
Received: 00 Month 0000 Revised: 00 Month 0000 Accepted: 00 Month 0000

DOI: xxx/xxxx

RESEARCH ARTICLE

EdgePlace: Availability-aware Placement For Chained Mobile
Edge Applications

He Zhu* | Changcheng Huang

1Department of Systems and Computer
Engineering, Carleton University, ON,
Canada

Correspondence
*He Zhu, Email: hzhu@sce.carleton.ca

Present Address
Department of Systems and Computer
Engineering, Carleton University

Summary

Mobile edge computing (MEC) literally pushes cloud computing from remote data-
centers to the life radius of end users. By leveraging the widely adopted ETSI network
function virtualization (NFV) architecture, MEC provisions elastic and resilient
mobile edge applications with proximity. Typical MEC virtualization infrastructure
allows configurable placement policy to deploy mobile edge applications as virtual
machines (VMs): affinity can be used to put VMs on the same host for inter-VM net-
working performance, while anti-affinity is to separate VMs for high availability. In
this paper, we propose a novel model to track the availability and cost impact from
placement policy changes of the mobile edge applications. We formulate our model
as a stochastic programming problem. To minimize complexity challenge, we also
propose heuristic algorithm called EdgePlace. With our model, the unit resource cost
increases when there are less resources left on a host. Applying affinity would take up
more resources of the host but saves network bandwidth cost because of co-location.
When enforcing anti-affinity, experimental results show increases of both availabil-
ity and inter-host network bandwidth cost. For applications with different resource
requirements, our model is able to find their sweet points with the consideration of
both resource cost and application availability, which is vital in a less robust MEC
environment.

KEYWORDS:
Mobile Edge Computing, 5G, Placement Policy, Stochastic Optimization, Cloud Computing

1 INTRODUCTION

Mobile edge computing (MEC) is taking Network Function Virtualization (NFV) to the end users closer than ever1,2,3. Instances
of edge computing, including regional datacenters4, cloudlets5, and fog nodes6, deliver highly-responsive cloud services at
the network edge. As key technologies towards 5G, MEC architecture proposed by ETSI3 leverages existing NFV frameworks
widely adopted by carriers and vendors7,8. With the focus on IoT devices, OpenFog9 is another MEC framework which targets
extending elements of compute, networking and storage across the cloud through to the edge of the network. Elastic mobile
edge applications, including network services, are deployed close to the user equipment (UE), which is any device used directly
by an end-user for communication, with low latency. Both UE application providers and telecommunication service providers
(TSPs) can take advantage of MEC to reduce cost and to adjust services with agility based on fast-changing user demands.



2 He Zhu ET AL. EdgeChain: Trustless Multi-vendor Edge Application Placement

FIGURE 1 A mobile edge application deployment with host placement rules. There are five VMs deployed in three
groups with each group placed on a separate host. A minimum of three VMs are required for the application. The
placement will ensure the application is in service if one host is down.

A mobile edge application consists of one or more collaborating virtual machines (VMs). It is of paramount importance to
maintain the high availability of mobile edge applications. Compared to centralized datacenters used by public cloud, MEC
hosts are heterogeneous with varying computing, storage and networking capabilities10. Smaller scale private cloud servers can
be deployed near their designated groups of users as MEC hosts, the characteristics of which lead to the following indications:

(i) A singleMEC server deployment is less powerful compared to the highly-available, centralized cloud as it serves a smaller
group of users within the base station’s coverage. It can be a micro datacenter which is unlikely to merit its own security
guard or have the same level of redundancy as a larger facility11.

(ii) The offloading nature of MEC brings higher system complexity that can jeopardize the availability12.

(iii) Service function chaining (SFC) is possible on MEC servers, as videos, augmented reality data, location-based services,
and other computational-intensive tasks can take a chain of services to process.

These facts conclude that the hosts used in MEC are less reliable with lower availability. When mobile edge applications run in
MEC servers, they must be protected from service outage due to host failure.
To maximize the availability while maintaining costs and latencies at acceptable levels, placement rules often come into play

to tune the performance and security of a mobile edge application13. In practice, placement rules mainly refer to the affinity
and anti-affinity rule14. A group of VMs with the affinity rule applied must be deployed on the same host. On the contrary, the
anti-affinity rule to a group of VMs ensures that each VM in the group is deployed on a different host.
The affinity rule helps reduce communication costs between VMs serving the same mobile edge application: VMs on the

same host connect to each other using virtual networks private to the host and require no physical networking infrastructure.
Same-host network traffic essentially takes up computational resources of the host and has better performance than physical
networks. This becomes handy especially when frequent inter-VM communications are needed. An obvious down side of the
affinity rule is putting all eggs in one basket. If the host is down, the entire mobile edge application would be out of service.
Resource contention is another drawback due to oversubscription, which is typically configured for maximizing host resource
utilization15. Too many resource-thirsty VMs packed together would overload their host.
In comparison, anti-affinity rules are ideal for High Availability (HA). If multiple VMs of the same type are deployed on

different hosts, having one host down would not take all instances out of service. Therefore, the mobile edge application can



He Zhu ET AL. EdgeChain: Trustless Multi-vendor Edge Application Placement 3

still be functional. Fig. 1 demonstrates an example of a mobile edge application deployment across multiple hosts to increase
availability. On the other hand, enforcing the anti-affinity rule for resource-intensive VMs can reduce chances of the hosts being
overloaded due to oversubscription. As a trade-off, the mobile edge application using anti-affinity rule would lose the benefits
of low communication costs and higher confidentiality brought by co-location.

FIGURE 2 An attempt to migrate a service chain consisting of 3 VMs and two links using L2 switching. If Host-2 is
down, the service chain has to be migrated to three hosts with the same topology. Host-4, Host-5, and Host-6 have enough
resources to have the service chain deployed. However, the topology is not identical. Therefore, the attempt to migrate
the service chain will not succeed.

Besides hosts availability, Service Function Chaining (SFC)16 is commonly adopted to formulate a network function with
complete features to provide end-to-end service. Similarly, SFC can be required for amobile edge service provisioned bymultiple
chained functions. Different functions, i.e., VMs deployed on hosts, must be chained together to process a stream of requests.
Therefore, network topology and its availability can become the primary bottleneck of the mobile edge service. When a link
is down, functions connected by that link will need to migrate to recover from the link outage. For instance, when the SFC
is formulated by L2 switching, the open vSwitch (OVS) will be responsible for switching traffic among the functions, which
means all applications can only be deployed on the same host. The outage of the virtual switch would lead to the migration of
all functions to a different host. Therefore, it is more difficult to migrate a mobile edge application considering SFC. Fig. 2
shows an example of attempt to migrate a service chain due to Host 2’s outage. Host 4, 5 and 6 are almost a valid combination
to host the service, except there is no link between Host 5 and 6. As a result, the migration attempt would fail.

FIGURE 3 Inefficient partitioning of VMs for a mobile edge application can cause unnecessary inter-host traffic. In (a),
SFC traffic flow would travel between the two hosts 4 times, while it would travel only once in (b).

Enforcing SFC can also cause massive increase of latency if the placement strategy is not aware of the chaining policy. As
demonstrated in Fig. 3 (a), inefficient partitions of VMs with SFC applied can cause traffic going back and forth among hosts,
resulting in excessive latency in comparison with Fig. 3 (b).
Considering placement constraints of host availability, SFC, and the limited resources at the mobile edge, it can be foreseen

that when mobile edge hosts are unavailable, mobile edge application VMs might not be able to continue service if they are kept



4 He Zhu ET AL. EdgeChain: Trustless Multi-vendor Edge Application Placement

TABLE 1 Notations Used in Problem Formulation

Notation Description
V , NV , v,ℍ, NH , ℎ, c V is the set ofNV VMs provisioning a VNF, each VMdenoted by v.ℍ is the set ofNH hosts available

for VNF deployment, each host denoted by ℎ. c stands for the remote cloud location.
eij , aij eij is the network link between the two hosts ℎi and ℎj . aij is the maximum number of virtual links

possible on eij .
xvℎ, xvc If v is deployed on ℎ, then xvℎ = 1. Otherwise, xvℎ = 0. If v is deployed on the cloud, then xvc = 1.

Otherwise, xvc = 0.
Nm Minimum number of active VMs required by the VNF.
PV , PH , PE(eij) PV is the probability of a VM working without internal failure. PH is the probability of a host not

failing. PE(eij) is the probability that eij is up and available
v̂ℎ, v̂c Total number of VMs assigned to host ℎ and the cloud c.
Aℎ, paℎ Aℎ is the random variable of the number of VMs available on ℎ. paℎ is the probability there are aℎ

VMs available on ℎ.
pā, pE(ā), py pā is the probability there are (a1, a2, ..., aH )VMs on hosts (ℎ1, ℎ2, ..., NH ), given ā = (a1, a2, ..., aH ).

pE(ā) is the probability all hosts with one or more VMs deployed are connected to each other. py is
the probability at least y VMs available in total.

B(vℎi , vℎj ) Total bandwidth demand from vℎi to vℎj .
B(eij), RB(eij) Total and remaining bandwidth of link eij .
Cℎ,Mℎ, Bc Cℎ andMℎ are the total capacities of vCPU and memory of host ℎ.Bc is the total bandwidth between

the mobile edge and the cloud.
C(v),M(v) Number of vCPUs and amount of memory required to deploy v.
Cv,Mv Number of vCPUs and amount of memory required to complete v’s own tasks, excluding resource

consumed to coordinate with other VMs.
C , M Proportional ratio between the number of vCPUs/amount of memory required to coordinate with

other VMs and the number of VMsto communicate.
�C , �M Conversion ratio from the intra-host unit network bandwidth usage to the unit CPU/ memory usage.
RC (ℎ∕c), RM (ℎ∕c) Remaining number of vCPUs and remaining amount of memory on host ℎ/cloud.
SC (ℎ∕c), SM (ℎ∕c) Unit cost of consuming vCPUs and memory resources of ℎ/cloud.

at the edge. To maintain the desired availability, the more reliable, centralized cloud can come to the picture to coordinate with
the edge.
With the host placement rules and the link availability requirements, in this paper, our interest is in finding adaptive place-

ment strategies for different types of mobile edge applications to achieve lower costs, while still satisfying the availability and
confidentiality requirements. Compared to existing work, our contributions include the following:

(i) We address the application availability concerns even when some mobile edge hosts are down. We believe that hosts tend
to be less reliable at the network edge and availability issues of MEC applications need more attention.

(ii) We consider the link health between hosts to support SFC. Individual VMs will be migrated when one or more links are
down to maintain the service of the SFC-enabled mobile edge application.

(iii) A cost model is built considering the factors of inter-host traffic and resource over-committing, to balance the load without
causing explosive traffic between hosts.

(iv) We formulate a stochastic programming problem to minimize the cost based on our cost model, while maintaining the
availability requirements.

(v) A heuristic algorithm, namely EdgePlace, is developed to return suboptimal results as the problem scales. The cost
model and EdgePlace placement algorithm can fit all industrial standards to address the availability concerns in MEC
environments. Numerical results show the effectiveness of EdgePlace.



He Zhu ET AL. EdgeChain: Trustless Multi-vendor Edge Application Placement 5

We divide the contents into the three following sections. Section 2 formulates the problem. Then the experimental results are
shown in Section 3. The related work is illustrated in Section 4. Section 5 concludes the paper.

2 PROBLEM FORMULATION

For the ease of reference, the notations used when we formulate the problem are listed in Table 1 . Suppose a mobile edge
application has a set of elastic group of VMs, denoted by V , to be deployed on a MEC virtualization infrastructure (MECVI)
with a set of hostsℍ. VMs can be deployed on any of the hosts available from the MECVI, or on the remote cloud, denoted by c.
Assume that there beNV VMs used by the mobile edge application, with each VM denoted by v, andNH hosts in the MECVI,
with each host denoted by ℎ. Different hosts are connected to each other by network links. We denote the network link between
Hosts ℎi and ℎj as eij .
Define an assigning function xvℎ, whose value is 1 if VM v is assigned to Host ℎ, 0 otherwise. For the cloud, a similar

assigning function xvc is defined to be 1 if v is deployed on c and 0 if not.

xvℎ =

{

1, v is deployed on ℎ;
0, otherwise.

xvc =

{

1, v is deployed on the cloud;
0, otherwise.

(1)

2.1 Availability of Elastic Mobile Edge Applications
Let the minimum number of VMs required by the mobile edge application be denoted byNm. Similar to virtual network function
(VNF) resource management in service chaining17, if the number of available VMs is at least Nm and they are connected
according to the designed topology, the mobile edge application is then considered in service. Otherwise, it is deemed down as
it would not satisfy SLA requirements for the volume of requests.
An intuitive way to increase the availability of the mobile edge application is VM redundancy. In production environments, for

example, it is quite common to keep a certain number of VMs of the same type running with the configuration of Keepalived18,
to maintain the service availability or to balance the load. Thanks to the elasticity of the mobile edge application, auto-scaling
is enabled in form of deploying extra VMs, so that even if some VMs are down, there are still more than Nm VMs in service.
There must beNV ≥ Nm ≥ 0. On the other hand, it is not as easy to increase link redundancy: substrate network links between
hosts are pre-created and there isn’t always a match for a whole application with SFC.
To keep a mobile edge application up, the availability of both the VMs and the links is required. Consider the failure points

of these two factors, there are three situations in our discussion that can lead to VM service outage:

⋆ Application internal failure. If the software installed crashes or hangs, the service provided by the VM would be unavail-
able. Internal failure on one VM is assumed to be independent from those on other VMs. Denote the probability that a
VM is working without internal failure as PV .

⋆ Host failure. If one host is down, all VMs deployed on it would be out of service. Denote the probability that a host will
not fail as PH .

⋆ Link failure. A link may experience technical issues, either due to a software bug, or substrate network outage. If a link
used by a VNF is down, it may affect the availability of the VNF.

Define v̂ℎ as the total number of VMs assigned to host ℎ, and v̂c as the number of VMs assigned to the cloud. Then we have

v̂ℎ =
∑

v
xvℎ, v̂c =

∑

v
xvc . (2)

Let Aℎ be the random variable denoting the number of VMs to be available on a host ℎ. Because different VMs on the same
host fail independently due to internal failure, by binomial distribution, we have

paℎ ≜ Pr
{

Aℎ = aℎ
}

=
(

v̂ℎ
aℎ

)

P aℎ
V (1 − PV )v̂ℎ−aℎPH . (3)



6 He Zhu ET AL. EdgeChain: Trustless Multi-vendor Edge Application Placement

By assumption, different hosts also fail independently. We have

pā ≜ Pr
{

A1 = a1, A2 = a2, ..., AH = aH
}

=
∏

ℎ
paℎ . (4)

The additional condition for all the VMs to be available to the mobile edge application is to ensure that the links among these
VMs are all available, too. Define pE(ā) as the probability that all hosts with one or more VMs deployed are connected to each
other. Also, define PE(eij) as the probability that eij is up and available. We have

pE(ā) ≜
∏

aℎi ,aℎj>0,aℎi≠aℎj

PE(eij). (5)

Define py as the probability that there are at least y VMs available and â =
∑

ℎ aℎ. Meanwhile, all hosts with VMs deployed
must be able to communicate to each other. We have

py ≜ Pr

{

∑

ℎ
Aℎ ≥ y − v̂c

}

pE(ā)

=
NV
∑

ā,â=y−v̂c

pā
∏

aℎi ,aℎj>0,aℎi≠aℎj

PE(eij)

≥ 1 − �,

(6)

where ā = (a1, a2, ..., aH ) and � is a small positive number denoting the maximum failure probability allowed.

2.2 Inter-host Link Availability and Link Importance Factor
Inter-host link availability is a fundamental part to ensure the availability of the mobile edge application. An event of a key inter-
host link outage is catastrophic: even if all individual VMs are running, the traffic would not be able to flow through between
one or more pairs of VMs and the SFC would not be functional. For each inter-host link eij , there can be one or more inter-VM
links sharing its bandwidth. Link outages require migrating the mobile edge application VMs if the network links cannot be
fixed in time. Therefore, link availability has significant influence on possible VM migrations and costs incurred.
The link importance factor of an inter-host link eij , denoted by IL(eij), describes how important an inter-host link eij is for

the application availability. We determine the importance of each host link by the two parameters below.
The first parameter is the indicator of a link between two individual VMs, denoted by L(vℎi , vℎj ), such that

L(vℎi , vℎj ) =

{

1, there is traffic between vℎi and vℎj ;
0, otherwise.

(7)

The more inter-VM links an inter-host link carries, the more vital it becomes. The reason behind this ranking parameter is the
potential consequence of migration: failure of an inter-host link used by many VMs would lead to massive migration of all VMs
connected by that inter-host link, which would be more disruptive to the service. When placing VMs, more reliable host links
should be picked if it will be intensively shared.
The other parameter is BV (eij), which is the total bandwidth consumed by traffic between VMs on the two hosts. It is selected

because larger bandwidth usages would cause challenges at the time of migration: it can be hard to find another link with enough
capacity.

BV (eij) =
⎡

⎢

⎢

⎣

∑

vℎi ,vℎj ,ℎi≠ℎj

B(vℎi , vℎj )
⎤

⎥

⎥

⎦

. (8)

Combining the two parameters, we define the link importance factor of a host link eij , denoted by IL(eij), as the number of
virtual links between two hosts times the traffic flowing through the link:

IL(eij) =

[

∑

vℎi ,vℎj ,ℎi≠ℎj
L(vℎi , vℎj )

]

aij

BV (eij)
B(eij)

, (9)

where aij is the maximum number of virtual links possible on eij . Therefore, IL(eij) ∈ [0, 1]. The value of IL(eij) will rise to
mark up a link’s importance given it is either occupied by more pairs of VMs, or there is more traffic assigned to eij , or both.



He Zhu ET AL. EdgeChain: Trustless Multi-vendor Edge Application Placement 7

2.3 Inter-host Network Bandwidth Costs
High availability comes at a cost: extra resources are used for hosting VMs, and extra traffic occurs between VMs. The traffic
between VMs on the same host will be processed by the CPU of the host without going through the actual physical network. In
this section, we temporarily ignore the cost of intra-host traffic. It will be discussed in the next section as part of the CPU cost.
Let vℎ represent a VM deployed on Host ℎ, i.e., xvℎℎ = 1. Consider a VM vℎi on Host ℎi sends traffic to another VM vℎj

on Host ℎj . We model the bandwidth demand for every two VMs in the mobile edge application, rather than simply viewing
VMs on the same host as a cluster. This is due to SFC: even if two VMs are on the same host, there can be no traffic between
them as they may not be next to each other in the chain. Let B(vℎi , vℎj ) be the total bandwidth demand from vℎi to vℎj . If there
is too much inter-host traffic, the networks would become congested and fail the mobile edge application. The required traffic
throughput between two hosts must not exceed the designed bandwidth for the inter-host network. We define the total bandwidth
of eij by B(eij) and its residue bandwidth by RB(eij). We calculate the residue bandwidth as following:

RB(eij) = B(eij) − BV (ℎi, ℎj). (10)

LetwB(eij) stand for the unit cost of consuming the bandwidth of eij . We modelwB(eij) to be inversely proportional to RB(eij)
with the constant of proportionalityWB . Such model will favor choosing those links among hosts with more residual bandwidths
and therefore will achieve balancing bandwidth consumption across the links between hosts. This reduces the risk of increasing
delay due to link congestion.
Define the bandwidth cost of eij as SB(eij). Additionally, we model SB(eij) to be inversely proportional to the availability of

eij , which factors in the potential cost to migrate the SFC in event of a link failure: the more likely the link is failing, the higher
price it would cost to use that link. Then we have

SB(eij) =
BV (eij)wB(eij)IL(eij)

PE(eij)

=
BV (eij)WB

RB(eij)

[

∑

vℎi ,vℎj ,ℎi≠ℎj
L(vℎi , vℎj )

]

aijPE(eij)
BV (eij)
B(eij)

=
B2
V (eij)WB

[

∑

vℎi ,vℎj ,ℎi≠ℎj
L(vℎi , vℎj )

]

B(eij)
[

B(eij) − BV (eij)
]

aijPE(eij) + �
,

(11)

where � is a small positive number to avoid dividing by zero.

FIGURE 4 Inter-host network bandwidth consumptions B(vℎ1 , vℎ2) and B(v
′
ℎ1
, vℎ2) take up the bandwidth of e12 and

incur bandwidth costs. Intra-host network bandwidth consumption B(vℎ1 , v
′
ℎ1
) consumes extra vCPU and memory of ℎ1

and incurs vCPU and memory costs.

2.4 CPU and Memory Costs
Consider any two VMs of the same mobile edge application. When they coordinate with each other, they will leave CPU and
memory footprints on the host(s). If they are on two separate hosts ℎi and ℎj , the networking costs are reflected by SB(eij) as



8 He Zhu ET AL. EdgeChain: Trustless Multi-vendor Edge Application Placement

shown in last section. If they are on the same host, no bandwidth cost will incur. However, splitting workloads across VMs on
the same host also consumes resources. Instead of bandwidth, it costs extra host CPU and memory resources by running on
virtual networks. Fig. 4 shows examples of costs from both inter- and intra-host traffic between two VMs.
Define the number of vCPUs required by v as C(v). It can be divided into two parts. One fixed part is to complete its own

tasks, denoted by Cv. The other part is to coordinate with other VMs. Let the number of vCPUs required to coordinate with
other VMs be proportional to the number of VMs to communicate with constant C . We have C(v) = Cv + C (NV − 1).
Let the conversion ratio from the intra-host unit network bandwidth usage to the unit CPU usage denoted by �C . Then define

Cℎ as the total capacity of vCPUs for Host ℎ. The remaining number of vCPUs, RC (ℎ), can be calculated by

RC (ℎ) = Cℎ −
∑

vℎ

C(vℎ) − �C
⎡

⎢

⎢

⎣

∑

vℎ,v′ℎ,vℎ≠v
′
ℎ

B(vℎ, v′ℎ)
⎤

⎥

⎥

⎦

. (12)

Let wC (ℎ) stand for the unit cost of consuming the CPU resource of ℎ. We model wC (ℎ) to be inversely proportional to the
remaining vCPUs with constant of proportionalityWC . Define the CPU cost of ℎ as SC (ℎ). We have

SC (ℎ) =
∑

vℎ

C(vℎ)wC (ℎ) =
∑

vℎ

C(vℎ)WC

RC (ℎ) + �
, (13)

where � is a small positive number to avoid dividing by zero.
Similar to the CPU cost, define the amount of memory needed by v as M(v). It can be divided into two parts. One fixed

part is to complete its own tasks, denoted byMv. The other part is to coordinate with other VMs. Let the amount of memory
required to coordinate with other VMs be proportional to the number of VMs to communicate with constant M . We have
M(v) =Mv + M (NV − 1).
Let the conversion ratio from the intra-host unit network bandwidth usage to the unit memory usage denoted by �M . Then

defineMℎ as the total amount of Memory for Host ℎ. The remaining memory, RM (ℎ), can be calculated by

RM (ℎ) =Mℎ −
∑

vℎ

M(vℎ) − �M
⎡

⎢

⎢

⎣

∑

vℎ,v′ℎ,vℎ≠v
′
ℎ

B(vℎ, v′ℎ)
⎤

⎥

⎥

⎦

. (14)

LetwM (ℎ) stand for the unit cost of consuming the memory resource of ℎ. We modelwM (ℎ) to be inversely proportional to the
remaining memory with constant of proportionalityWM . Define the memory cost of ℎ as SM (ℎ). We have

SM (ℎ) =
∑

vℎ

M(v)wM (ℎ) =
∑

vℎ

M(vℎ)WM

RM (ℎ) + �
, (15)

where � is a small positive number to avoid dividing by zero.

2.5 Cloud Costs
For a mobile edge application with SFC where no host and link combination would be able to meet the requirements, the remote
cloud can become an option. For the simplicity of our discussion, we give constant unit costs of CPU, memory, and bandwidth
as wC (c), wM (c) and wB(c).
Define the CPU, memory and bandwidth costs as SC (c), SM (c), and SB(c). The total cost for deploying VMs on the cloud

is denoted by S(c). Compared to VM deployments on hosts on the mobile edge, apparently, deployment VMs on the cloud has
significantly higher bandwidth cost. The total bandwidth from the mobile edge to the cloud is defined by Bc , which will be the
bottleneck of cloud-based VM deployments if more VMs are placed on the cloud. The total cloud cost, denoted by S(c), is then

S(c) = SC (c) + SM (c) + SB(c)

=
∑

vc

C(v)wC (c) +M(v)wM (c) + B(v)wB(c). (16)

2.6 Stochastic Programming Formulation
Stochastic programming is an approach for modeling optimization problems that involve uncertainty. It provides a solution
by eliminating uncertainty and characterizing it using probability distributions. There are in general two types of stochastic



He Zhu ET AL. EdgeChain: Trustless Multi-vendor Edge Application Placement 9

programming: probabilistic constraints and recourse problems. In probabilistic constraints, the optimization problems are deter-
ministic with some constraints containing probability distribution functions. In recourse problems, the objectives are to optimize
the results in average, which typically has two stages, where we make some decisions in the first stage and we make further deci-
sions in the second stage to avoid the constraints of the problem becoming infeasible after seeing a realization of the stochastic
elements. In this dissertation, our stochastic programming problems fall in the first type in the sense that some of constraints
contain probability functions.
The problem is formulated as a stochastic programming optimization as PV and PH used for minimum availability con-

straints are probability density functions of the random variables. Therefore, the stochastic programming we present is of type
probabilistic constraints19,20.
Regarding its objective, the owner of the mobile edge application aims to minimize the cost when operating MEC services.

As discussed in Sections 2.3 and 2.4, we provide three sets of costs, which are SB(eij), SC (ℎ) and SM (ℎ). The optimization is
to minimize three types of costs over all hosts and their links.

Minimize S(c) +
∑

ℎ
SC (ℎ) +

∑

ℎ
SM (ℎ) +

∑

eij ,i≠j
SB(eij)

=
∑

vc

C(v)wC (c) +M(v)wM (c) + B(v)wB(c)

+
∑

vℎ

[

Cvℎ + C (NV − 1)
]

WC

RC (ℎ) + �

+
∑

vℎ

[

Mvℎ + M (NV − 1)
]

WM

RM (ℎ) + �

+
∑

eij ,i≠j

B2
V (eij)WB

[

∑

vℎi ,vℎj ,ℎi≠ℎj
L(vℎi , vℎj )

]

B(eij)
[

B(eij) − BV (eij)
]

aij + �

(17)

w.r.t. xvℎ
s.t. B(eij) ≥

∑

vℎi ,vℎj ,ℎi≠ℎj

B(vℎi , vℎj )
(18)

∑

vc ,vℎ

B(vc , vℎ) ≤ Bc (19)

Cℎ ≥
∑

vℎ

[

Cvℎ + C (NV − 1)
]

+ �C
∑

vℎ,v′ℎ,vℎ≠v
′
ℎ

B(vℎ, v′ℎ)
(20)

Mℎ ≥
∑

vℎ

[

Mvℎ + M (NV − 1)
]

+ �M
∑

vℎ,v′ℎ,vℎ≠v
′
ℎ

B(vℎ, v′ℎ)
(21)

NV
∑

ā,â=y
pā ≥ 1 − � (22)

Remarks
⋆ Function (17) is the objective function. It targets to minimize the total cost. The host placement policy tends to find a

sweet point minimizing the cost by using less hosts, while not exhausting them.

⋆ Constraint (18) is the link bandwidth capacity bounds between each two hosts. Traffic transmitted between any two hosts
ℎi and ℎj must not exceed the corresponding bandwidth capacity B(eij).



10 He Zhu ET AL. EdgeChain: Trustless Multi-vendor Edge Application Placement

⋆ Constraint (19) is the link bandwidth capacity bound from the mobile edge to the remote cloud. The total bandwidth
consumption between the VMs at the edge and those on the cloud cannot exceed Bc , which is the bandwidth between the
edge and the cloud.

⋆ Constraints (20) and (21) are the CPU and memory capacity bounds for each host. The CPU and memory used by VMs
coordinating with each other and by intra-host communications must not exceed Cℎ andMℎ.

⋆ Constraint (22) sets the bottom line of the number of host available for keeping the mobile edge application available,
i.e., the probability of at least Nm VMs in service must be greater than or equal to 1 − �. This constraint would lead to
anti-affinity rules enforced among at least part of the VMs to ensure at least the required number of hosts are used.

Algorithm 1 EdgePlace VM Sorting Algorithm to Determine the Ordering for Future Placement
1: function SORTVMLIST(vm_list)
2: sort vm_list by their sequence in the service function chain ascending
3: for all VMs with the same sequence number do
4: sort VMs by bandwidth requirements descending
5: end for
6: for all VM in vm_list do
7: if there are multiple VMs with the same number of connected VMs then
8: sort these VMs by bandwidth requirements descending
9: if there are multiple VMs with the same bandwidth requirements then
10: sort these VMs by their neighbors’ total number of connected VMs
11: end if
12: end if
13: end for
14: return sorted vm_list
15: end function

2.7 Scalability and the EdgePlace Algorithm
The formulation presented is one of the stochastic programming problems, where PH and PV are used in Constraint (22). Com-
bining Equation (3), we found that Constraint (22) will contain exponential functions depending on the value of aℎ. Therefore,
the stochastic programming presented above is intractable. As the problem scales, it may not be computationally feasible to
solve it. To apply our model to real-world scenarios, we develop a heuristic algorithm called EdgePlace to achieve suboptimal
results by applying a hybrid strategy of best-fit and first-fit decreasing algorithm.

2.7.1 Processing Order of VMs
The EdgePlace algorithm will first process VMs with the most links to other VMs. These VMs tend to cause more inter-host
traffic if migrated. Therefore, the algorithm tries to put VMs linked to each other on the same host. Even if the host is down,
these VMs can be migrated together to another host without generating extra inter-host traffic. EdgePlace follows the ordering
to sort VM as below, also shown in Algorithm 1.

⋆ Sort all VMs by the number of connected VMs (neighbors) descending.

⋆ Sort VMs with the same number of connected VMs by their bandwidth requirement descending.

⋆ Sort VMs with the same bandwidth requirement by the sum of connected VMs of their neighbors.



He Zhu ET AL. EdgeChain: Trustless Multi-vendor Edge Application Placement 11

2.7.2 Affinity first with service chain consideration
As Algorithm 2 shows, when deploying a mobile edge application VM, all hosts are sorted based on their remaining resources
as the first step. When the availability requirement is met, EdgePlace tries affinity first: the host with the most existing VMs
deployed is attempted first to minimize inter-host traffic of the mobile edge application. If all constraints are satisfied, the host
will be chosen to deploy the VM.
When a mobile edge application service is chained, traffic streams flowing through VMs will be directional. Unlike clustered

VMs that can exchange data with each other, it doesn’t save inter-host bandwidth if we put together two non-adjacent VMs in
a service chain. In fact, it may cause traffic to go back and forth and worsen the situation. To reduce inter-host traffic by SFC,
EdgePlace takes into consideration the sequence of VMs, and try to put adjacent VMs on the same host when the resource level
permits. When moving placement decisions to another host, the algorithm will not consider previously-chosen hosts anymore,
to avoid repeating traffic between hosts.

FIGURE 5 A service graph consisting of 3 service chains.

Fig. 5 is an example of 3 service chains established on 8 VMs. Based on our algorithm, we fist determine the sequence of
the VMs in the service chains. Note that if a VM is shared by more than one service chain, we take the smallest sequence. For
instance, while v5 is the third VM for Service Chain 3, it is also the second VM for Service Chain 2. Therefore, its sequence is
2. Based on the sequence of each VM, their placement will be determined by the algorithm accordingly. When the sequence of
multiple VMs are the same, the priority of placement decision for those VMs will then be sorted by the bandwidth consumption.

2.7.3 Anti-affinity by bandwidth cost
Otherwise, EdgePlace will try the host with the lowest link bandwidth costs given the VM to be deployed would cause inter-host
traffic. At each step to calculate the potential inter-host bandwidth cost, the algorithm will only calculate the added bandwidth
cost to VMs already deployed. The VMs yet to be deployed will not be considered until the algorithm reaches iterations to
process them. The step will be repeated until it has tried all hosts or it has found the first valid host to deploy the VM. As one of
the constraints, the availability change of the mobile edge application for the placement selection is tracked. To deploy all VMs,
the worst time complexity of the algorithm is O(N2

V logNH ), where sorting the hosts takes O(logNH ) and iterating all VMs
on all hosts takes O(N2

V ).

2.7.4 Practical use of EdgePlace Algorithm
As we have clarified the processing order of the VM, it will be quite feasible to run EdgePlace Algorithm on a MEC base station
for host selection when the availability of the mobile edge applications needs to be guaranteed. A practical example would be
an OpenStack controller located on a MEC base station with a cluster of computing hosts. The EdgePlace Algorithm can be
implemented as a filter to be called by Nova scheduler. Whenever a request arrives to deploy a mobile edge application, our
algorithm can be executed to find the first host that meets both the resource requirements and the availability constraint.



12 He Zhu ET AL. EdgeChain: Trustless Multi-vendor Edge Application Placement

Algorithm 2 EdgePlace Host Selection Algorithm
1: function EDGEPLACE(v,H)
2: host_list← empty
3: Add ℎ1 with most deployed VMs to host_list
4: Sort other host by remaining bandwidth to all deployed VMs descending and add to host_list
5: for all ℎ ∈ host_list do
6: RC (ℎ) ← Cℎ
7: RM (ℎ) ←Mℎ
8: for all vℎ do
9: RC (ℎ) ← RC (ℎ) − Cvℎ − C (NV − 1)
10: RM (ℎ) ← RM (ℎ) −Mvℎ − M (NV − 1)
11: if vℎ ≠ v then
12: RC (ℎ) ← RC (ℎ) − �CB(v, vℎ)
13: RM (ℎ) ← RM (ℎ) − �MB(v, vℎ)
14: end if
15: end for
16: if RC (ℎ) < 0 or RM (ℎ) < 0 then
17: Skip ℎ and check the next host
18: end if
19: for all vj and ℎ ≠ j do
20: RB(eℎj) ← RB(eℎj) − B(v, vj)
21: if RB(eℎj) < 0 then
22: Skip ℎ and check the next host
23: end if
24: end for
25: Calculate py assuming v on ℎ
26: if py < 1 − � then
27: Skip ℎ and check the next host
28: end if
29: cost← SC (ℎ) + SM (ℎ) + SB(eij)
30: return ℎ
31: end for
32: end function

3 NUMERICAL RESULTS

In this section, we illustrate the numerical results of availability changes with different scenarios of mobile edge application
deployments.

3.1 Assumptions
To clearly demonstrate the focused trends, the following assumptions are made to simplify the modeling of the problem without
losing generality. We first discuss the placement selection of the same mobile edge application with elasticity. This means
variable numbers of VMs can be deployed for the application, but all VMs are of the same type and require the same amount of
resources.

1. The unit costs of the CPU and memory across all hosts are the same. So are costs of network bandwidth across all links
among hosts.

2. One mobile edge application includes the same type of VMs with the same CPU, memory and network bandwidth
requirements.



He Zhu ET AL. EdgeChain: Trustless Multi-vendor Edge Application Placement 13

3. A request from the user will be processed by one VM, while the VM may communicate with other VMs to exchange
information.

3.2 Parameters
With the assumptions above, we choose parameters for our placement model to evaluate the performance and the facts under
different circumstances.

3.2.1 Hardware Requirement Profile
The hardware requirement profile of a mobile edge application describe its resource needs. In this paper, it refers to the number
of vCPUs, amount of memory and bandwidth. We define 10 types of hardware requirement profiles from F1 to F10, each with
its unique requirements for the three resources. Based on typical VNF hardware requirements21,22,23,24, we believe these 10
flavors are valid and can cover the cases for general VNFs. In order to further justify that these flavors are representative, we
pick 3 of them for their potential actual scenarios. The first example is for F2, which has 2 vCPUs, 2048 MB of memory, 2
Gbps bandwidth and 100 ms maximum latency configured. This configuration is good for a financial mobile edge application
that is not too CPU- or memory-intensive but has some network transmission requirements and is strict on networking latency.
Another example can be F6 with 4 vCPUs, 4096 MB of memory, 4 Gbps bandwidth and 1000 ms maximum latency. A typical
example of mobile edge application that fits F6 can be a virtual router like Cisco CSR1000V21 as it requires moderate amount
of resources and can tolerate a certain level of networking latency. The last example is F10 with 8 vCPUs, 8192 MB of memory,
8 Gbps bandwidth and 10000 ms maximum latency. This flavor has the most resource requirements but the lowest networking
latency requirement. A high-throughput data storage application will be a good match for F10 as it needs to write large amount
of data constantly but does not require the storage process to complete immediately. Above all, the 10 flavors we choose below
are believed to cover a wide range of real-world use cases.

TABLE 2 Pre-defined hardware requirement profiles for simulation.

Name Cv Mv Bv Max Latency(ms)
F1 1 vCPU 1024 MB 1 Gbps 1000 ms
F2 2 vCPUs 2048 MB 2 Gbps 100 ms
F3 2 vCPUs 2048 MB 2 Gbps 1000 ms
F4 2 vCPUs 2048 MB 2 Gbps 10000 ms
F5 4 vCPUs 4096 MB 4 Gbps 100 ms
F6 4 vCPUs 4096 MB 4 Gbps 1000 ms
F7 4 vCPUs 4096 MB 4 Gbps 10000 ms
F8 8 vCPUs 8192 MB 8 Gbps 100 ms
F9 8 vCPUs 8192 MB 8 Gbps 1000 ms
F10 8 vCPUs 8192 MB 8 Gbps 10000 ms

We choose certain parameters in our model as constants, while others as variables, shown as Table 3 , where values are
specified for constants, and variables are marked as var. For the constants, it is reasonable to assume that they are fixed for a
specific mobile edge application deployment scenario. For the variables, they can change because scaling and SLA may change
due to the nature of MEC. We will further discuss the variables in different sets of experiments.
Note that for the value of NV , in this paper, we choose values varying from 6 to 20. These values chosen are valid cases

enabled by VNF scaling25.



14 He Zhu ET AL. EdgeChain: Trustless Multi-vendor Edge Application Placement

TABLE 3 Parameters for Availability-aware Host Selection

Parameter Value Parameter Value
Cv 2 vCPUs Mv 2048MB
�C 10% �M 10%
Mℎ 102400MB Cℎ 100 vCPUs
B(v, v′) 20Mb C 10%
M 0.1% B(eij) 10000 Mb
PV 90% PH 90%
Tℎ 5 ms Tc 100 ms
ktℎ 1.1 ktc 1.5
� 0.1 y var
WC var WM var
WB var � var
NV var NH var

4 6 8 10 12 14 16

Number of VMs Deployed

0.75

0.8

0.85

0.9

0.95

1

M
o

b
ile

 E
d

g
e

 A
p

p
lic

a
ti
o

n
 A

v
a

ila
b

lit
y

FIGURE 6 Availability of the mobile edge application with different numbers of VMs deployed on various numbers of
mobile edge hosts.

3.3 Availability Impact from Number of Instances and Hosts
We first discuss the mobile application availability trends with various numbers of instances deployed on certain numbers of
hosts. The discussion assumes constants WC = WM = WB = 5, and y = 3. Also, � is set to be 1 such that no minimum
availability is required. This will help observe the trends of availability changes.
Fig. 6 demonstrates availability changes with the number of instances deployed ranging from 4 to 16, and the number of

hosts from 1 to 5. From the results, we can clearly see that increasing the number of backup VMs can improve the availability
of the mobile edge application. However, there is a ceiling of the availability by only increasing the number of VMs due to host
availability. When NH = 1, that maximum availability cannot exceed 0.9. To meet the minimum availability, there must be
enough hosts to keep the theoretical availability above 1 − �.
Furthermore, Fig. 7 shows the negative impact from y, theminimum number of VMs required by themobile edge application.

With the NV = 10 as a constant, having a larger y would lower the availability of the application. Considering to increase the
number of VMs as well as hosts may be necessary when demand is high.



He Zhu ET AL. EdgeChain: Trustless Multi-vendor Edge Application Placement 15

1 2 3 4 5

Mininum Number of VMs Required

0.9

0.92

0.94

0.96

0.98

1

M
o
b
ile

 E
d
g
e
 A

p
p
lic

a
ti
o
n
 A

v
a
ila

b
lit

y

FIGURE 7 Availability of the mobile edge application with varying minimum number of VMs required and different
numbers of mobile edge hosts. Confidence level is 95%.

0 5 10 15 20 25

Number of VMs Deployed on Remote Cloud

0

50

100

150

200

250

300

350

400

450

500

M
o

b
ile

 E
d

g
e

 A
p

p
lic

a
ti
o

n
 A

v
e

ra
g

e
 L

a
te

n
c
y
 (

m
s
)

FIGURE 8 Average latency of the mobile edge application with different numbers of VMs deployed on remote cloud
and various numbers of hosts.

3.4 Latency
Assume the latency of a link between each two MEC hosts to be Tℎ, while the link between a MEC host and the remote cloud
to be Tc . As more VMs deployed for one mobile edge application, traffic increases among them to keep them in sync and to
coordinate with each other. We set Tℎ = 6ms, and Tc = 200ms. The latencies caused by inter-host traffic and host-cloud traffic
are shown in Fig. 8 . The results have demonstrated an increase of latency as the number of hosts grows for deploying the
mobile edge application. Depending on the definition of the application and its maximum latency allowed, we can determine
the maximum number of VMs offloaded to the cloud under different numbers of mobile edge hosts.



16 He Zhu ET AL. EdgeChain: Trustless Multi-vendor Edge Application Placement

0 2 4 6

Chain Length

0

0.5

1

A
v
a
ila

b
ili

ty

Hardware Profile = F1

0 2 4 6

Chain Length

0

0.5

1

A
v
a
ila

b
ili

ty

Hardware Profile = F4

0 2 4 6

Chain Length

0

0.5

1
A

v
a
ila

b
ili

ty
Hardware Profile = F7

0 5

Chain Length

0

0.5

1

A
v
a
ila

b
ili

ty

Hardware Profile = F10

FIGURE 9 Availability of a mobile edge application consisting of 6 VMs, each with different hardware requirement
profiles (F1, F4, F7, and F10). Each sub figure shows the availability dropping as the length of the service chain increases.
Confidence level is 95%.

3.5 Availability Impact from SFC
The portability of a mobile edge application due to SFC can affect the application availability. We compare the availability
among mobile edge applications with different levels of SFC.We first define a mobile edge application consisting of 6 VMs with
different level of chaining, starting from no chaining, to the first certain number of VMs chained, and to all 6 VMs chained. In
general, SFC will bring negative impact to the availability, because it sets more constraints when placing VMs, making it more
difficult to find valid place for hosting the VMs. Four pre-defined hardware requirement profiles from Table 2 , namely F1, F4,
F7, and F10, are chosen for creating VMs for the target mobile edge application. Fig. 9 shows availability changing trends
under 4 hardware requirement profiles. From the results, we find the availability plunges faster when VMs have higher hardware
requirements. This is due to the increasing challenge to find proper host combinations to deploy the application with SFC.

3.6 Distribution of VMs with Different Bandwidth Costs
The impact of WB , which can be considered as the network bandwidth price index, is evaluated in this section. We set up
NH = 10, NV = 20, y = 2,WC = WM = 1, and � = 0.3%. We choose various values ofWB and the results of VM placements
under each value ofWB on 10 hosts fromH01 toH10, as shown in Fig. 10 . From the results, it can be learned that higher price
of the network bandwidth will cause more concentrated placement of the VMs. When the host networks become congested,
EdgePlace would put VMs on less hosts to limit inter-host traffic, with the trade-off lowering the availability of the mobile edge
application. When the hosts used are reduced to 3 with a 9-9-2 VM distribution, the availability is close to the bottom line
of 99.73%. If WB continues to hike, choosing a 10-9-1 VM distribution would achieve the lowest cost, but would violate the
minimum availability requirement. Therefore, the 9-9-2 VM distribution is the best placement decision whenWB ≥ 45.

4 RELATEDWORK

The telecommunication industry has been shifting focus for years to providing even higher speed and lower latency connections
to UE, with technologies like 5G and MEC. There has been much work done in this area from different perspectives.
Farris et al.26 presented a solution which leveraged proactive service replication for stateless applications in MEC environ-

ment. Compared to classic reactive service migration, their solution significantly reduced the time of service migration between
different cloudlets and to meet the latency requirements.



He Zhu ET AL. EdgeChain: Trustless Multi-vendor Edge Application Placement 17

H01 H02 H03 H04 H05 H06 H07 H08 H09 H10

Hosts

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

N
e

tw
o

rk
 B

a
n

d
w

id
th

 P
ri
c
e

 I
n

d
e

x
 (

W
_

B
) 2

3

3

4

5

5

6

6

2

3

3

4

5

5

6

6

2

2

3

4

4

5

6

6

6

5

4

4

2

2

1

2

2

3

4

4

5

2

2

2

2

3

4

2

2

2

3

2

2

2

2

2

2

2

2

7

8

8

8

9

9

10

7

7

8

8

9

9

9

0

1

2

3

4

5

6

7

8

9

p
y
=99.00%

p
y
=99.73%

FIGURE 10 Placement distribution of 20 VMs across 10 hosts with NH = 10, NV = 20, y = 2,WC = WM = 1, and � =
0.3%. Empty cell means no VM is deployed on the host with a certainWB .

Yaseen et al.27 proposed a model providing a global monitoring capability for tracing moving sensors and detecting selective
forwarding attacks. The model leveraged fog computing infrastructure and software defined systems to secure MWSNs against
multiple types of attacks.
Regarding IoT device security in the MEC context, a methodology was developed by Pacheco et al.28 with anomaly behavior

analysis to detect when a sensor has been compromised and used to provide misinformation.
Fog nodes for smart factories were discussed by de Brito et al.29 to show the advantages of having a programmable Fog

Node supported by an orchestration system. Their research extended a standard-compliant machine-to-machine communica-
tion architecture to support container-based orchestration mechanisms to enable cyber-physical systems to be programmable,
autonomous, and to communicate peer-to-peer.
ReCAP30 was proposed as a distributed CAPTCHA service at the edge of the network to handle server overload caused by

application layer-based DDoS attacks or flash crowd events. The main goal of ReCAP is to filter attack traffic in case of a DDoS
attack event and to provide users with basic information during a flash crowd event.
Another framework called SIMDOM31 was presented for for single instruction multiple data (SIMD) instruction translation

and offloading for mobile devices in cloud and edge environments. The SIMDOM framework reduced the execution overhead
of migrated vectorized multimedia application by using vector-to-vector instruction mappings. The framework mapped and
translated ARM SIMD intrinsic instructions to x86 SIMD intrinsic instructions such that an application programmed for the
mobile platform can be executed on the cloud server without any modification. The offload decision was based on inputs from
the device energy, network, and application profilers.
Orsini et al. developed CloudAware32 as a mobile cloud computing/mobile edge computing middleware that supported auto-

mated context-aware self-adaptation techniques for offloading. The system utilized compositional adaptation and sensor-based
reasoning to allow a flexible adaptation to current as well as future context states that can hardly be foreseen by developers. In
particular, connectivity and execution predictions were used that support the efficiency of offloading decision in MCC as well
as MEC scenarios.
Garcia-Perez et al.33 explored 2 ways of using these new technologies to reduce the latency in Long-Term Evolution (LTE)

networks. The first solution, called Fog Gateway, was based on the interception of the packets in the tunnel at the eNB and their
redirection to local servers running the fog services. This solution is fully compliant with the current LTE architecture and only
requires new components. The second solution, called General Packet Radio Service Tunneling Protocol Gateway (GTP), was
based on splitting the eNB’s functionality to avoid unnecessary GTP encapsulation of the packets geared toward the fog services.
While the models and frameworks presented above focused onMEC and IoT and some discussed offloading and latency, none

of themmodeled the availability of mobile edge applications and attempted to use placement policies to maintain the application
availability. Our research has filled the gap of availability consideration and can be combined with offloading frameworks such
as proactive service replication26 to complement the existing proposed systems.



18 He Zhu ET AL. EdgeChain: Trustless Multi-vendor Edge Application Placement

The ETSI architecture of MEC34 leverages the existing NFV framework35 to achieve dynamic and fast MEC service provi-
sioning. To our best knowledge, there has not been much research on mobile edge application placement. Main references of
related work are still from the NFV world. OpenFog9 is another MEC architecture particularly suited to IoT systems. The Open-
Fog architecture serves a specific subset of business problems that cannot be successfully implemented using "cloud only" based
architectures or relying solely on intelligent edge devices. The goal of the OpenFog architecture is to facilitate deployments
which highlight interoperability, performance, security, scalability, programmability, reliability, availability, serviceability, and
agility. Considering integration to the two standards above, or other architectures for MEC, EdgePlace serves as a generic model
to deploy application on same or different hosts with availability awareness. Therefore, it is not tightly coupled to a single
architecture.
NFV faces new research challenges due to the new features it introduces, such as flexibility of deploying network functions and

similar pricingmodel to cloud computing36. Amongmany other research challenges, mobile edge application placement policies
have been studied with various focuses and is typically modeled as a resource allocation problem. Deployed without consider-
ation of optimal resource allocation, real-world mobile edge application deployments are found inefficient to utilize resources
through instrumentation effort37. The goal of the resource optimization is to find on the best physical resources (servers) to place
network functions. Such problems have been formulated and studied by Basta et al.38.
For the VM placement issue in a cloud data center, a comprehensive study of the VM placement and consolidation techniques

used in cloud was presented by Usmani et al.39. The VM placement problem and various approaches were reviewed. The place-
ment techniques were classified as constraint programming, bin packing, stochastic integer programming and genetic algorithm.
Bellur et al.40 and Khosravi et al.41 focused on VM allocation in data centers as well. With an optimal technique, Bellur et
al.40 aimed to minimize the number of required VMs, with considerations of each VM’s resource limitation. A VM placement
algorithm was proposed41 with the objective to minimize carbon footprint. An NFV traffic steering problem was discussed by
Zhu et al.42, where the limited resources were taken as constraints to determine the lowest cost and to steer traffic accordingly.
In mobile edge application networks, the virtual resources include virtual machines, which execute either virtual routers or

virtual service elements. To address the challenges related to the management and orchestration of virtual resources, Clayman
et al.43 described an architecture based on an orchestrator that enabled automated placement of virtual network and processing
resources across the physical resources of the network. Least used placement, N-at-a-time placement and Least Busy placement
algorithms were presented.
Similarly, VNF-P44 focused on the mobile edge application deployments by presenting a model for resource allocation in

NFV networks, while also considering the difference between service requests and VM requests. It addressed the scenario where
part of the services may be provided by dedicated physical hardware, with the other part using virtualized service instances. A
basic model using linear programing was defined for NFV resource allocation, with the constraints of server capacity and the
number of instances on a node. The objective of the model is to minimize the number of user servers. To add network-awareness
to the model, constraints related to the request flow were added.
Service function chaining (SFC) has been used widely in carrier networks45, in order to allow configuring network services

dynamically without having to change networks at the hardware level. A service graph is used to describe service chains and
traffic is routed according to the graph. Use cases leveraging SFC include network functions for packet inspection, traffic opti-
mization, protocol proxies, and value-added services. Network service headers were used46 to provide data-plane information
for constructing topological-independent services. A software-defined architecture to enable SFC was proposed by Blendin et
al.47 leveraging OpenFlow with discussion of functionalities, challenges, testbeds, and other aspects implementation-wise. A
heuristic resource allocation algorithmwas proposed for VNF chains called CoordVNF48. Substrate nodes with enough resource
to deploy VNF were explored and the subsequent nodes were checked iteratively. If any of the substrate nodes cannot embed a
VNF in the chain, backtracking was performed.
When attempting to achieve various goals, existing work does not appear to consider the combination of low cost and high

availability together with practical placement policies, which are affinity and anti-affinity, In this paper, these factors are weighed
in, and the strategy is ready for use by real-world mobile edge application scenarios.

5 CONCLUSIONS AND FUTUREWORK

In this paper, we have formulated a mobile edge application placement problem and presented a heuristic algorithm called
EdgePlace. Our work promotes reducing the cost by introducing extra mobile edge hosts and balancing the workload of the



He Zhu ET AL. EdgeChain: Trustless Multi-vendor Edge Application Placement 19

hosts. Rather than overloaded, expensive hosts, VMs are deployed on less busy hosts to achieve lower cost. Meanwhile, the
availability of the mobile edge application has also been profoundly improved as a result of leveraging multiple hosts.
Our future work includes the following aspects:

1. Design an architecture supporting running EdgePlace Algorithm in the real MEC environment. This will enable the access
to practical experimental data for evaluation. We plan to implement EdgePlace Algorithm as a filter in OpenStack which
share the similar architecture in previous research done by us49. With a custom filter implementing EdgePlace, we will
be able to use the algorithm for making placement decisions when OpenStack is used at MEC base stations.

2. Consider mobile edge applications with combinations of different NFs and with service chaining. Also, the mobility of
the cloud needs to be considered as at the mobile edge, base stations along with the compute hosts can become mobile
and loaded onto vehicles.

Financial disclosure
None reported.

Conflict of interest
The authors declare no potential conflict of interests.

References

1. Satyanarayanan Mahadev. The Emergence of Edge Computing. Computer. 2017;50(1):30-39.

2. Garcia Lopez Pedro, Montresor Alberto, Epema Dick, et al. Edge-centric Computing: Vision and Challenges. SIGCOMM
Comput. Commun. Rev.. 2015;45(5):37–42.

3. Hu Yun Chao, Patel Milan, Sabella Dario, Sprecher Nurit, Young Valerie. Mobile Edge Computing - A key Technology
Towards 5G. ETSI White Paper. 2015;11.

4. Jaquith Waldo. The New Trend of Regional Data Centers https://usopendata.org/2015/03/25/rdc/[Online; accessed Mar-04-
2017]; .

5. Satyanarayanan Mahadev, Bahl Paramvir, Caceres Ramón, Davies Nigel. The Case for VM-based Cloudlets in Mobile
Computing. IEEE pervasive Computing. 2009;8(4).

6. Bonomi Flavio, Milito Rodolfo, Zhu Jiang, Addepalli Sateesh. Fog Computing and Its Role in the Internet of Things. In:
:13–16ACM; 2012.

7. Martins Joao, Ahmed Mohamed, Raiciu Costin, et al. ClickOS and the art of network function virtualization. In: :459–
473USENIX Association; 2014.

8. Han Bo, Gopalakrishnan Vijay, Ji Lusheng, Lee Seungjoon. Network function virtualization: Challenges and opportunities
for innovations. IEEE Communications Magazine. 2015;53(2):90–97.

9. OpenFog Consortium . OpenFog Architecture Overview - White Paper. 2016;OPFWP001.0216.

10. Liu H., Eldarrat F., Alqahtani H., Reznik A., Foy X., Zhang Y.. Mobile Edge Cloud System: Architectures, Challenges, and
Approaches. IEEE Systems Journal. 2017;PP(99):1-14.

11. Kevin Brown Schneider Electric. Edge computing needs reliability http://www.datacenterdynamics.com/content-
tracks/power-cooling/edge-computing-needs-reliability/97587.fullarticle[Online; accessed Mar-24-2017]; .

12. Beck Michael Till, Werner Martin, Feld Sebastian, Schimper S. Mobile edge computing: A taxonomy. In: Citeseer; 2014.



20 He Zhu ET AL. EdgeChain: Trustless Multi-vendor Edge Application Placement

13. Jammal M., Kanso A., Shami A.. High availability-aware optimization digest for applications deployment in cloud. In:
:6822-6828; 2015.

14. Oechsner S., Ripke A.. Flexible support of VNF placement functions in OpenStack. In: :1-6; 2015.

15. Vyas Uchit. Designing Your First Cloud with OpenStack. In: Springer 2016 (pp. 1–17).

16. Halpern Joel M., Pignataro Carlos. Service Function Chaining (SFC) Architecture RFC 76652015.

17. Lee Seungik, Pack Sangheon, Shin Myung-Ki, Browne Rory. Resource management in service chaining. ;.

18. Cassen Alexandre. Keepalived: Health checking for LVS& high availability.URL http://www.linuxvirtualserver.org. 2002;.

19. J. E. Beasley . Stochastic programming http://people.brunel.ac.uk/ mastjjb/jeb/or/sp.html[Online; accessed May-8-2018];
2018.

20. Gaivoronski Alexei A, Lisser Abdel, Lopez Rafael, Xu Hu. Knapsack problem with probability constraints. Journal of
Global Optimization. 2011;49(3):397–413.

21. Cisco . CSR 1000v requirements https://cisco.com/c/en/us/td/docs/routers/csr1000/release/notes/csr1000v_3Srn.html[Online;
accessed May-8-2018]; 2018.

22. Cisco . CSR ASA memory requirements https://cisco.com/c/en/us/products/collateral/security/asa-5500-series-next-
generation-firewalls/product_bulletin_c25-586414.html[Online; accessed May-8-2018]; 2018.

23. F5 Networks . Prerequisites for BIG-IP Virtual Edition on ESXi https://support.f5.com/kb/en-us/products/big-
ip_ltm/manuals/product/bigip-ve-setup-vmware-esxi-12-1-0/2.html[Online; accessed May-8-2018]; 2018.

24. AVI Networks . Avi Vantage hardware requirements https://avinetworks.com/docs/17.2/system-requirements-
hardware/[Online; accessed May-8-2018]; 2018.

25. OpenStack . VNF scaling https://www.cisco.com/c/en/us/td/docs/routers/csr1000/release/notes/csr1000v_3Srn.html[Online;
accessed May-8-2018]; 2018.

26. I. Farris, T. Taleb, H. Flinck, A. Iera. Providing ultra-short latency to user-centric 5G applications at the mobile network
edge. Transactions on Emerging Telecommunications Technologies. ;29(4):e3169. e3169 ett.3169.

27. Qussai Yaseen, Firas Albalas, Yaser Jararwah, Mahmoud Al-Ayyoub. Leveraging fog computing and software defined
systems for selective forwarding attacks detection in mobile wireless sensor networks. Transactions on Emerging Telecom-
munications Technologies. ;29(4):e3183. e3183 ETT-16-0367.R1.

28. Jesus Pacheco, Salim Hariri. Anomaly behavior analysis for IoT sensors. Transactions on Emerging Telecommunications
Technologies. ;29(4):e3188. e3188 ETT-16-0338.R1.

29. Brito M.S. , S. Hoque, R. Steinke, A. Willner, T. Magedanz. Application of the Fog computing paradigm to Smart Factories
and cyber-physical systems. Transactions on Emerging Telecommunications Technologies. ;29(4):e3184. e3184 ett.3184.

30. T. Al-Hammouri Ahmad, Zaid Al-Ali, Basheer Al-Duwairi. ReCAP: A distributed CAPTCHA service at the edge of the
network to handle server overload. Transactions on Emerging Telecommunications Technologies. ;29(4):e3187. e3187
ett.3187.

31. Junaid Shuja, Abdullah Gani, KwangmanKo, et al. SIMDOM:A framework for SIMD instruction translation and offloading
in heterogeneous mobile architectures. Transactions on Emerging Telecommunications Technologies. ;29(4):e3174. e3174
ett.3174.

32. Gabriel Orsini, Dirk Bade, Winfried Lamersdorf. CloudAware: Empowering context-aware self-adaptation for mobile
applications. Transactions on Emerging Telecommunications Technologies. ;29(4):e3210. e3210 ett.3210.

33. Augusto Garcia-Perez Cesar, Pedro Merino. Experimental evaluation of fog computing techniques to reduce latency in LTE
networks. Transactions on Emerging Telecommunications Technologies. ;29(4):e3201. e3201 ett.3201.



He Zhu ET AL. EdgeChain: Trustless Multi-vendor Edge Application Placement 21

34. ETSI Group Specification . Mobile Edge Computing (MEC); Framework and Reference Architecture. ETSI GS MEC 003,
V1.1.1 (2016-03). ;.

35. ETSI Group Specification . Network Function Virtualisation(NFV); Architectural Framework. ETSI GS NFV 002, V1.1.1
(2013-10). ;.

36. Mijumbi Rashid, Serrat Joan, Gorricho Juan-Luis, Bouten Niels, Turck Filip De, Boutaba Raouf. Network Function
Virtualization: State-of-the-art and Research Challenges. CoRR. 2015;abs/1509.07675.

37. Veitch Paul, McGrath Michael J., Bayon Victor. An instrumentation and analytics framework for optimal and robust NFV
deployment. IEEE Communications Magazine. 2015;53(2):126–133.

38. Basta Arsany, Kellerer Wolfgang, Hoffmann Marco, Morper Hans Jochen, Hoffmann Klaus. Applying NFV and SDN to
LTE mobile core gateways, the functions placement problem. In: :33–38; 2014.

39. Usmani Zoha, Singh Shailendra. A Survey of Virtual Machine Placement Techniques in a Cloud Data Center. Procedia
Computer Science. 2016;78:491 - 498.

40. Bellur Umesh, Rao Chetan S., Kumar S. D. Madhu. Optimal Placement Algorithms for Virtual Machines. CoRR.
2010;abs/1011.5064.

41. Khosravi Atefeh, Garg Saurabh Kumar, Buyya Rajkumar. Energy and Carbon-Efficient Placement of Virtual Machines in
Distributed Cloud Data Centers. In: :317–328; 2013.

42. Zhu Jiafeng, Huang Changcheng. A universal protocol mechanism for network function virtualization and application-
centric traffic steering. In: :257–262; 2015.

43. Clayman Stuart, Maini Elisa, Galis Alex, Manzalini Antonio, Mazzocca Nicola. The dynamic placement of virtual network
functions. In: :1–9; 2014.

44. Moens Hendrik, Turck Filip De. VNF-P: A model for efficient placement of virtualized network functions. In: :418–423;
2014.

45. Brown Gabriel. Service Chaining in Carrier Networks. 2015;.

46. Quinn P., Guichard J.. Service Function Chaining: Creating a Service Plane via Network Service Headers. Computer.
2014;47(11):38-44.

47. Blendin J., Ruckert J., Leymann N., Schyguda G., Hausheer D.. Position Paper: Software-Defined Network Service
Chaining. In: :109-114; 2014.

48. Beck M. T., Botero J. F.. Coordinated Allocation of Service Function Chains. In: :1-6; 2015.

49. Zhu H., Huang C.. IoT-B&B: Edge-Based NFV for IoT Devices with CPE Crowdsourcing. Wireless Communications and
Mobile Computing. 2018;(3027269).

50. Bala Anju, Chana Inderveer. Fault tolerance-challenges, techniques and implementation in cloud computing. IJCSI
International Journal of Computer Science Issues. 2012;9(1):1694–0814.

51. Statista . NFV and SDNmarket size worldwide by region from 2015 to 2019 https://www.statista.com/statistics/461573/sdn-
and-nfv-markets-worldwide-by-region/[Online; accessed Oct-27-2016]; .

52. Amazon . Amazon Web Services (AWS) https://aws.amazon.com/[Online; accessed Mar-4-2017]; .

53. Corradi Antonio, Fanelli Mario, Foschini Luca. VM consolidation: A real case based on OpenStack Cloud. Future
Generation Computer Systems. 2014;32:118–127.

54. Katyal Mayanka, Mishra Atul. A comparative study of load balancing algorithms in cloud computing environment. arXiv
preprint arXiv:1403.6918. 2014;.



22 He Zhu ET AL. EdgeChain: Trustless Multi-vendor Edge Application Placement

How to cite this article: H. Zhu, and C. Huang (2018), EdgeChain: Trustless Multi-vendor Edge Application Placement,
Transactions on Emerging Telecommunications Technologies, 2017;00:1–6.


	EdgePlace: Availability-aware Placement For Chained Mobile Edge Applications
	Abstract
	Introduction
	Problem Formulation
	Availability of Elastic Mobile Edge Applications
	Inter-host Link Availability and Link Importance Factor
	Inter-host Network Bandwidth Costs
	CPU and Memory Costs
	Cloud Costs
	Stochastic Programming Formulation
	Scalability and the EdgePlace Algorithm
	Processing Order of VMs
	Affinity first with service chain consideration
	Anti-affinity by bandwidth cost
	Practical use of EdgePlace Algorithm


	Numerical Results
	Assumptions
	Parameters
	Hardware Requirement Profile

	Availability Impact from Number of Instances and Hosts
	Latency
	Availability Impact from SFC
	Distribution of VMs with Different Bandwidth Costs

	Related Work
	Conclusions and Future Work
	References


