natural capability of wireless radio by continually searching for
a new preamble or a termination symbol even during packet
reception, as illustrated in [7].

4.1 Physical Layer Abstraction
The physical layer is abstracted to take responsibility for trans-
mitting data blocks and control packets with an IEEE 802.15.4-
compatible radio, like CC2420. Here we present detailed proce-
dure of transmission of data blocks and control packets, along
with the specific formats of packets defined for NoPSM.

4.1.1 Block data transmission
As shown in Fig. 2, a block of data is composed of multiple
continuously transmitted packets, and all packets in a block
have equal length. Except the first packet, all packets in a block
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are transmitted immediately after the previous one without
clear channel assessment (CCA). We refer the time interval from
transmitting the first bit of a packet to transmitting the first bit
of the successive packet in a block as packet transmission inter-
val as shown in Fig. 4. The packet transmission interval consists
of packet transmission time and event processing time during
packet transmission and reception. Since the physical layer of
the radio modules in widely used nodes is usually set with
a fixed data rate, e.g. 250Kbps for CC2420, the transmission
time of each packet in a block is fixed and in millisecond (ms).
Moreover, the total time of processing significant events that
occur during the transmission and reception of a packet over a
CC2420 radio is also fixed, i.e. about 600 microsecond (µs) [33].
So in this way, the packet transmission interval can be seen as
a constant (Tpkt).

The format of a NoPSM data packet is shown in Fig. 4.
We can see that the first two fields are physical layer headers,
which are synchronization preambles and frame length. The
Frame Control Field (FCF), Data Sequence Number (SEQ) and
Address Information (Addr.) are MAC layer headers defined by
IEEE 802.15.4. The payload of NoPSM data packet is prefixed
with two specific fields. One is the bSEQ field which carries the
sequence number of the block, and the other is the bNAV (block
Network Allocation Vector) field which indicates the remaining
transmission time of the block. Length of these two field are
both 2 bytes. The packet is end with a Frame Check Sequence
(FCS). Because the field of frame length is 1 byte long, the

maximum length of a NoPSM data packet at the MAC layer is
127 bytes. Considering the space occupied by the IEEE 802.15.4
MAC layer header, the NoPSM-specific header and the FCS,
payload of a NoPSM data packet can be maximally 98 bytes
long.

After transmission of a block, the sender waits for a block-
level ACK (bACK) from the receiver for a bACK from the
receiver for a period of up to Twait ack ms. The format of a
bACK is shown in Fig. 5. Each bACK carries at least one pair of
bSEQ and bitmap to indicate whether the corresponding packet
in the previously transmitted blocks is successfully received.
Length of a bitmap is 2∼8 bytes, because a block has 16∼64
packets. The reason why a bACK may carry more than one
bitmap is that NoPSM allow transient loss of bACK, and let
subsequent bACKs feed back the packet reception status of
previous block data transmissions. Details about accumulated
encapsulation of bitmaps in a bACK will be further explained
in Subsection 4.4.1. Based on the bitmaps in the bACK fed
back by the receiver, the sender can selectively retransmits the
corrupted packets.

4.1.2 Control packet broadcasting
Immediately after block data transmission, NoPSM requires the
sender nodes to broadcast time logs. The format of a time log
broadcast packet is shown in Fig. 6. Specifically speaking, the
sender nodes broadcast the just recorded time logs after the last
one (e.g. s0 in Fig. 2) ends transmitting block data.

In detail, for a sender node, when it finishes transmission,
it firstly snoops the channel, and extracts the bNAV field from
the packet header of each snooped flow, and calculates the end
time of all on-going flows by the following equation.

Tlast end = max{bNAVi|1 ≤ i ≤ Nf}+ Twait ack, (1)

where Nf is the number of snooped on-going flows, and
Twait ack is a constant period of time for waiting for a block
level ACK. As a special case, if no flow is snooped, i.e. the
currently end-sending node is the last one, the above equation
is simplified to Tlast end = Twait ack. Then, the currently end-
sending node turns to wait for a block level ACK, and prepares
to send time logs Tlast end later.

Because it is highly probable that more than one node will
send time logs simultaneously Tlast end later, we design a dis-
tributed coordination mechanism to reduce collision probabil-
ity among them. The principle of the coordination mechanism
is to make the nodes back-off for a period of time before sending
time logs. In particular, the time duration of back-off for a node
(BOtime log) is linearly proportional to the number of on-going
flows snooped by it (Nf ), which is formulated by the following
equation.

BOtime log = Ttime logs −Nf · Ttl, (2)

where Ttime logs and Ttl are two constants for NoPSM.
Ttime logs is the duration of the period for broadcasting time
logs, and Ttl is the duration of transmitting a time log packet.
For example, as shown in Fig. 2, node s1 and s0 snoops one and
zero on-going flow respectively when they end transmitting a
block of data. According to the equation (2), s1 has a shorter
back-off period than s0, so s1 broadcasts a time log packet
before s0.

For the receiver nodes, once they receive the first arrival
time log, they wait for a period of Ttime logs ms. Then they
infer i-vectors through analyzing the time logs collected from
neighbors and the bitmaps recorded by themselves, and broad-
cast the inferred i-vectors to one-hop neighbors. The format of
an i-vector broadcast packet is shown in Fig. 7. Still taking the



1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2016.2547867, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. , NO. , MONTH YEAR 6

s2

s0

s1

0 1 0 0 0 1 0 1 1 1

bitmap recorded 

at r2

({s0},<s2,r2>,0.33,3)

i-vectors

inferred by r2 ({s0,s1},<s2,r2>,0.25,4) ({s1},<s2,r2>,1.00,3)

   

T0
overlap

T0
overlap

T1
overlap

T1
overlap

Fig. 8. Illustration of time log analysis at a receiver node r2 based on the
time logs received from s0, s1 and s2.

scenario shown in Fig. 1 and corresponding node operations
shown in Fig. 2 for example, r2 firstly receives a time log
broadcast packet from s2, then from s1 and s0 in sequence.
Based on the received time logs, r2 can infer i-vectors indi-
cating interference relationships among s2, s1 and s0. Then r2
broadcasts the inferred i-vectors to s2, s1 and s0.

It should be pointed out that the time logs and i-vectors are
not required to be broadcasted immediately after each round
of block data transmission. Instead, they are broadcasted every
Ctl rounds of block data transmission, where Ctl is larger than
1, to reduce costs of broadcasting control packets. So we can
see that more than one time log are encapsulated into a control
packet, as shown in Fig. 6. Besides that, the time logs may
be corrupted during broadcasting due to existence of hidden
terminals. For example, as shown in Fig. 1, when s2 finishes
data transmission, it can only snoop the packets from s0. If
s1 ends transmitting later than s0, the time log packets broad-
casted by s2 may be corrupted at r2. To improve probability of
successful reception of time log packets, we make each control
packet carry the time logs which have been sent in the previous
Ntl broadcasting periods, where Ntl is a constant parameter of
NoPSM. In addition, the i-vectors can also be corrupted during
broadcasting. For example, as shown in Fig. 1 and Fig. 2, r0 and
r1 received the first time log broadcast packet from s1 at the
same time. So after waiting for a period of Ttime logs ms, they
broadcast the inferred i-vectors simultaneously, which incurs
packet corruption at s1. Because the i-vectors will be updated
reactively and periodically with a short interval (see details in
Subsection 4.3), we don’t make the i-vectors be broadcasted
more than one time.

4.2 Time Log Analysis
As mentioned in the section of overview, i-vectors are the basis
to make decisions of transmission concurrency. In this section,
we elaborate the approach to infer i-vectors through time log
analysis.

As shown in Fig. 2, all the sender nodes are required to
broadcast time logs after block data transmission. Each receiver
node calculates the overlapping time periods between its own
and neighbors’ block data transmissions by comparing these
time logs. Fig. 8 gives an illustration of the procedure of precise
time log analysis at the node r2 in the scenario shown in Fig. 1.
It shows that r2 receives time log broadcast packets from s0,
s1, and s2. By comparing the three time logs, r2 can infer
that the first three packets in the block transmitted by s2 is
interfered by s0, the intermediate four packets are interfered
by s0 and s1, and the last three packet are interfered by s1.
The bitmap recorded by r2 is 0100010111, which indicates that
half of packets in the block is corrupted during transmission.
Through cross analysis of the bitmap and the three patterns
of interference, r2 can infer that the PRR of <s2,r2> can be
0.33 (i.e. 1/3), 0.25 (i.e. 1/4) and 1.00 (i.e. 3/3) respectively when

Algorithm 1 Inference of i-vectors from time log analysis:
LogA(TL0, TL, M , bitmap, bsize)

1: Constant: Tpkt, Cmax

2: interId[0..bsize− 1]← ∅
3: for i← 0 to M − 1 do
4: T overlap

0 ← (TL0.t0 > TLi.t0) ? TL0.t0 : TLi.t0
5: T overlap

1 ← (TL0.t1 < TLi.t1) ? TL0.t1 : TLi.t1
6: j0←(T overlap

0 − TL0.t0)/Tpkt

7: j1←(T overlap
1 − TL0.t0)/Tpkt

8: for j ← j0 to j1 do
9: interId[j]← interId[j] ∪ {ID(TLi)}

10: end for
11: end for
12: interP tn← ∅
13: for i← 0 to bsize− 1 do
14: if (|interId[i]| < Cmax ∧ |interP tn| < 2Cmax∧

interId[i] /∈ interP tn) then
15: interP tn← interP tn ∪ {interId[i]}
16: end if
17: end for
18: n1, n← 0
19: for i← 0 to |interP tn| − 1 do
20: for j ← 0 to bsize− 1 do
21: if (interId[j] = interP tni) then
22: n← n+ 1
23: if (bitmap[j] = 1) then
24: n1 ← n1 + 1
25: end if
26: end if
27: end for
28: update ivector table(interP tni, <s0,r0>, n1/n, n, 1)
29: end for

interfered by s0 alone, s0 and s1 together, and s1 alone. Hence,
three i-vectors can be inferred from the time log analysis, which
are ({s0}, <s2,r2>, 0.33, 3), ({s0, s1}, <s2,r2>, 0.25, 4) and
({s1}, <s2,r2>, 1.00, 3). It is worth noting that <s2,r2> may
also be slightly interfered by s3 (i.e. far-away interference [34]),
but we cannot identify it in the i-vectors. Such unidentifiable
far-way interference are seen as aggregated back ground noise
in NoPSM, because it can be similar for each node in the data
intensive WSNs and needn’t be specifically taken into account
when making decisions of transmission concurrency.

From the above illustration, we can see that two main steps
are included in the procedure of inferring i-vectors through
time log analysis. Firstly, the receiver node computes overlap-
ping periods of time logs to infer interference patterns, and
then it estimates the PRR of the current link under different
interference patterns by statistically analyzing the bitmap. Al-
gorithm 1 gives the pseudocode for inferring i-vector from time
log analysis. For describing the procedure clearly, hereafter we
refer to the receiver node carrying out the time log analysis as
the current node, and its associated block data transmission
and link as the current transmission and the current link
respectively.

The algorithm has five input parameters. TL0 is the time
log of the current transmission. TL is a set of time logs of its
neighbors and M is the number of time logs in TL. bitmap
indicates reception status of each packet in the current trans-
mission. bsize is the number of bits in bitmap. The packet
transmission interval (Tpkt) and the maximum cardinality of
IID in i-vector (Cmax) are taken as two constants in the al-
gorithm. The cardinality of IID is set to be no larger than
Cmax to keep size of i-vector table within a proper range. Line
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Algorithm 2 Maintaining i-vector table with self-inferred or
received i-vectors: update ivector table(iid, link, prr, ns, ttl)

1: Find the i-vector in the table that matches iid and link
2: if (NOT found) then
3: add the i-vector (iid, link, prr, ns) to the table
4: else if (ttl > 0) then
5: PRR, Ns ← corresponding elements of the matched i-

vector (iid, link, PRR, Ns)
6: PRR← (PRR ·Ns + prr · ns)/(Ns + ns)
7: Ns ← Ns + ns

8: update the matched i-vector with the new PRR, Ns

9: broadcast the updated i-vector (iid, link, PRR, Ns, ttl− 1)
10: else
11: replace the corresponding elements of the matched i-

vector (iid, link, PRR, Ns) with prr, ns

12: end if

2∼11 compute the interferers for each packet, and the results
are stored in an array named interId. In line 9, we use a
function named ID(TLi) to return the source ID of the time
log TLi. Line 12∼17 find out the interference patterns, and
the results are stored in a set named interP tn. Since we limit
the cardinality of IID in i-vector to be no larger than Cmax,
the maximum number of interference patterns in interP tn is
2Cmax . Line 18∼29 estimate the PRR of the current link under
each pattern of interference and update the i-vector table. The
last parameters to call the update ivector table function is the
time to live (TTL) of the inferred i-vector when it is broadcasted
to neighbors. The detailed rules to update the i-vector table will
be discussed in Subsection 4.3.

The time complexity of algorithm 1 is determined by Line
3∼11 and Line 19∼29. Through simple analysis, we can get that
the time complexity of these two subroutines is O(M · bsize)
and O(2Cmax · bsize) respectively. So the time complexity of
algorithm 1 is O((2Cmax +M) · bsize).

4.3 Interference Vector Table Maintenance

Through time log analysis, the current node infers some i-
vectors, which are maintained into a data structure, namely
i-vector table. At the same time, as shown in Fig. 2, the inferred
i-vectors are broadcasted to neighbors. Neighbors who receive
the i-vector broadcast packets will also update the i-vector
table. So a module named update ivector table is called when
time log analysis finishes and when i-vectors are received from
neighbors.

The detailed process of updating i-vector table is shown in
Algorithm 2. For simplicity, we refer to the i-vectors inferred
from time log analysis by itself as type I i-vectors, and the i-
vectors received from neighbors as type II i-vectors.

Initially, the i-vector table is empty. For a new i-vector (iid,
link, prr, ns) (referred to as Vnew later for short), if there’s no
i-vector in the table that matches iid and link, it simply adds the
new i-vector to the table. Otherwise, for the type I i-vectors (i.e.
ttl = 1), suppose the matched existing i-vector is (iid, link, PRR,
Ns) (referred to as Vmat later for short), it updates the existing
i-vector according to the rules formulated by Equation (3).

PRR =
PRR ·Ns + prr · ns

Ns + ns
, Ns = Ns + ns. (3)

Specifically speaking, PRR is updated by making an av-
erage over the ones in Vnew and Vmat, and Ns is updated
by adding the one in Vnew to Vmat correspondingly. After
updating i-vector table, the updated i-vector is broadcasted to

one-neighbors with ttl decreased to 0. For the type II i-vectors
(i.e. ttl = 0), Vmat is directly replaced with Vnew. Gradually
each node accumulates a list of i-vectors for links originated
from itself and other nodes, which is used to predict throughput
gain for making decisions of transmission concurrency. The i-
vectors in the i-vector table are maintained in soft state, which
means a timer (Tout) is set to periodically time out stale i-
vectors to accommodate dynamically varied communication
environment.

4.4 Transmission Control
This module is the core of NoPSM, which controls transmission
opportunity of each node to achieve high performance of block
data transmission. NoPSM controls transmission opportunity
through effective backoff control and advantageous transmis-
sion determination. Suppose that a node s0 having data blocks
pending to be transmitted, it starts with a backoff period (Tbo),
followed by a period of clear channel assessment (CCA) for
Tcca ms. During CCA period, the node not only samples the
CCA register, but also snoops whether there are some on-
going flows. Based on the average of CCA samples and the
extracted information from the snooped on-going flows, the
node determines whether or not it can start transmission. In
this section, we elaborate the design of backoff mechanism and
decision making approach.

4.4.1 Transmission backoff
Each node maintains a backoff timer denoted by Tbo and a
contention window denoted by [CWlow, CWup]. Tbo is set to a
random value between CWlow and CWup, which means nodes
backoff for Tbo ms before the CCA period of a block transmis-
sion. The contention window is [0,0] initially and updated by
two backoff policies, namely block backoff and cluster backoff.

1) Block backoff is adopted when the sender receives a
bACK. In this case, the sender reset the CWlow to 0, and
estimates the average PRR, denoted by PRR′, of the link based
on the bitmaps carried back in the bACK. Then the sender
updates the CWup according to the following rules:

CWup =
0, PRR′ > ηcw
CWmin, PRR′ ≤ ηcw and CWup = 0
2 · CWup, PRR′ ≤ ηcw and 2 · CWup < CWmax

CWmax, PRR′ ≤ ηcw and 2 · CWup ≥ CWmax

,

(4)
in which ηcw is a constant threshold, CWmin and CWmax are
the minimal and maximal size of the contention window re-
spectively. CWmax should not be smaller than the transmission
time of a block. The rationale behind the updating rule is that
PRR′ below a threshold level is taken as a significant indicator
of existence of undetected concurrently on-going transmitters.
So NoPSM will exponentially increase backoff time to reduce
probability of collision with undetected transmitters in the
case of PRR′ below a threshold level. If PRR′ is above the
threshold, which means the current decision of transmission
concurrency is correct, NoPSM will cancel backoff to improve
channel utility and data throughput. So block backoff is mainly
used to prevent transient packet losses when hidden terminals
exist.

2) Cluster backoff is adopted when the sender has not re-
ceived any bACK for Nuack blk continuous blocks. In this case,
the sender stops transmitting and sets the contention window
to [CBmin, CBmax], where CBmin and CBmax are two constant
parameters of NoPSM. The rationale behind the updating rule
is that unacknowledgement of Nuack blk continuously blocks is
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taken as an indicator of severe interference incurred from in-
tensive data transmission of undetected concurrently on-going
transmitters. So CBmax should be large enough to complete
transmission of Nuack blk blocks of data.

Hence with these two backoff policies, based on the trans-
mission procedure described in Subsection 4.1, after transmis-
sion of a block, the sender waits for a bACK from the receiver.
If the bACK is not received within a period of Twait ack ms,
the sender neither immediately retransmits all packets of the
unacknowledged block, nor adjusts the contention window.
Instead it transmits the next block in the buffer. In this way,
NoPSM prevents wasteful retransmissions and backoffs due
to occasional loss of bACK. Correspondingly, the bACK sent
by the receiver are accumulative and carries 1 ∼ Nuack blk

bitmaps for the previous received blocks, where Nuack blk is
the maximum number of blocks allowed to be transmitted
continuously without acknowledgement.

4.4.2 Transmission decision
After transmission backoff, the sender node starts a period of
CCA for Tcca ms. During the CCA period, the sender node
samples the CCA register, and searches for outliers in the sam-
plings. The outliers are such points that have channel energy
significantly below the noise floor, which is estimated in the
same way as B-MAC [25]. If an outlier exists, the channel is
assessed to be clear and the node sends the pending blocks
immediately. Otherwise, the sender node snoops the on-going
flows for extracting useful information, such as the address
information in packet header (i.e. Addr.) and the remaining
transmission time (i.e. bNAV ). Through the snooped informa-
tion, the node determines whether to defer or start concurrent
block data transmission with the following rules.

1) If more than Cmax flows are heard, the sender defers
its transmission. According to the bNAV fields of the snooped
flows, it can know which of the on-going flows ends firstly, then
it retries to access the channel when the flow with the earliest
end time finishes.

2) If the intended receiver is now involved in any one of the
on-going flows, it also defers its transmission and retries when
the corresponding flow ends.

3) Otherwise, the node estimates the throughput gain of its
transmission and start transmission only when its transmission
leads to sufficient throughput improvement. Suppose the node
s0 overhears k active links, <si, ri>, where 1≤i≤k. Let

T = {si|1 ≤ i ≤ k}. (5)

s0 can estimate the current PRR of each active link <si, ri>
under the interference of other nodes in T , denoted by

PRR(T\{si}, < si, ri >), (6)

by looking up an i-vector (T\{si}, <si, ri>, *, *) in the i-vector
table. If an i-vector is found, the corresponding PRR element
in the matched i-vector is returned. If no matched i-vector
is found, the result of equation (6) is estimated to be 1. For
the latter case, it is probable that the nodes si have not yet
transmitted concurrently with the other nodes in T\{si}, and
thus no i-vector about PRR of <si, ri> under the interference
of other nodes in T has been established before. However, there
is a high chance that si starts a concurrent transmission before
s0’s decision, and an i-vector with this interference pattern will
be built soon. With the estimated result of equation (6), node s0
estimates the aggregated throughput achieved by current set of
active nodes to be

THT =
∑
si∈T

PRR(T\{si}, < si, ri >) (7)

If s0 transmits concurrently with nodes in T , the PRR of the
currently active links will change. We denote the PRR of each
active link <si, ri> when s0 transmits concurrently with nodes
in T by

PRR(T ∪ {s0}\{si}, < si, ri >). (8)

The PRR of active link <si, ri> is also estimated by looking
up the i-vector table as described above. When no matched i-
vector of <si, ri> is found, the result of equation (8) is also
estimated to be 1, in order to encourage unknown concurrent
transmission and build the corresponding i-vector soon.

If there exists a node si in T ∪ {s0} such that

PRR(T ∪ {s0}\{si}, < si, ri >) < ηprr, (9)

where ηprr is a constant parameter of NoPSM, s0 defers its
transmission to avoid deteriorating the PRR of the on-going
flows too severely.

Otherwise, node s0 estimates the aggregated throughput
that will be achieved if it transmits concurrently with nodes
in T , as

THT∪{s0} =
∑

si∈T∪{s0}

PRR(T ∪ {s0}\{si}, < si, ri >). (10)

s0 decides to transmit concurrently if

THT∪{s0} ≥ (1 + α)THT , (11)

in which α (>0) is a constant parameter of NoPSM, otherwise
it also defers its transmission.

If s0 goes into deferral status, it retries when the on-going
flow with the earliest end time finishes.

It is worth noting that the hidden terminal problem cannot
be avoided by NoPSM, because the sender can only detect
one-hop active links by snooping the channel. Besides that,
NoPSM can have a varied version of hidden terminal problem.
The hidden terminal exists outside the communication range
of the sender and will not interfere with the imminent link,
but it can interfere at least one of the on-going flows. Taking
the scenario shown in Fig. 1 for example, where there are three
active links, namely <si, ri> (1 ≤ i ≤ 3), s0 is to launch a
concurrent link. Under this circumstance, s3 is such a hidden
terminal for s0, because s0 only observe that s1 and s2 are active
nodes, and estimate THT and THT∪{s0} by taking {s1, s2} as
T . As a result, THT and THT∪{s0} are both overestimated.
The overestimation leads to make false positive decisions of
transmission concurrency, and induces failures of data trans-
mission in all active links. We alleviate adverse effect of the
hidden terminal problem through introducing random backoffs
before block data transmission, which has been elaborated in
the Subsection 4.4.1.

5 EVALUATION

5.1 Methodology and Settings
We implement NoPSM in TinyOS-2.1 and evaluate its perfor-
mance on TOSSIM. TOSSIM 2.1 adopts a physical layer model,
named closest-pattern matching model, which is derived from
real-world experimental traces on a practically used radio
module (i.e. TI CC2420 [15]). This model captures the complex
dynamics of noise and interference and simulates the packet
delivery based on a measured SINR/PRR curve. Hence, it has
been shown that TOSSIM with the trace-driven physical model
can approximately simulate low-power wireless communica-
tions [35] and packet delivery behaviors of WSNs [36].

In our implementation, we set the constant parameters of
NoPSM as shown in table 1. Some settings of these parameters
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TABLE 1
Parameter settings of NoPSM

Protocol
module

Parameter Description Setting

Tcca Duration of CCA sam-
pling

12 ms

Tpkt Packet transmission inter-
val

psize/250+
0.6 ms

Twait ack Time duration to wait for
bACK

4 ms

Physical
Layer

Ttime logs Duration of the period for
broadcasting time logs

Cmax ×
Ttl ms

Abstraction Ttl Expected time to transmit
a time log packet

1.5 ms

Ctl Cycle of time logs broad-
casting period in number
of block data transmis-
sions

5

Ntl Number of time logs
carried by each control
packet in number of cy-
cles of previous broad-
casting period

3

Time Log
Analysis

Cmax Maximal cardinality of
IID

3

i-vector
Table
Maintenance

Tout Timeout period of i-
vectors

60 s

ηcw Minimal PRR of the cur-
rent link

0.5

CWmin Minimal backoff when the
link quality is below ηcw

4 ms

CWmax Maximal backoff when
the link quality is below
ηcw

bsize ×
psize/250
ms

Transmission
Control

Nuack blk Maximal number
of continuously
unacknowledged blocks

4

CBmin Minimal backoff when
Nuack blk blocks unac-
knowledged

CBmax/2

CBmax Maximal backoff when
Nuack blk blocks unac-
knowledged

Nuack blk×
CWmax

ηprr Minimal PRR of any ac-
tive link

0.5

α Ratio of throughput im-
provement

0.1

are based on our analysis of practical use cases, such as Tpkt,
Ttime logs, Ttl, Cmax, ηprr , ηcw, CWmin, CWmax, CBmin, and
CBmax. Tpkt and CWmax are set in accord with the length
of packet (psize) and the size of block (bsize) in each run of
experiment, where nodes transmit data at rate of 250 Kbps.
Others are determined by comprehensive preliminary exper-
iments, such as Tcca, Twait ack, Ctl, Ntl, Tout, Nuack blk, and
α. These parameters are set to achieve steady performance of
NoPSM.

To evaluate performance of NoPSM with unpredictably
intensive traffic load, we define a traffic generation model. It
creates 10 bursts of bulk traffic in each flow, and the start time
and the source of each flow are randomly assigned. Once a flow
of bursty bulk data traffic is generated, the source node trans-
mits data at the maximum rate for 20 seconds unless otherwise
mentioned. Number of nodes (n) and size of deployment area
(l × l) are set depending on flow density (d), i.e. n = 2d and
l = ⌈100

√
n⌉. The transmit power of each node is set to 0 dBm

(i.e. transmission range is about 100 ∼ 120m), so as to ensure
that each node has at least one direct neighbor. To evaluate
performance of NoPSM independent of routing protocol, all

the generated flows are destined to a closest one-hop neighbor,
and each node is alternatively assigned as sender or receiver in
a simulation run, unless otherwise mentioned.

To compare performance of NoPSM with other currently
proposed protocols, we choose B-MAC [25] and CMAP [18] as
comparison objects. B-MAC is a CSMA-based protocol, which
means nodes in the interference range of current transmitters
defer to send packets. For data intensive WSNs, the duty cycle
of B-MAC is set to 100% to achieve high performance. We
refer to the B-MAC with full duty cycle as CSMA. Hence,
performance of CSMA is regarded as a baseline to see how
much improvement can be taken from concurrent transmission.
CMAP is a reactive concurrent MAC based on interference
relationship, and is the most related work with ours. The
difference between CMAP and NoPSM has been pointed out in
Subsection 2. To make comparison results more persuasive, we
adapt CMAP to have the capability of block data transmission
and identifying conflicting links through retrieving address
information not only in the tail but also in the data part of
packets. This adaption improves the performance of CMAP by
8% ∼15% from our preliminary evaluation. In this paper, we
refer to the adapted version of CMAP as CMAP+ to distinguish
it from the original one. So both CMAP+ and NoPSM can work
with block data transmission, but CSMA transmit only one
packet once getting access to the channel. In other words, the
bsize of CMAP+ and NoPSM can be set to larger than 1, while
the bsize of CSMA is 1 constantly in the following experiments.

Metrics used in our performance evaluation are delivery
ratio, system throughput, delivery latency, and energy consumption
per byte. The delivery ratio is defined as the average percentage
of the number of successfully received packets to the total
number of sent packets for each flow. The system throughput
is defined as the sum of average data delivery rate of all
flows generated in a run of experiment. The delivery latency
is defined as the time duration from the time when a packet
is put into the sender’s transmission buffer to the time when
the receiver correctly receives the packet. To measure the en-
ergy consumption, we add an energy management module
to TOSSIM, which separately accumulate time of each radio
state, namely transmitting, receiving and idle. We multiply the
accumulated time in each state by the corresponding rated
power listed on the CC2420 data sheet [15]. Then, we compute
the energy consumption per byte as the result of dividing
the total power consumption in the three states by the total
number of byte of payload delivered. In addition, we conduct
a study on the fairness of NoPSM and compare messaging
overhead of NoPSM with that of CMAP+. We also discuss the
applicability of NoPSM in mobile scenarios. It is worth noting
that all the random flows are destined to a one-hop neighbor,
so as to evaluate performance of MAC protocols independent of
routing protocol and without bandwidth constraint from a sink.
In such a way, the system throughput can be a good indicator
of channel utilization, and delivery latency essentially means
the averaged delay for each node to access channel.

5.2 Performance of Time Log Analysis

NoPSM and CMAP+ propose different methods to establish
interference relationships among nodes. For NoPSM, it is the
component of time log analysis (LogA) that is in charge of
detecting interference relationships, while for CMAP+ it adopts
a Receiver-based Interferer Detection (RID) mechanism. Since
interference relationship is the unique basis to determine trans-
mission concurrency, it is crucial for performance of NoPSM
and CMAP+. So it is necessary to evaluate performance of
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Fig. 9. (a) Comparison of detection rates of LogA in NoPSM and RID in
CMAP+ with different flow density. (b) The empirical CDF of the absolute
difference of PRR (∆prr) between the current round and the previous
round of LogA in NoPSM, when flow density is 8.

LogA and RID firstly, particularly the detection rate of interferers
and estimation accuracy of link quality under corresponding
interference for LogA and RID respectively.

5.2.1 Comparison on detection rate between LogA and RID

We define the detection rate as the ratio of the number of
successfully estimated i-vectors to the total number of i-vectors
that should be estimated. If the detection rate is 100 percent, it
means that it detects all the one-hop interferers of a link that
has ever transmitted packets concurrently with it. We compare
detection rate of LogA and RID with different number of one-
hop flows. For each flow density, we run simulations with 20
randomly generated topologies.

Fig. 9.(a) shows the average detection rate of both schemes.
We can observe that the detection rate of LogA is very high,
which is above 80% for all considered flow density. Moreover,
LogA has much higher detection rate than RID especially when
flow density is high. This is because RID in CMAP+ can
only detect those interferers that are within the communication
range of both the sender and the receiver. However, in many
cases, the interferer that is one-hop neighbor of the receiver
may not be within the transmission range of the sender. For
LogA, the cause of missing detection is mainly due to the loss
of time log. However, repetitive transmission of time logs in
Ntl broadcasting periods with dedicated control packets, as
described in Subsection 4.1.2, can effectively reduces the chance
of the loss of time logs.

The relatively higher detection rate of NoPSM enables it to
infer interference patterns more completely. Along with inter-
ference detection in each round of time log analysis, PRRs of
the link under corresponding interference patterns are deduced
from statistically analyzing the bitmap recorded by the receiver
side of the link. The inferred interference patterns and corre-
sponding PRRs in each round of time log analysis comprise
the interference relationships. To evaluate the convergence of
the inference process, we trace the i-vectors constructed in each
round of time log analysis. For each i-vector, we calculate the
absolute difference of PRR (∆prr) between the current round
and the previous round. The empirical cumulative distribution
function (CDF) of ∆prr when each round of time log analysis
completes is shown in Fig. 9.(b). Due to space limitation, here
we only show the results when flow density is 8. We can see that
after 4 rounds of time log analysis, 92% of i-vectors have small
changes of PRR (i.e. ∆prr ≤ 0.05), which are seen converged to
a steady value of PRR. The rest of i-vectors may be randomly
influenced by the undetected interferers, and can fluctuate for
a while.
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Fig. 10. (a) Estimation error of LogA when flow density is 8. (b) System
throughput of NoPSM achieved with practical estimation of i-vectors,
compared to that achieved with idealized estimation of i-vectors, when
synchronization error is fixed to 50 µs, and psize and bsize is fixed to 48
and 32 respectively.

5.2.2 Effect of time synchronization error on estimation accu-
racy of LogA
Since LogA requires time synchronization of nodes in WSNs,
we further evaluate the estimation accuracy of LogA in the same
scenario as above experiments with the flow density fixed to
8. To gain the ground truth, we first remove the effect of
clock drift on simulation, and control all combinations of 2∼4
nodes to transmit packets concurrently and keep other senders
silent. The measured PRRs in each receiver under the controlled
interference are recorded as the benchmark. Then we restart
experiments to construct i-vectors with randomly activated
links, with the maximum synchronization error varied from
10 µs to 10 ms, and compare the estimated PRRs in i-vectors
with the benchmark. The absolute estimation error is calculated
to indicate estimation accuracy of LogA. For each level of
synchronization error, we evaluate estimation accuracy of LogA
in 20 randomly generated topologies.

Fig. 10.(a) shows the estimation error with different block
size and packet payload size. We can see that LogA achieve
quite accurate estimation of PRR under different synchroniza-
tion errors. In most cases, the estimation errors are around
0.15. Hence, LogA is tolerant to synchronization error. This
can be because LogA infers interference relationships through
analyzing overlapping periods of time logs and estimating cor-
responding PRR based on bitmaps in bACK. Synchronization
error below 5 ms only cause the overlapping periods of time
logs to drift 1 to 2 packets, which will not cause so much effect
on the interference patterns. When the synchronization error is
increased to 10 ms, the estimation error increases, especially in
scenarios with small block size and small packet payload size
(e.g. bsize is 16). So in cases with large synchronization error, it
is better to transmit packets with longer length or blocks with
bigger size. With bigger block size (i.e. bsize is 32) and longer
packet payload size (i.e. psize is 96), the estimation error still
remains small when the synchronization error is increased to
10 ms. Respecting that the state-of-arts time synchronization
protocols for WSNs can achieve error below 10 ms with very
small cost [37], [38], so we are confident to say that the perfor-
mance of NoPSM can be assured with currently available time
synchronization protocols.

5.2.3 Effect of estimation accuracy of LogA on performance of
NoPSM
With the results of previous experiments, we take a further step
to evaluate the effect of estimation accuracy of LogA on perfor-
mance of NoPSM in terms of system throughput. The experimen-
tal setting in this subsection is the same as in Subsection 5.2.2,
except that the maximum synchronization error is fixed to 50
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µs, and psize and bsize is fixed to 48 and 32 respectively. We
run two groups of experiments. First, we construct i-vector
tables for each receiver node through controlled transmission as
described in the previous subsection. The constructed i-vector
tables are taken as ground truth, and are orderly distributed
to their one-hop neighbors respectively. The time logs and i-
vectors are broadcasted without effect. The system throughput
achieved by NoPSM with different number of flows (from 2 to
8) is evaluated as the idealized performance, which is gained
with reliably constructed interference relationships. Second, we
restart experiments with time log and i-vector broadcasting
periods taking effect to construct i-vectors with randomly ac-
tivated links, and compared the achieved system throughput
with the former group of experiments.

Fig. 10.(b) shows the gap between the practical performance
and the idealized performance of NoPSM. We can see that as
the number of flows increases, the gap becomes larger, which is
mainly caused by reduced detection rate of LogA as shown
in Fig. 9. However, even with 100% of detection rate, it is
unavoidable that time logs will be corrupted during broad-
casting, mainly due to the increasingly severe hidden terminal
problem with more flows. As a result, the lost time logs have
adverse effects on accuracy of i-vector estimation, which further
affects system throughput with NoPSM. However, repetitive
transmission of time logs in Ntl broadcasting periods with
dedicated control packets (Subsection 4.1.2) can effectively im-
prove reliability of time log broadcasting. Moreover, selective
retransmissions of corrupted packets (Subsection 4.1.1) and
adaptive contention window (Subsection 4.4.1) can partially
mitigate the effect of inaccurate estimation of i-vectors on
system throughput. So, over all, the system throughput for
practical NoPSM is decreased by up to 10%, compared to the
idealized NoPSM.

5.3 Performance of NoPSM with Different Flow Density

In this subsection, we compare NoPSM with CSMA and
CMAP+ in terms of delivery ratio, system throughput, latency,
and energy efficiency in networks with different flow density,
i.e. the number of flows. The packet payload size (psize) of
these protocols is all set to 48 bytes and the block size (bsize)
of NoPSM is set to 64 packets. For each flow density, we
generate 20 random topologies and run experiments with the
three protocols once in each topology, and compute the average
of 20 times of running as the result.

Delivery ratio and system throughput. Fig. 11 and Fig. 12
compare the delivery ratio and the system throughput of the
three protocols with different flow density. We can see that
in all scenarios with different number of flows, NoPSM has
delivery ratio of 8∼22% higher than CSMA and 2 ∼11%
higher than CMAP+. Its throughput is 30% ∼ 60% higher
than CSMA and 11% ∼ 30% than CMAP+. The outperformed
delivery ratio of NoPSM is mainly attributed to the selective
retransmission mechanism and effective transmission control
mechanism. The throughput gain of NoPSM over CSMA is
mainly achieved from higher usage of channel by exploiting
potential opportunities of transmission concurrency. Besides
that, it can also result from reduced transmission time through
block data transmission, because transmitting packets in a block
saves a lot of time spent in making CCA and backoff for each
packet. The throughput gain of NoPSM over CMAP+ is mainly
achieved from more chances of concurrent transmissions with
effective throughput improvement have been exploited.

With increasing number of flows, delivery ratios of all
protocols decrease, while system throughputs of all protocols
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Fig. 14. Ratio of energy consump-
tion per byte to CSMA with dif-
ferent flow density when psize of
these three protocols is 48 and
bsize of CMAP+ and NoPSM is 64.

increase. This means although each flow has reduced num-
ber of successfully received packets on the average, the total
number of successfully delivered packets for all the flows still
grows. Furthermore, when the flow number is larger than 11,
the throughput of CSMA and CMAP+ both stops increasing,
while NoPSM still has potential of throughput increase. This
is because for CSMA channel usage has been saturated when
the flow number is 11. For CMAP+, it has a detection rate less
than 35% when the number of flows is larger than 8 as shown
in Fig. 9. In other words, the number of practically existing
concurrent senders is likely to be underestimated by CMAP+
in networks with dense flows. So in scenarios with dense flows
senders with CMAP+ tend to transmit aggressively, which
will lead to severe increasing number of corrupted packets.
As a result, the throughput of all concurrent transmissions is
reduced. However, the detection rate and estimation accuracy
of NoPSM are still high even when flow density is increased to
11, so the senders can make correct transmission decisions and
ensure effective block data transmissions in most cases. Hence,
NoPSM achieves a steady increase of throughput as the number
of flows increases.

Delivery latency. Fig. 13 shows the delivery latency of the
three protocols with different flow density. From this figure, we
can see that CSMA, CMAP+ and NoPSM almost have the same
latency when the flow density is low, and they all have increas-
ing latency as flows become denser. For all these protocols, the
increased latency mainly results from longer time needed to
wait for getting access to the channel for each each when the
number of flows increases. However, the latency of NoPSM is
always lower than that of CSMA and CMPA+. For example,
when there are 8 active flows simultaneously existing in the
network, the average delivery latency of CSMA and CMAP+
is 125.4 ms and 118.6 ms respectively, while that of NoPSM
is 102.9 ms. So in this scenario NoPSM reduces the latency
by 13% as compared to CMAP+ and by 17% as compared to
CSMA. Moreover, we can also see that the difference of latency
achieved by CSMA, CMAP+ and NoPSM becomes larger when
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the flow density is more than 11, which can be for the same
reason of throughput decrease of CSMA and CMAP+ in these
cases, as discussed in the previous paragraph.

Energy consumption. Fig. 14 gives the ratio of energy
consumption per byte of CMAP+ and NoPSM to that of CSMA.
We can see that when the flow density is less than 6, the three
protocols lead to almost the same energy consumption. As the
number of flows increases, the energy consumption of CMAP+
and NoPSM decreases. Moreover, the energy consumption of
NoPSM is less than that of CMAP+. The higher energy con-
sumption of CMAP+ mainly results from more energy wasted
in unsuccessful packet transmission, because of the declined
rate of interferer detection with increasing number of flows
as shown in Fig. 9. For the same reason, especially when the
flow density is larger than 11, the energy reduction of NoPSM
from CMAP+ becomes wider. On average, NoPSM and CMAP+
reduce the energy consumption by 37% and 28.5% respectively
as compared to CSMA, so NoPSM reduce energy consumption
by 8.5% as compared to CMAP+.

5.4 Performance of NoPSM with Different Block Size and
Packet Payload Size
In this subsection, we compare the effects of block size and
packet payload size on the performance of CSMA, CMAP+,
and NoPSM in scenarios with fixed number of flows to 12 and
varied block size from 16 to 64. The settings of transmit power
and network size are the same as the previous experiments. For
each block size, we first run experiments with packet payload
size of 48 bytes, and then with packet payload size of 72 bytes.
Setting with a block size and a payload size, we run each
experiment with 20 random topologies, and make an average
of the delivery ratio, system throughput, delivery latency, and
energy consumption per byte respectively as a result shown
in Fig. 16 to Fig. 18 respectively. From these figures, we can see
that the performance of CSMA does not vary with the setting of
block size, because bsize of CSMA is constantly 1, as described
in Subsection 5.1.

Delivery ratio and system throughput. Fig. 15 and Fig. 16
compare the delivery ratio and the system throughput of the
three protocols with increase of block size. From these two
figures, we can see that when packet payload size is either 48
or 72 bytes, NoPSM always outperforms CSMA and CMAP+
in terms of both delivery ratio and system throughput. In
particular, we can see that NoPSM can keep relatively high
delivery ratio (i.e. about 81%) with increase of block size, so
larger payload size can always improve throughput of NoPSM.
However, the increase of block size can not necessarily improve
throughput of CMAP+, because its delivery ratio can decline
with increase of block size, as shown in Fig. 15. This can be
caused by the following factors. Firstly, larger block size will
increase the number of corrupted packets during block trans-
mission for CMAP+, due to its low detection rate when the flow
density is larger than 8 as shown in Fig. 9. Secondly, for senders
with CMAP+, they adopt the binary criterion to determine
transmission concurrency without considering throughput gain
comprehensively, which can bring in throughput reduction
with deteriorated detection capability of CMAP+ in cases of
larger block size.

More specifically, NoPSM can have up to 18% and 11%
higher delivery ratio than CSMA and CMAP+ respectively, and
the throughput gain of NoPSM over CSMA can be up to 60%
when the block size increases to 64. Also, NoPSM achieves
about 19% ∼ 49% throughput gain over CMAP+ when the
payload size is 48 bytes, and about 22% ∼ 55% when the
payload size is 72 bytes.
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Fig. 18. Ratio of energy consump-
tion per byte to CSMA (psize = 48)
with different block size when the
flow density is 12.

Delivery latency. Fig. 17 presents the delivery latency of the
three protocols with increase of block sizes. From this figure, we
can see that both NoPSM and CMAP+ have increasing delivery
latency with increase of block size, because the duration of
occupancy for each block increases. However, NoPSM is always
lower than CSMA and CMAP+ when the payload size is
either 48 or 72 bytes. For instance, when the block size is 32
packets and the payload size is 72 bytes, NoPSM reduces the
latency by about 10% as compared to CSMA , and by about
7% as compared to CMAP+. Moreover, larger payload size
will increase latency for both NoPSM and CMAP+, since the
transmission time of each packet will increase. In particular,
when the payload size is 72 bytes, the deliver latency of CMAP+
can be larger than that of CSMA in scenarios with block size
larger than 56. This can be because worse channel usages than
CSMA have been incurred from concurrent transmissions of
CMAP+ with deteriorated detection capability in these cases.

Energy consumption. Fig. 18 plots the ratio of energy
consumption per byte of the three protocols to that of CSMA
with different block sizes. Here, we take the energy consump-
tion per byte of CSMA when payload size is 48 bytes as the
baseline. We can see that NoPSM consumes less energy than
CSMA and CMAP+, especially when the block size is larger
than 32 packets. On average, compared with CMAP+, NoPSM
improves energy efficiency by about 18% when the payload size
is 48 bytes, and by about 20% when the payload size is 72 bytes.
In addition, we can see that the energy consumption of NoPSM
increases slowly with increase of block size, but that of CMAP+
rises quickly from the case with packet size of 32 packets,
especially when the payload size is 48 bytes. Referring to
Fig. 16, we can see that the system throughput of CMAP+ starts
to decline when the block size is 32 packets, which means more
failed concurrent transmissions occur when the block size is
larger than 32 packets. On the contrary, NoPSM keep increasing
of throughput in these cases. So we can know that more energy
are wasted in unsuccessful block data transmission for CMAP+
compared with NoPSM, when block size increases.

In short, the above experimental results show that NoPSM
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Fig. 22. Ratio of energy consump-
tion per byte to CSMA with differ-
ent network area when the flow
density is 8, psize is 48 and bsize
is 64.

can achieve more throughput gain and latency reduction than
CMPA+ as flow density and block size increase, and fur-
thermore the throughput gain and latency reduction are not
achieved at the cost of more energy consumption than CMAP+.

5.5 Performance of NoPSM with Different Network Density
To compare performance of NoPSM with CMAP+ and CSMA
in networks of different density, we put 16 nodes uniformly in
an area of different length and width, from 400×400 to 50×50
square meter. 8 flows are randomly generated in the same way
as described in Subsection 5.1, and the transmit power of each
node is set to 0 dBm. The packet payload size (psize) of these
protocols is all set to 48 bytes, and block size (bsize) of NoPSM
and CMAP+ is set to 64 packets. For each network area, we
generate 20 random topologies and run experiments with the
three protocols once in each topology, and compute the average
20 times of running as the result.

Delivery ratio and system throughput. Fig. 19 and Fig. 20
compare performance of CSMA, CMAP+ and NoPSM in terms
of delivery ratio and system throughput respectively. We can
see that denser deployment of nodes can improve delivery
ratio for all the evaluated MAC protocols, because the impact
of hidden terminal on data delivery becomes weaker with in-
crease of network density. Especially for CMAP+ and NoPSM,
when all the nodes located in the same interference area (i.e.
length/width of area is about 100 meter), they achieve delivery
ratio of more than 90%. However, the system throughput for all
the evaluated MAC protocols declines with increase of network
density, because all the flows share the same channel to deliver
data. The results show that CMAP+ can NoPSM can achieve a
maximum of 218 kbps throughput when the length/width of
area is less than 100 meter.

Delivery latency. Fig. 21 compares the delivery latency of
CSMA, CMAP+ and NoPSM with different network density.
We can see that CMAP+ and NoPSM have lower latency than
CSMA, because they exploit chances of transmission concur-
rency. Furthermore, the advantage of NoPSM over CMAP+
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becomes not so clear when the length/width of area is less
than 100 meter, because they almost make the same decisions
of concurrent transmission in these scenarios.

Energy consumption.Fig. 22 shows the ratio of energy
consumption per byte of these MAC protocols to that of CSMA
with different network density. We can see that NoPSM can
outperform CMAP+ in energy efficiency when all the nodes
are not located in the same interference area (i.e. length/width
of area is more than 200 meter). This mainly results from
more energy wasted in unsuccessful packet transmission for
CMAP+, because of more false positive decisions of concurrent
transmission made by CMAP+ than NoPSM. With increase of
network density, their difference in energy efficiency vanishes,
because all the nodes located in the same interference area
and they can both make accurate decisions of transmission
concurrency.

In short, NoPSM has an advantage over CMAP+ in net-
works with an ordinary node density. With increase of node
density, they will have similar performance.

5.6 Fairness, Messaging Overhead and Discussion
Although the main goal of NoPSM (i.e. improved system
throughput) is achieved as shown above, fairness is a desired
property of MAC protocols. We hereby compares the fairness
among CSMA, CMAP+ and NoPSM based on experiments
with different flow density (see details in Subsection 5.3). The
result is shown in Fig 23. The fairness index is defined as
(
∑

f Thrf )
2/(N ×

∑
f Thrf

2) [39], where Thrf represents a
flow f ’s throughput and N represents the total number of
flows. We can see that all these MAC protocols exhibit sim-
ilar fairness properties when the number of flows increases,
because they all suffer from increasing location-dependent con-
tention (e.g. flows in the edge of scenario suffer less contention
than that in the center) and hidden terminal problem, and adopt
similar random backoff adjustment algorithm. In addition, be-
cause NoPSM adjusts a backoff timer based on the estimated
PRR of the latest round of block transmission (Subsection 4.4.1),
the flows with higher PPR have relatively higher probability to
access the channel. So NoPSM has slightly degraded fairness
index compared to CSMA and CMAP+, while it is still desirable
since it has not yet been specifically designed for fairness. We
think that it can be improved by integrating the utility function
into backoff scheme as proposed by [40].

In addition, we take a comparative study on the messaging
overhead of NoPSM and CMAP+, by statistically counting
bytes of broadcasted control messages in experiments with
different flow densities (see details in Subsection 5.3). Fig. 24
shows the comparison result. The messaging overhead of
NoPSM mainly lies in broadcasting time logs and i-vectors,
while that of CMAP+ lies in broadcasting interferer lists. Al-
though the overhead of NoPSM is a little more than CMAP+,



1536-1233 (c) 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2016.2547867, IEEE
Transactions on Mobile Computing

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. , NO. , MONTH YEAR 14

they have the same order of magnitude. Therefore, we can
see that the outperformance of NoPSM over CMAP+, which
is mainly attributed to the improved detection rate of interferer
and refined decision of transmission concurrency, is achieved
with equivalently low overhead as CMAP+.

It is worth noting that the messaging overhead of NoPSM
includes that for maintaining i-vectors table in soft state. As
explained in Subsection 4.3, NoPSM can adapt to slightly varied
communication environment (e.g. where all ECG sensors are
attached to a single patient who moves alone in a room) in
this way. However, NoPSM cannot be directly applied to some
situations with higher mobility (e.g. where there are multiple
patients moving around and each patient is attached with
some ECG sensors), because the interference relationships may
become more dynamic and the periodically refreshed i-vectors
cannot reflect the current status of communication environment
promptly and accurately. We will address the impact of mobil-
ity on performance of NoPSM in future.

6 CONCLUSIONS

In this paper, we present NoPSM, which is a concurrent MAC
protocol for data intensive WSNs. NoPSM is featured by its
base and criterion to determine transmission concurrency. The
base of NoPSM is not proactively constructed PRR-SINR mod-
els for each node in network, but reactively constructed interfer-
ence relationships by passively analyzing overlapping relation-
ships among time logs of block data transmissions and corre-
sponding reception status of each packet in blocks. In this way,
the base of the concurrent MAC protocol can be constructed
and maintained without network downtime. Based on the
constructed interference relationships, nodes make decisions
of transmission concurrency with a comprehensive criterion,
which not only estimates PRR of any active links after initiating
a new link, but also estimates throughput improvement gained
from concurrent transmissions. The performance of NoPSM is
extensively evaluated in TOSSIM and compare it with CSMA
and CMAP+. The experimental result shows that NoPSM out-
performs CSMA and CMAP+ in terms of delivery ratio, system
throughput, delivery latency, and energy consumption.
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