
EdgeChain: Blockchain-based Multi-vendor
Mobile Edge Application Placement

He Zhu
Systems and Computer Engineering

Carleton University
Ottawa, ON, Canada
hzhu@sce.carleton.ca

Changcheng Huang
Systems and Computer Engineering

Carleton University
Ottawa, ON, Canada
huang@sce.carleton.ca

Jiayu Zhou
Computer Science and Engineering

Michigan State University
East Lansing, MI, USA

jiayuz@msu.edu

Abstract—The state-of-the-art mobile edge applications are
generating intense traffic and posing rigorous latency require-
ments to service providers. While resource sharing across mul-
tiple service providers today requires a centralized, trusted
repository maintained by all parties for service providers to share
status. We propose EdgeChain, a blockchain-based architecture
to make mobile edge application placement decisions for multiple
service providers, based on a stochastic programming problem
minimizing the placement cost for mobile edge application
placement scenarios. All placement transactions are stored on
the blockchain and are traceable by every mobile edge service
provider and application vendor who consumes resources at the
mobile edge.

Index Terms—Mobile edge computing, blockchain, placement.

I. INTRODUCTION

The rapid advance of mobile edge computing (MEC) has
been the last mile of enabling a shared, low-latency computa-
tional environment for multi-vendor mobile edge applications.
Applications with low latency tolerance, such as augmented
reality (AR), video streaming, and online gaming, can deploy
their services on the edge hosts at a cost, to achieve lower
latency and better user experience [1]. As the market gets
mature, multiple 5G service providers (SPs) can collaborate
with each other in several ways for better utilization of the
resources at the edge: virtual SPs have to place mobile edge
(ME) applications on one of the rented edge hosts, preferably
with lower cost, regardless of SPs. On the other hand, MEC
base stations from different SPs can share resources with each
other to process bursting requests.

For encouraging SPs to enroll their eligible MEC base
stations and hosts in resource sharing, it is common to give
incentives to SPs for contributing their resources of the hosts
for hosting edge applications. The edge application provider
will save costs and provide high-quality service with low
latency to the end users. The edge host will collect incentives
for its resources effectively used. The edge computing frame-
work needs a placement service to dynamically determine the
placement or removal of edge applications. The collaboration
of multiple SPs and mobile edge applications vendors are
posing new challenges for ME application placement from

Fig. 1. A MEC scenario in a certain service area. There are 2 ME base
stations from 2 different SPs: SP-A and SP-B. They serve their own users
within the service area. For resource sharing and optimization purposes,
the base stations are also connected to each other.

the following aspects: 1) A placement model has to make
transparent and consistent selections of the best host for each
request for edge computing resources. Moreover, the model
has to take into consideration that a mobile edge application
may require multiple services chained together at the edge.
2) A trusted party is required to determine the best place for
application deployment. 3) The application placement service
needs to be steadily available. These challenges above urge a
comprehensive solution uniting all SPs and their edge hosts
without bias.

In this paper, we present an architecture combined with
its algorithm, namely EdgeChain, to create a decentralized
placement service for mobile edge application that does not
require trust to any party, i.e., trustless placement service.
Compared with current placement solutions, EdgeChain has
the following contributions: A cost model is presented factor-
ing in the pricing of edge hosts, latency, and service chaining.
A heuristic placement algorithm is developed based on the
proposed cost model with the consideration of efficiency for
running by the blockchain. We also introduce blockchain
technologies to the MEC resource orchestration framework
with the considerations global resource availability, allocation,
and consumption information.

We divide the contents into the following sections. The
related work is illustrated in Section II. Section III formulates978-1-5386-4633-5/18/$31.00 ©2018 IEEE

TABLE I
PARTIES INVOLVED IN A MEC PLACEMENT SCENARIO

Party Description
Users Subscribers over 5G networks with MEC enabled.
MECSPs MEC service providers hosting MEApps at the network edge, close to end

users.
MEAVs Mobile edge application vendors, who provide MEApps and services to end

users.
MEApps Mobile edge applications provided by MEAVs.
MEHosts Servers that belong to different MECSPs to provide hosting service of

MEApps.
HostLinks Network links between hosts, regardless of which MECSP they belong to.
AppLinks Virtual links established for data transmissions traveling through the chain.

the problem. Section IV proposes the heuristic EdgeChain
placement algorithm based on the problem formulation. Then
the simulation results are shown in Section VI. Section VII
concludes the paper.

II. RELATED WORK

The research directions in network service chaining (NSC)
were discussed in [2]. For security considerations, the authors
highlighted the difficulty of bringing short-lived network ser-
vices to targeted users in a single subscriber network by using
the current security schemes. The potential security prob-
lems in SFC were stated in RFC7498 [3], including service
overlay security, trusted classification policy, and secure SFC
encapsulation. A placement problem was proposed in MEC
environment with the consideration of application availability
in [4]. Xiong et al. proposed a pricing strategy for offloading
the blockchain’s resource-consuming proof-of-work tasks to
edge computing nodes [5]. A hierarchical distributed control
system was built using Hyperledger Fabric blockchain [6].
The hosting locations of cloud and fog of blockchain were
compared in [7] for IoT networks with the conclusion that
fog nodes were better as network latency was the dominant
factor. Nakamoto introduced the concept of blockchain and
implemented Bitcoin [8], a decentralized cryptocurrency that
first resolved the double spending problem. Blockchains are
based on Merkle trees [9] to efficiently allow multiple doc-
uments to be saved together in a block. As a decentralized
public ledger, blockchains can serve beyond cryptocurrencies.
Ethereum [10] used blockchain to store smart contracts that
support building virtually any decentralized application.

III. PROBLEM FORMULATION

We first list all parties involved in a MEC placement
scenario in Table I. The problem is formulated from a MEAV’s
point of view: MEApps are direct consumers of the computing
resources in the MEC environment, because a MEAV needs
to pay MECSPs for hosting its applications in order to serve
their users and meet the latency requirement. Each MEApp is
equivalent to a virtual machine (VM) deployed on a MEHost.
MEApps provided by different MEAV can be combined as a
service chain to provide comprehensive services. A service
chain may span multiple MEAVs. In this case, revenues gen-
erated by the service chain can be distributed according to the
usage of each MEApp on the service chain. Define a chained
service s as a forwarding graph [11] Gs = (Vs,Ls), where

Vs is the set of all MEApps contributing to the service, and
Ls is the set of all AppLinks connecting applications together.
A MEApp is denoted by v ∈ Vs, and an AppLink between two
MEApps is denoted by l ∈ Ls.

The chained service is deployed on a graph of connected
MEHosts Gh = (H,E), where H is the set of all MEHosts
owned by various MECSPs and E is the set of all HostLinks.
A MEHost is denoted by h ∈ H, and a HostLink between two
MEHosts is denoted by e ∈ E. The HostLinks can be either
physical or virtual links with fixed capacities and latencies.

Suppose in a certain service area, there are ns users from
various MECSPs requesting the same chained service s from
a MEAV. We use m to denote a MECSP and hm for a MEHost
that belongs to m. Define an assigning function xvhm

, whose
value is 1 if VM v is assigned to Host hm, and 0 otherwise.

xvhm
,

{
1, v is deployed on hm;

0, otherwise.
(1)

Define a binary indicator of an AppLink between two
chained MEApps in s, denoted by L(vhi

, vhj
), such that

L(v, v′) ,

{
1, l ∈ Ls exists between v and v′;
0, otherwise.

(2)

Also, we use eij to represent the HostLink between hi and
hj . The cost of deploying s is the sum of the cost of deploying
each MEApp v of the service and the cost of the traffic between
each two adjacent MEApps in the service chain shown by

cs =
∑

hm∈H

∑
v∈Vs

cvhm
xvhm

+
∑

hi,hj∈H

∑
v,v′∈Vs

cvhi,v′hjxvhixv′hjL(v, v
′),

(3)

where cs represents the cost of deploying s and cvhm
is for the

cost of a MEApp v deployed on a MEHost hm. We assume that
the pricing scheme for the same MECSP is the same across all
of its hosts. For a MEHost hm, define its basic unit resource
price, which is the unit price of serving its own subscribers,
as γm. When hm is serving users of other MECSPs, it charges
a premium of δm for its unit resource, as the return for doing
courtesy for its partners. Therefore, the shared unit resource
price of hm can be represented by (γm+δm). Define Chm and
Mhm to be the capacity of vCPU and memory provided by hm.
Define Cv and Mv as the vCPU and memory consumed by
v. Define Pm to be the random variable for percentage of the
users using the service chain s via networks of the MECSP m.
Depending on the numbers of active users for each MECSP,
the total cost for the MEAV to place its MEApp v onto a host
of m is the cost incurred by users of m plus the cost by users
of other MECSPs:
cvhm

=ns(Cv +Mv)Pmγm

+ ns(Cv +Mv)(1− Pm)(γm + δm)

=ns(Cv +Mv) [Pmγm + (1− Pm)(γm + δm)]

=ns(Cv +Mv) [γm + (1− Pm)δm] .

(4)

When a request from a user for a service chain arrives,
the blockchain would know the MECSP from which the user
subscribes. For the same placement decision, the value cs
can significantly differ over changing distribution of users.

An example can be two MECSPs m1 and m2, each with
one host hm1

and hm2
. If all users are subscribers of m1

and all MEApps are placed on MEHosts of m1, then the cost
payable by the MEAVs would be lower than if all users were
subscribers of m2.

A. HostLink Unit Price

The link unit price of a HostLink eij , denoted by ζeij ,
is defined to describe how much to use the HostLink eij .
The following two parameters will determine ζeij . One is
L(vhi , vhj) as defined in Eqn. (2). The more AppLinks a
HostLink carries, the more vital and expensive it becomes.
The reason behind this ranking parameter is the potential
consequence of migration: failure of a HostLink used by
many VMs would lead to massive migration of all MEApps
connected by that HostLink, which would be more disruptive
to the service chain. The other parameter BV (eij) is the total
bandwidth consumed by traffic between MEApps on the two
hosts. It is selected because larger bandwidth usages would
cause challenges at the time of migration: it can be hard to
find another link with enough capacity.

BV (eij) ,

 ∑
vhi

,vhj
,hi 6=hj

B(vhi , vhj)

 . (5)

We then define the unit price ζeij of a HostLink eij , as the
factor of the number of AppLinks between two hosts times the
factor of traffic flowing through these links:

ζeij =

[∑
vhi

,vhj
,hi 6=hj

L(vhi
, vhj

)
]

Neij

BV (eij)

B(eij)
, (6)

where Neij is the maximum number of virtual links possible
on eij . Therefore, ζeij ∈ [0, 1]. The value of ζeij will rise
to mark up a link’s importance given it is either occupied by
more pairs of VMs, or there is more traffic assigned to eij ,
or both. The cost of any two MEApps is then the sum of the
cost serving users that belong to the MECSPs owning hi and
hj and the cost serving other users timed by the price factor
κeij :

cvhi,v′hj =nsζeij (Pmhi
+ Pmhj

)κmhi
mhj

+ nsζeij (1− Pmhi
− Pmhj

)(κmhi
mhj

+ σmhi
mhj

)

=nsζeij [(Pmhi
+ Pmhj

)κmhi
mhj

+ (1− Pmhi
− Pmhj

)(κmhi
mhj

+ σmhi
mhj

)].
(7)

B. HostLink latency

Define the latency of the link eij to be teij . For a service
chain s, the total latency ts is then

ts =
∑

hi,hj∈H

∑
vhi

,vhj
∈Vs

L(vhi
, vhj

)xvhi
xvhj

teij . (8)

In the equation above, teij is a constant depending on the
particular eij . If hi = hj , then we consider the latency to be 0,
since no actual HostLink is used for data transmission between
the two MEApps. Define the maximum latency allowed for the

service chain s is Ts. Then there must be ts ≤ Ts to meet the
latency requirement.

C. Stochastic Programming Formulation

The problem is formulated as a stochastic programming
optimization. Define Vh as the set of all MEApps deployed
on the MEHost h. The objective is to minimize the total cost
of the service chain s to provide service with the lowest cost
to the end user:
Minimize
cs =

∑
hm∈H

∑
v∈Vs

cvhm
xvhm

+
∑

hi,hj∈H

∑
v,v′∈Vs

cvhi,v′hj
xvhi

xv′hj
L(v, v′)

=
∑

hm∈H

∑
v∈Vs

xvhmns(Cv +Mv) [γm + (1− Pm)δm]

+
∑

hi,hj∈H

∑
v,v′∈Vs

nsζeij [(Pmhi
+ Pmhj

)κmhi
mhj

+ (1− Pmhi
− Pmhj

)(κmhi
mhj

+ σmhi
mhj

)]L(v, v′),
(9)

w .r .t . xvhm ,

s.t . B(eij) ≥
∑

vhi
,vhj

,hi 6=hj

B(vhi
, vhj

), (10)

Ch ≥
∑
v∈Vh

Cv, (11)

Mh ≥
∑
v∈Vh

Mv, (12)∑
hi,hj∈H

∑
vhi

,vhj
∈Vs

L(vhi
, vhj

)xvhi
xvhj

teij ≤ Ts. (13)

IV. THE EDGECHAIN PLACEMENT ALGORITHM

The formulation presented in the previous section is a
stochastic programming problem. Problems of this type been
proved to be NP-hard [12]. It may not be computationally
feasible when attempting to solve it in large scale. To apply our
model to real-world scenarios, we design a heuristic algorithm
called EdgeChain to achieve suboptimal results by applying a
hybrid strategy of best-fit and first-fit decreasing algorithm.
The pseudo code of the algorithm is shown in Algorithm 1.

V. EDGECHAIN DESIGN AND IMPLEMENTATION

The implementation of EdgeChain takes requests to place
MEApps from MEAVs, and the placement algorithm runs as
the smart contract on a capable blockchain, namely VeChain
Thor [13], to select the best MEHost from all candidates. The
NFV orchestrator of the related MECSP receives and enforces
the placement decision, while posting the transaction onto the
blockchain for recording.

A. EdgeChain Work Flow

A typical EdgeChain work flow can be demonstrated by
Fig. 2, where there are three parties participating in the entire
process: MECSPs, MEAVs, and mining nodes. We use circled
numbers and alphabets to define the work flow in sequence.

Algorithm 1: EdgeChain Placement Algorithm
Data: host list: list of candidate MEHosts
Data: app: requested MEApp to be placed, including its

max latency allowed, stored in latency
Data: max latency: max latency allowed for the service

chain
Result: The best MEHost in host list to place app, or none

if no valid host is found
1 begin
2 sort by percentage of users of the service chain

descending
3 if multiple MEHosts found then
4 sort host list by the locations of app’s last-hop

MEApps
5 if still multiple MEHosts found then
6 sort by the latency of the HostLinks to the

previous MEApps in the service chain
ascending

7 end
8 end
9 for h ∈ host list do

10 latency← all latencies added together if app
placed on h

11 if latency ≤ max latency then
12 cpu left ← calculate remaining vCPU by Ch

and Cv of each MEApp placed on h
13 mem left ← calculate remaining memory by

Mh and Mv of each MEApp placed on h
14 if cpu left ≥ 0 and mem left ≥ 0 then
15 return h
16 end
17 end
18 end
19 return none
20 end

1 A user requests a service chain from the blockchain. 2
The request for the service chain is recorded. Then the requests
for MEApps are propagated to all corresponding MEAVs. 3
Based on its user demand, the MEApp Scheduler decides
to create a new instance of MEApp and pass the request
to the blockchain client of the MEAV. 4 The blockchain
client running the EdgeChain service sends the request to the
blockchain, creating records for the request of placing a new
MEApp. 5 The request of creating a new MEApp arrives at a
MECSP through its blockchain client. 6 For every MECSP,
the blockchain client requests the NFV Orchestrator (NFVO)
to call the EdgeChain placement algorithm downloaded to the
resource manager for the decision of the placement. This will
ensure that the placement algorithm be executed by different
parties for verifying the results. 7 The NFVO calls the
EdgeChain placement algorithm for the placement decision.
8 NFVO sends the request to place the MEApp to the

VNF Manager (VNFM). Also, a transaction shown in Fig.
3 will be posted to the blockchain to record that placement
actually occurs. 9 The VNFM sends the request to the
NFV Infrastructure (NFVI) deploy the MEAPP onto the target
MEHost. T The mining nodes periodically perform the
mining process to verify the blockchain, as well as earning

MECSP

NFV Infrastructure (NFVI)

VNF
Manager
(VNFM)

NFV Orchestrator (NFVO)

Resource Manager
EdgeChain

Placement Algorithm

MEHost-1
MEApp-1

MEApp-2

Bl
oc

kc
ha

in

MEAV

Mining Node

Blockchain Client
EdgeChain Service

MEHost-2
MEApp-3

MEApp-4

Blockchain
Client

EdgeChain
Service

MEApp
Scheduler

Mining Node

3

4

T

6

78

9 T

5 User
1

2

Fig. 2. Typical work flow of EdgeChain. MECSPs, MEAVs, and mining
nodes participate in the process. Steps of the work flow are marked by
circled numbers and alphabets with details documented in Section V-A.

State
182f7b: MEHost-1
vCPU: 15
Mem: 327680
Links:
- MEHost-2
MEApps:
- MEApp-1
- MEApp-2

83c2ea: MEHost-2
vCPU: 15
Mem: 115,200 MB
Links:
- MEHost-1
MEApps:
- MEApp-3

State’
182f7b: MEHost-1
vCPU: 15
Mem: 327680
Links:
- MEHost-2
MEApps:
- MEApp-1
- MEApp-2

83c2ea: MEHost-2
vCPU: 13
Mem: 111,104 MB
Links:
- MEHost-1
MEApps:
- MEApp-3
- MEApp-4

Transaction
MEApp-4
vCPU: 2
Mem: 4096 MB

EdgeChain
Placement Algorithm
Output: MEHost-2

Fig. 3. A placement transaction in EdgeChain. A state transition happens
upon a transaction. As this figure shows, MEApp-4 is to be placed with
the requirement of 2 vCPUs and 4096 MB of memory. The input of the
EdgeChain placement algorithm is the current state of the two MEHosts.
The result is to place MEApp-4 onto MEHost-2. After the transaction
is accepted, the resources taken by MEApp-4 are deducted from the
remaining resources of MEHost-2.

tokens for requesting placement services.

VI. NUMERICAL RESULTS

The following assumptions are made to simplify the model-
ing of the problem without losing generality. We first discuss
the placement results output by the EdgeChain algorithm for
the same service chain on the same set of MEHosts. 1) The
unit costs of the CPU and memory of all hosts for the same
MECSP are the same. 2) Costs of network bandwidth for
all links follow the same unit price. 3) One mobile edge
application includes the same type of VMs with the same CPU,
memory and network bandwidth requirements. 4) A request
from the user will be processed by one VM, while the VM
may communicate with other VMs to exchange information.

h1 h2 h3 h4 h5 h6 h7 h8 h9

MEHosts

0.6

0.5

0.4

0.3

0.2

0.1

U
n
it
 r

e
s
o
u
rc

e
 p

re
m

iu
m

 f
o
r

m
1
 (

\d
e
lt
a
_
1
) 0

0

5

5

5

5

0

0

2

5

5

5

0

0

0

2

4

5

5

5

5

3

1

0

5

2

3

0

0

0

5

0

0

0

0

0

0

5

0

0

0

0

0

3

0

0

0

0

0

0

0

0

0

0

0

1

2

3

4

5

6

7

8

9

h1 h2 h3 h4 h5 h6 h7 h8 h9

MEHosts

0.6

0.5

0.4

0.3

0.2

0.1

U
n
it
 r

e
s
o
u
rc

e
 p

re
m

iu
m

 f
o
r

m
1
 (

\d
e
lt
a
_
1
) 1

0

0

0

0

0

0

0

0

0

0

0

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

5

5

5

5

5

5

4

4

5

5

5

5

4

5

5

5

5

5

0

1

2

3

4

5

6

7

8

9

Fig. 4. Placement results of 3 service chains consisting of 15 MEApps
in all. δm1 changes from 0.1 to 0.6. The left table shows the placement
decision when Pm1 = 0.5 and Pm2 = Pm3 = 0.25. The right table shows
the placement decision when Pm1 = Pm1 = 0.25 and Pm3 = 0.5.

A. Parameters

First, we choose a MEC service scenario of 3 MECSPs m1,
m2, and m3, each with 3 MEHosts, where h1, h2, h3 belong
to m1, h4, h5, h6 belong to m2, and h7, h8, h9 belong to m3.
Three identical requested service chain, each with 5 MEApps is
to be placed. The MEApps of each service chain are denoted
by v1, v2, v3, v4, and v5. The service chain starts from v1
and ends at v5: v1 → v2 → v3 → v4 → v5. We assume
that all MEApps have the same CPU, memory and bandwidth
requirements shown in Table II, along with other parameters.

TABLE II
PARAMETERS FOR THE MEC SCENARIO

Parameter Value Parameter Value
Cv 2 vCPUs Mv 2048 MB
Ch 64 vCPUs Mh 65536 MB
γm1 1.0 δm1 0.2
κm1 1.0 σm1 0.2
γm2 0.8 δm2 0.5
κm2 0.8 σm2 0.5
γm3 1.2 δm3 0.3
κm3 1.2 σm3 0.3
ns 100 users Pm var
B(eij) 10000 Mbps B(v, v′) 30 Mbps
teij 15 ms Ts 50 ms

B. Placement trends with changing unit resource premium

The placement decision changes by the increase of δm1

under different user distributions are shown in Fig. 4, where
δm1

, the unit resource premium payable to the MECSP for
hosting MEApps for others, increases from 0.1 to 0.6. From the
results of the two scenarios, we learn that the MEHosts with
lower combination of unit resource base price (γm) and unit
resource premiums (δm) will be selected first. The MEHosts
of the MECSP will have more weight upon consideration if
there are more users from that MECSP.

C. Placement trends with changing user distribution

We simulate various scenarios with different percentages
of users for m1 and m2, while there is no user for m3.
Users of m1 increase from 0% to 100%, while those of m2

decrease from 100% to 0%. The results show the trends of
MEApps migrating to MEHosts owned by the MECSP that

0 50 100
0

5

10

15

N
u

m
 o

f
M

E
A

p
p

s
 p

la
c
e

d

0 50 100
0

5

10

15

N
u

m
 o

f
M

E
A

p
p

s
 p

la
c
e

d

0 50 100
0

5

10

15

N
u

m
 o

f
M

E
A

p
p

s
 p

la
c
e

d

Fig. 5. Numbers of MEApps placed on the 3 MEHost with different
percentages of users in the network. Users of m1 increase from 0% to
100%, while those of m2 decrease from 100% to 0%. There is no user
for m3.

has more active users to avoid premiums charged by other
MECSPs. However, resource sharing still takes place (m3

hosting MEApps for m1 and m2) when needed for better
latency results and service quality.

VII. CONCLUSIONS

In this paper, we have presented the architecture and the
algorithms for mobile edge applications placement for multi-
ple mobile edge computing service providers, leveraging the
blockchain-based system called EdgeChain. Future work will
be considering multiple service chains initiated by multiple
users, to achieve lower overall costs for the entire system.

VIII. ACKNOWLEDGMENT

We thank VeChain Foundation for providing support in
algorithm integration with VeChain Thor.

REFERENCES

[1] Y. C. Hu, M. Patel, D. Sabella, N. Sprecher, and V. Young, “Mobile edge
computinga key technology towards 5g,” ETSI White Paper, vol. 11,
2015.

[2] W. John, K. Pentikousis, G. Agapiou, E. Jacob, M. Kind, A. Manzalini,
F. Risso, D. Staessens, R. Steinert, and C. Meirosu, “Research directions
in network service chaining,” in 2013 IEEE SDN for Future Networks
and Services (SDN4FNS), Nov 2013, pp. 1–7.

[3] P. Quinn and T. Nadeau, “Problem statement for service function
chaining,” 2015.

[4] H. Zhu and C. Huang, “Availability-aware mobile edge application
placement in 5g networks,” in IEEE Globecom’17, Dec 2017.

[5] Z. Xiong, S. Feng, D. Niyato, P. Wang, and Z. Han, “Edge computing
resource management and pricing for mobile blockchain,” arXiv preprint
arXiv:1710.01567, 2017.

[6] A. Stanciu, “Blockchain based distributed control system for edge
computing,” in 2017 21st International Conference on Control Systems
and Computer Science (CSCS), May 2017, pp. 667–671.

[7] M. Samaniego and R. Deters, “Blockchain as a service for iot,” in
2016 IEEE International Conference on Internet of Things (iThings) and
IEEE Green Computing and Communications (GreenCom) and IEEE
Cyber, Physical and Social Computing (CPSCom) and IEEE Smart Data
(SmartData), Dec 2016, pp. 433–436.

[8] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.
[9] D. Bayer, S. Haber, and W. S. Stornetta, Improving the Efficiency and

Reliability of Digital Time-Stamping. New York, NY: Springer New
York, 1993, pp. 329–334.

[10] G. Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Ethereum Project Yellow Paper, vol. 151, 2014.

[11] G. Brown, “Service chaining in carrier networks,” 2015.
[12] A. A. Gaivoronski, A. Lisser, R. Lopez, and H. Xu, “Knapsack problem

with probability constraints,” Journal of Global Optimization, vol. 49,
no. 3, pp. 397–413, 2011.

[13] VeChain Foundation, https://www.vechain.org/, 2018, [Online; accessed
10-Jan-2018].

