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Abstract—Resource optimization for small-cell wireless 
networks is more complicated than the traditional applications. 
The solution needs to be delivered promptly to respond the 
highly dynamic temporal and spatial variations. It seems that the 
machine learning strategy is more flexible and adaptive than the 
conventional optimization methods, since ML has the potential to 
find the implicit function relationship between arbitrary input 
data and output results. In this work, we focus on a generic D2D 
network and to show the effectiveness of ML apply to solve the 
power optimization problem with different optimization models. 
The research spans over all stages such as analysis, design, 
implementation, and validation. It is shown that the ML method 
has achieved several benchmarks in terms of QoS metrics for 
different optimization models. 

Keywords—Deep learning, machine learning, neural networks, 
optimization, wireless communications. 

I. INTRODUCTION 
The machine learning (ML) approach, as a fundamental 

methodology in modern artificial intelligence (AI) discipline, 
has gained strong interests in various areas, such as wireless 
networks [1]. In many situations, ML can provide a workable 
solving strategy and produce a set of useful results in a 
reasonably quick manner. This is particularly important in a 
device-to-device (D2D) communication task, where the traffic 
is highly dynamic, and the topology keeps changing [2].  

D2D allows direct communication between mobile users, 
providing proximity-based services in wireless networks [3]. It 
has the advantages in increasing area spectral efficiency, 
improving cellular coverage and lower latency, and reducing 
power consumption. However, in D2D communication 
networks, there are additional impairments caused by path-
loss, shadowing, and multipath scattering. If the wireless 
device is also mobile, then the Doppler effect must be taken 
into account too. How to design a workable scheme to solve 
the networking related issues in D2D networks in a timely 
manner has been a challenge in practice. Although many 
sophisticated approaches have been proposed to deal with the 
resource allocation issues of D2D wireless networks, and 
analytically these approaches are established on solid 
mathematical structures, their practical applications are 
usually restricted in field [4]. The reasons are multiple, but 
primarily the limited applicability is due to the limited CPU 
capacity and/or storage capacity in small devices. It is highly 
desirable to get rid of those computation-intensive schemes 

and develop some economical and quick schemes to solve the 
same problem. In this paper, we try to customize the ML 
approach to solve an optimization problem commonly arisen 
in small-cell wireless networks. Guided by the principle of 
ML, through extensive practices in analysis, design, 
implementation, and validation, we have gained some 
important insights in the investigated model.  

    The rest of this paper is organized as follows. In Section II, 
the related works to this study is overviewed. In Section III, a 
new model for resource optimization is presented. Then, in 
Section IV, the essentials of ML are introduced. Next, in 
Section V, the detailed practices on ML are described and 
extensive experimental results are presented with detailed 
discussions. Finally, the conclusion is put in Section VI. 

II. RELATED WORK 
The primary goal of power allocation in the D2D networks 

is to ensure the communication signals to have the sufficient 
coverage by limiting the interference caused by concurrently 
active D2D users, while optimizing some performance merits 
in the system level, such as the sum rate over all links [3].  
There have been many approaches to solve the power 
allocation problem. Among them, recently, the ML-based 
methods have received great attention, because of their 
feasibility of offline training and the real-time performance of 
online testing. Several inspiring results has been reported. For 
example, Lee et al.[5] proposed to feed the channel matrix 
into a convolutional neural network (CNN) to optimize the 
power allocation task. Xu et al. [6] proposed to make use of 
deep reinforcement learning on solving power-efficient power 
allocation problem in cloud radio access networks (C-RANs). 
The paper [7] is the first to adopt a deep neural network 
(DNN) based on universal approximation theorem (UAT) [8] 
to optimize the power allocation problem. They used a DNN 
model to approximate the performance of the iterative-based 
WMMSE method [9] for power allocation. They validated the 
effectiveness of the DNN-based approach for approximating 
the iterative-based method and the computational time 
advantage of DNN-based method. Since then, several papers 
have been proposed to use DNN-based approaches to allocate 
power resources in wireless networks. Inspired by [4, 7], 
Zappone et al. [10] proposed to use DNN to optimize the 
global energy efficiency (GEE) maximization power allocation 
model in an interference-limited network. Their DNN is 
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trained by the results of a sequential fraction programming 
(SFP) optimization method instead of WMMSE. Liang et al. 
[11] proposed to use a DNN to optimize the power resource 
by directly maximize the sum-rate as the loss function. They 
also took noise power and channel coefficients in addition to 
channel gain as input to their DNN, in order to train the DNN 
to have the ability to handle a range of noise power levels. In 
addition, they ensemble multiple DNNs together to build an 
ensemble network to achieve better output power values. 
Eisen et al. [12] modeled the power resource allocation 
problems, such as the simple channel model and the 
interference channel model, as one generic formulation. They 
then combine the conventional indirect optimization method 
with DNN to optimize the generic formulation. That is, to 
solve the non-convex generation formulation, they employed 
the Lagrangian duality method and a DNN model. 
Specifically, the backpropagation process of DNN is taken 
place by the Lagrangian duality optimization process of the 
generic formulation. Therefore, DNN needs no training 
examples during the training process.  

We note that, however, all the above-mentioned works did 
not take the quality of service (QoS) constraint into account in 
the optimizing models. In D2D networks, optimizing the 
power alone may reduce the index of QoS.  

The QoS-based power allocation problem is extremely 
important for the next-generation wireless networks, since 
they are expected to support very high data rates and radically 
new applications. With the additional QoS constraint 
considered, the above methods may not work well. In this 
work, we consider the additional QoS constraint in the 
learning process to optimize the power allocation problem. It 
should be mentioned that the work in [13] also used DNN to 
optimize the QoS-aware power management problem. 
However, the present work proposes a new model to seek the 
similar merit to the weighted sum-rate (WSR) function, while 
holding the convexity computationally. 

III. SYSTEM MODEL AND PROBLEM FORMULATION 
In this section, we first describe the system model for a 

generic network subject to interference, and then propose the 
optimization objective formula for our power allocation 
problem.  

A. System Model 

We consider a wireless network deployed in a region 
represented by a disc with radius Rc. This generic network 
consists of N pairs of transmitters (Tx) and receivers (Rx). In 
the present work, we consider a network consisting of the 
same number of transmitters and receivers, which is one of the 
most representative configurations of the D2D communication 
paradigms. We use ்ࣝ = {1,2, … , ܰ}and ࣝோ = {1,2, … , ܰ} to 
denote the index sets of Tx and Rx, respectively.  

The topology of the wireless network is shown in Fig. 1, 
where the solid lines represent the desired transmission links, 
while the dotted lines represent the interfering links. Note that 

the pattern in Fig. 1 is just the topology, rather than the actual 
layout. In practice, the layout of a D2D network is usually 
random, although there are some location restrictions to avoid 
the singularity and other anomalies.  

 
Fig. 1. Generic wireless network structure. 

TABLE I.  THE LIST OF MAIN NOTATIONS 

Notation Description 

jkh  Channel gain of the interference link jk 

kkh  Channel gain of the desirable link paired with 
Tx  k and Rx k  

N  Number of Tx-Rx pairs 

jkr  The length of link jk (meter) 

ku  SINR of Rx k (dB) 

,minku  QoS threshold of SINR (dB) 

kP  Transmitter power of Tx k (dBm) 

jkα  Path-loss exponent of link jk 

2
kσ  Noise power of Rx k  

 
The main notations are listed in Table I. Other notations 

will be defined in the relevant context. In Table I, the term 
“link ij” means the link from Tx i to Rx j. The term “channel 
gain” refers to the small-scale fading. The Rayleigh fading is 
adopted in the analysis throughout this paper. Thus the 
channel gains hkj and hkk follow the exponential distribution. 
The conventions commonly used in the literature of wireless 
communications are also adopted, such as unit mean and the 
i.i.d. condition. This way, the large-scale fading due to the 
path-loss will be described with a power-law term. To 
concentrate on the key concept, the shadowing effect is 
included in the large-scale fading with appropriately adjusted 
parameters.  

In the present model, half-duplex is assumed, i.e., a node 
cannot receive signals while simultaneously transmit signals. 
For example, at a particular moment, the link from Tx 3 to Rx 
7 is different than the link from Tx 7 to Rx 3. This implies 
that, in general, it is not necessarily to have bjk = bkj, b ∈ {h, r, 
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α}. Also, rkk ≠ 0, since it represents the distance from Tx k to 
Rx k. ߪଶ  characterizes the additive white Gaussian noise 
(AWGN). With these elaborations, the signal-to-interference-
plus-noise ratio (SINR) for the receiver k is expressed as: 

ݑ ≜
ೖೖቀೖ/ೖೖ

ഀೖೖቁ

ఙೖ
మା∑ ೕೖቀೕ/ೕೖ

ഀೕೖቁಿ
ೕసభ,ೕಯೖ

                           (1)  

where usually 1.6 < αjk < 9. Note that in (1) hjk, hkk, rjk, and rkk 
are random variables (RVs), while the variables Pj and Pk are 
the entities to be optimized (referred to as the decision 
variables in optimization literature). 

B. Problem Formulation 

In the present work, we develop a QoS-aware scheme to 
optimally allocate the power for all transmitters. There are 
several ways to characterize the merit of scheme. One of the 
most popular ones is the weighted sum-rate (WSR). The 
original WSR model did not explicitly include the QoS 
constraints. The WSR model augmented by the QoS 
constraints can be expressed as follows: 

(Model-1) 

	݁ݖ݅݉݅ݔܽ݉ ∑ ݓ logଶ(1 + )ேݑ
ୀଵ                  (2) 

.ݏ ,ݑ							.ݐ ≤                                    (3a)ݑ

0 ≤ ܲ ≤ ܲ,௫                           (3b) 

                                    ݇ = 1,2, … , ܰ 

where ku is defined in (1).	ݓ  denotes the bandwidth. ܲ,௫  
refers to the allowed maximum power of k. 

    The WSR provides a clear insight since is directly related to 
the Shannon’s capacity. However, the optimization model with 
WSR as the objective function is non-convex. The non-
convexity is unfavorable for many reasons of either analytical 
or computational. Analytically, the convexity guarantees the 
global optimality rather than local. Computationally, the 
convex problem is polynomially solvable. It is highly desirable 
to seek a similar merit as the objective function while holding 
the convexity. In the present work, we consider the following 
QoS-aware power optimization model: 

(Model-2) 

min
ೖ,ୀଵ,…,ே

∑ ଶ(1݃ሾ݈ݓ + )ሿିଵேߤ
ୀଵ           (4) 

.ݏ ,ݑ							.ݐ ≤                                       (3a)ݑ

	0 ≤ ܲ ≤ ܲ,௫                             (3b)                      

݇ = 1,2, … , ܰ 

The proof of convexity is omitted here due to the space 
limit. A further observation is, regarding the intermediate 
variable SINR ݑ, the objective function is monotonic. Due to 
the overall convexity, the constraint eq. (3a) is redundant, since 
any numerical optimization algorithm is also monotonic, either 
“up-hill” or “down-hill”. Therefore, only the power constraints 
(3b) are needed.  This is really desirable, since (3b) represents 

a box-shape feasible region for the original decision variables, 
viz. the transmit power. Dropping the constraint (3a), Model-2 
will be referred to as Model-3 in the sequel. 

IV. OVERVIEW OF NEURAL NETWORK MODEL 
    In general, the power allocation problem can be solved by 
the numerical optimization routines included in most software 
toolkits (e.g., Matlab). Most such routines comprise a 
collection of algorithms, and each algorithm consists of 
multiple iterations. In principle, the constrained optimization 
problems can be solved in one of two basic approaches: the 
direct method or the indirect method. In the direct method, the 
iterations are carried out with in the feasible region, which is 
typically a sub-space with high dimensions. When the 
searching point hits the boundary, the searching direction is 
adjusted by an angle. In the indirect method, the constraint 
function is included into the objective function to form an 
augmented objective function. Then an unconstrained 
optimizer is employed. However, no matter whether using the 
direct or indirect methods, usually a large number of iterations 
are needed to solve the power allocation problem. The 
computational time is often excessive for the large-scale 
problems. The traffic flows in practical wireless networks, 
however, are highly dynamic and most likely random. There is 
a real-time requirement for the problem solver. The machine 
learning (ML) discipline just provides a new methodology 
along the avenue of lunching quicker solvers. 

 

Fig. 2. The neural network architecture. 

The kernel of modern ML discipline is the DNN. A DNN 
has multiple layers (Fig. 2). One of the most quintessential 
DNNs is the feedforward neural network (FNN). The intrinsic 
of FNN is validated by a fundamental theorem: UAT [8]. 
According to UAT, even a single layer of FNN can 
approximate almost all mathematical functions. The only issue 
is that a great number of units (neurons) is needed, incurring 
the high computational complexity. In the present work, we 
design an FNN with multiple layers. In the high level, we 
follow the general guidelines to construct the FNN. However, 
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in several positions, we need to pay special attention to 
elaborate the generality. For example, our network should 
satisfy two constraints in eq. (3a) and eq. (3b) as well as 
maximization overall sum-rate. 

To improve QoS satisfaction rate (QoS-SRate), a post-
processing step is proposed. That is, at the output layer of the 
neural network, a SINR verification process is added. If the 
output power value ( ) cannot satisfy the SINR request 
,ݑ) ≤  ), then the power value will increase by 0.1 untilݑ
it satisfies the SINR request ( ܲ,୫୧୬௦) or reaches to the Pmax 
value ( ܲ,௫).  

ܲ = min	(max൫, ܲ,୫୧୬௦൯ , ܲ,௫)                 (5) 

The post-processing will degrade to max power generate if 
all the output ܲ  equal to ܲ,௫ . However, this is not 
happened in numerical experiments. 

TABLE II.  QOS SRATE TEST ON SAMPLES FROM MODEL-3 

QoS  (dB) 1 3  5  7  10 15  20 25  
Fmincon 1 1 1 1 1 1 1 1 
FNN_NoPP 0.94 0.82 0.75 0.72 0.68 0.64 0.62 0.60 
FNN_PP 1.00 0.99 0.98 0.98 0.97 0.96 0.96 0.96 

 

 

Fig. 3. Sum-rate with/without proposed post-processing on Model-3. 

As can be observed from Table II, with the post-
processing, the QoS satisfaction rates are largely improved. 
Fig. 3 shows the proposed post-processing slightly reduced the 
performance of the proposed FNN. However, the difference is 
very small compared its ability in improving the QoS 
satisfaction rate as shown in Table II. This indicates the 
effective of the proposed post-processing. 

V. EXPERIMENTAL RESULTS AND REMARKS 
To verify the functionality and performance of the 

proposed optimization model, we conducted extensive 
numerical experiments. In the experimental setting, a standard 
optimization procedure, Fmincon in Matlab, is used to 

generate the training data. Fmincon is a well-known solver for 
the constrained nonlinear programming (NLP) problems. The 
main reason that we use Fmincon is that it is robust, and in 
most cases, it can converge to the satisfactory solution.  In 
addition, it can be used to solve all the three optimization 
models described in Section III. Sometimes a few undesirable 
results could be generated from Fmincon, but these results can 
be easily identified and eliminated from the training samples. 
We use 80% of the training dataset as the training samples, 
while 20% as the validation samples.   

We note that the excessive number of nodes is not 
desirable in most practical D2D deployments. Consequently, 
in the numerical experiments, we chose N = 10 pairs of 
transceivers. The following parameters are adopted: the radius 
= 1000 meters, Pmax = 21 dBm, and the AWGN power = -
143.97 dBm. The layer size of the FNN is set to [200, 80, 80, 
10]. We use the scaled conjugate gradient descent (SCGD) 
backpropagation method to update the FNN’s weights values. 
The learning rate value is chosen as 0.01. For visualization 
purpose, the experimental performance is measured in terms 
of the cumulative distribution function (CDF). The CDF of all 
three models are computed based on the optimized power 
values of WSR in eq. (2).  

A. Comparison of Models under Training Samples 
Generation 

For the purpose of verifying the effectiveness of those 
three models described in Section III, the following two 
experiments were conducted.  Note that Model-3 is the model 
optimized without constraint (3a). 

First, the successful optimization rate (SOR) based on 
Fmincon toolbox is calculated and compared among these 
three models. In the current setting, the SOR measures the 
success proportion of Fmincon in 100 experimental trials. 
Given the same inputs, the SOR profiles for these three 
models are shown in Fig. 4. The goal here is to observe the 
impact of the model structure on the SOR. As shown in Fig. 4, 
Model-2 behaves best for SOR with different SINR 
requirements. On the other hand, the SOR of Model-3 is better 
than Model-1 in the regime of 	ݑ ≤ 15. However, in the 
large SINR regime, the performance of Model-3 gradually 
diminishes. 

Second, the computational time of the three computational 
models are shown in Fig. 5. Here the computational time is the 
average time of 10 successful optimization trials. All tests are 
conducted with different QoS requirements uk, min. It is shown 
that both Model-2 and Model-3 have lower computational 
costs than Model-1. Apparently, Model-3 has the lowest 
computational cost. This implies that Model-3 would have the 
computational advantage for large datasets over the other two 
models.  

From these experiments, it is observed that the proposed 
models (Model-2 and Model-3) perform better than the 
conventional WSR model (Model-1), with respect to both 
SOR and computational costs in generating training samples 
with Fmincon. 
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Fig. 4. Comparison the averaged power P under normal and infeasible cases. 

 

 

Fig. 5. Computational time comparison. 

B. Comparison of Models under FNN  Optimization 
Performance 

In the training phase for the FNN, a wide range of QoS 
thresholds are used. We set six QoS thresholds with a wide 
range, i.e., 5 dB, 10 dB, 15 dB, 20 dB, 25 dB, and 30 dB. For 
each QoS threshold, 50,000 optimized samples are used as the 
targets for training, resulting in 300,000 samples in total. In 
the input side, each vector contains 100 channel gains and 100 
link lengths. Thus, the dimension of each single vector is 200. 
Accordingly, the overall size of the input data for this FNN is 
200×300,000. The numerical experiments are implemented in 
MATLAB R2017a on a computer with 12.0 GB RAM, 
Intel(R) i7 CPU 4.00GHz. The FNN is trained in the 
MATLAB neural network toolbox on the same computer. The 
same wireless network parameters are fed into Fmincon with 
three objective functions (Model-1, Model-2, Model-3), 
resulting three datasets of optimized powers. These datasets 
are used to train three different neural networks, i.e., 
FNN_m1, FNN_m2, and FNN_m3.  

In the training process, when the total number of training 
epoch was set to 10,000 for all three models, then Model-3 

and Model-2 converged respectively in 5 hours 57 minutes 
and 5 hours 50 minutes, with 0.033 and 0.038 as the best 
validation performance. However, Model-1 spent 7 hours 06 
minutes with the best validation performance 0.043. This 
indicates that Model-3 is the easiest to learn with a neural 
network. The reason is that the optimization process of Model-
3 without QoS constraint can be readily learned. In summary, 
this training process verified the superior performance of the 
proposed Model-3 over Model-1for training an FNN model. 

Besides training, the standard procedure of FNN also 
includes a test stage. We conducted test experiments with 
different QoS constraints range from 1 dB to 40 dB with 1 dB 
interval. Each test set contains 5,000 samples. Under the QoS 
constraints, Fmincon generated three test datasets from three 
models, i.e., D1, D2, and D3 as ground truth. The final 
performance is measured and reported with respect to the 
WSR in eq. (2). The results of FNN are compared with 
random power generation method (RndP), as well as max 
power generation method (MaxP).  

TABLE III.  COMPARISION OF SUM-RATE ACCURACY ON THREE DATASETS 

 QoS 1dB 9dB 17dB 25dB 33dB 40dB 
Fmincon 1.00 1.00 1.00 1.00 1.00 1.00

D1 FNN_m1 0.98 0.98 0.98 0.99 0.99 0.99 
FNN_m2 0.97 0.98 0.98 0.98 0.98 0.98 
FNN_m3 0.97 0.97 0.98 0.98 0.98 0.98 
RndP 0.93 0.94 0.95 0.95 0.95 0.95 
MaxP 0.91 0.92 0.92 0.92 0.93 0.93 

D2 FNN_m1 1.01 1.00 1.00 1.00 1.00 1.00 
FNN_m2 1.00 1.00 1.00 1.00 1.00 1.00 
FNN_m3 1.00 0.99 0.99 0.99 0.99 1.00 
RndP 0.96 0.96 0.96 0.96 0.97 0.97 
MaxP 0.93 0.93 0.94 0.94 0.94 0.94 

D3 FNN_m1 1.01 1.00 1.00 1.00 1.00 1.00 
FNN_m2 1.00 1.00 1.00 1.00 1.00 1.00 
FNN_m3 1.00 0.99 0.99 0.99 0.99 1.00 
RndP 0.96 0.96 0.96 0.96 0.97 0.97 
MaxP 0.93 0.93 0.94 0.94 0.94 0.94 

Red, green, blue indicate the top 1, top 2, and top 3 best sum-rate 
accuracy under each test dataset. 

 
The comparison with respect to sum-rate value of 

Fmincon, trained FNNs, random power, and max power with 
three test datasets are shown in Table III. As seen, the pre-
trained FNNs achieve much better sum rate accuracy than the 
RndP and MaxP methods. With different QoS constraints and 
different test datasets, FNN_m1 gets the highest sum-rate 
accuracy. When the datasets are generated with Model-2 and 
Model-3 by Fmincon, FNN_m1 gets the better performance 
than Fmincon. This behavior indicates that Model-1 gains the 
robust performance for FNN optimization with respect to the 
sum rate accuracy. All three pre-trained FNNs achieved above 
98% approximation performance. However, FNN_m1 gains 
better sum rate accuracy than the other two pre-trained FNNs 
through all test datasets. Note that in the training process only 
small part of the QoS constraints values are used to generate 
training samples. Therefore, the pre-trained FNNs have 
generation performance on both lower (QoS=1 dB) constraints 
and higher QoS (QoS=33 dB, 40 dB) constraints. 
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It should be mentioned that the trained FNN needs to not 
only learn to optimal the power values, but also needs to 
satisfy the QoS constraint. The comparisons with respect to 
QoS satisfaction rate (QoS-SRate), with FNN, random power, 
and max power averaged through three test datasets are shown 
in Table IV. As observed, with the post-processing step, all 
the trained FNNs achieve above 99% QoS-SRate, much better 
than the RndP and MaxP methods, especially with larger QoS 
constraints. This verifies the effectiveness of the post-
processing in improving the QoS-SRate. In addition, the post-
processing is independent from the sum-rate optimization 
process. Therefore, it is able to sustain high QoS-SRate with 
large QoS constraints, such as QoS equals to 40 dB. 

TABLE IV.  COMPARISION OF QOS-SRATE 

QoS 1dB 9dB 17dB 25dB 33dB 40dB 
Fmincon  1.00 1.00 1.00 1.00 1.00 1.00 

RndP 0.83 0.50 0.42 0.37 0.36 0.33
MaxP 0.95 0.74 0.70 0.68 0.68 0.66 

FNN_m1 1.00 1.00 1.00 1.00 1.00 1.00 
FNN_m2 1.00 1.00 1.00 1.00 1.00 1.00 
FNN_m3 1.00 1.00 1.00 1.00 1.00 1.00

C. Comparison of Models under Computational Costs 

The overall computational time of different models and 
FNNs are measured on the same CPU platform, as illustrated 
in Table V. The computational times of Model-1, Model-2, 
and Model-3 were measured using Fmincon optimization 
procedure.  

TABLE V.  COMPARISION OF OVERALL COMPUTATIONAL TIME (S) 

 QoS 1dB 9dB 17dB 25dB 33dB 40dB 
Fmincon Model-1 0.17 0.15 0.14 0.13 0.13 0.21

Model-2 0.06 0.06 0.06 0.06 0.06 0.10
Model-3 0.05 0.05 0.05 0.04 0.04 0.07

FNN FNN_m1 0.01 0.01 0.01 0.01 0.01 0.01
FNN_m2 0.01 0.01 0.01 0.01 0.01 0.01
FNN_m3 0.01 0.01 0.01 0.01 0.01 0.01

 

As shown in Table V, Model-3 achieves the lowest 
computational cost compared to Model-1 and Model-2. This 
verifies the validity of the proposed model in generating 
training samples. However, the computational costs of Model-
3 are still four to five times higher than the FNN-based 
optimization process. In addition, the computational time of 
FNN remains unchanged under different QoS constraints. 
These results verify the robustness and effectiveness of FNN 
in computational costs. It should be mentioned that the 
proposed post-processing took about 0.1E-4s on average. It 
added little computational costs on the overall FNN 
framework. 

VI. CONCLUSION 
 Resource optimization for small-cell wireless networks is 

more complicated than the conventional networks due to their 
ad hoc nature. The solution is also needed quickly due to the 
highly dynamic yet random temporal and spatial variations. In 
this work, we focus on a D2D network and apply the ML 

method to solve the power optimization problem. It is shown 
that the ML method has achieved several benchmarks in terms 
of the training process, sum-rate accuracy, QoS-SRate, 
computational efficiency, etc. under different mathematical 
optimization models. It is expected the demonstrated insights 
will inspire further interests in applied ML discipline. 
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