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Abstract— New services such as network virtualization, 

service chaining, and application-centric traffic steering bring 

new opportunities for network providers and service providers. 

While Software Defined Network is poised to support new 

services, it is still in development stage. Mechanisms supporting 

new services are still missing. In this paper, we propose a new 

application driven mechanism called Service Forwarding Label 

that can be used as a universal group-based label to differentiate 

various services and forward packets based on different service 

requirements. Compared with existing solutions such as VXLAN, 

our SFL approach provides universal support for a variety of 

existing and new services with much less overhead.   

Keywords—Software Defined Network, Network Function 

Virtualization, Traffic Steering, Service Chaining, VXLAN  

I. INTRODUCTION  

Routing and forwarding in Software Defined Network 
(SDN) is based on a flow concept that is more general than the 
traditional 5-tuple IP flow. As stated in OpenFlow specification 
[1], each OpenFlow switch will have a flow table with each 
flow entry having a set of match fields for matching packet 
headers. A match field may be wildcarded (match any value) or 
bitmasked so that an arbitrary flow can be defined as matching 
all the match fields of a flow entry. While this may seem to be 
quite flexible, it is still under the constraint of the existing 
packet header fields.  If a new service cannot be clearly defined 
by the existing header fields, the service is hard to be deployed.  
Although there may be numerous such new services, we only 
discuss three of them to demonstrate the issues in the following 
paragraphs.  

One of the primary new services that have been envisioned 
is the network virtualization, which allows physical network 
provider to sell different virtual networks to different service 
network providers [2].  Each service network provider can use 
its virtual network just like the way it uses its own private 
network while sharing underlying physical network resources 
with other service network providers. The physical network 
provider, on the other hand, can enjoy new revenue growth 
through selling virtual networks with different granularities. In 
order to do so, each router/switch in a physical network must 
have the capability to differentiate packets belonging to 
different virtual networks and forward them differently as 

required. This is not an easy task with current packet header 
structure.  

Service function chaining (SFC) is another area that SDN 
can play an important role. Traditionally an SFC consists of a 
set of dedicated network service boxes such as firewall, load 
balancers, and application delivery controllers that are 
concatenated together to support a specific SFC [3]. With a 
new service, new devices must be installed and interconnected 
in certain order. This can be a very complex, time-consuming, 
and error-prone process, requiring careful planning of topology 
changes and network outages and incurring high OPEX. This 
situation is exacerbated when a tenant requires different service 
sequences for different traffic flows or when multiple tenants 
share the same datacenter network. Through network function 
virtualization (NFV) service, SDN can dynamically create a 
virtual environment for a specific SFC and eliminate the 
complex hardware and labor work. However each virtual node 
in a service provider network must have the capability to 
differentiate packets belonging to different SFCs so that it can 
process and forward them differently. This can be very 
challenging because each virtual node is in a virtual network 
rather than a physical network.  

The third area is application-centric traffic steering. 
Application service providers have tried various ways to 
differentiate their users so that they can maximize their 
revenues and minimize their costs [4]. The fact that a user 
today is likely to have multiple access devices and his/her 
location is typically mobile has made it very hard to route and 
steer packets based on application characteristics.  

There are various proposals to address the abovementioned 
issues. A good example is VXLAN [5], which is designed with 
two major objectives: a) to extend Virtual LAN (VLAN) 
service from a local area network to a network that can span an 
IP network; b) to address the shortage of VLAN ID.   It 
advocates the architecture that overlays virtualized Layer 2 
networks over Layer 3 networks. A 24-bit VXLAN network 
identifier is added to allow identifications of more than 16M 
different VLANs.  While VXLAN can be implemented 
relatively easily with existing technologies, it has several major 
disadvantages that make it difficult to meet the long term 
challenges. First, VXLAN is an extension of Layer 2 VLAN. 
Its main objective is to extend VLAN service rather than to 



support arbitrary new services. Therefore, it inherits 
characteristics of Layer 2 technologies, which make it far away 
from application-centric concept. It is hard to generalize the 
VLANs supported by VXLAN to other services such as service 
chaining. Second, it is hard to support resource allocation and 
optimization for virtual networks due to its distributed nature. 
Third, the overhead for overlaying Layer 2 networks over 
Layer 3 networks is overwhelming. Fourth, it is hard to 
imagine how to support recursive services (discussed more in 
the next section) with VXLAN. 

OpenADN [4] is another option that has been proposed 
recently. With OpenADN, two new labels are added, one at 
Layer 3.5 and another at Layer 4.5. The label at Layer 3.5 is 
used for hop-by-hop transport between waypoints in a segment 
and the label at Layer 4.5 is used for segment switching. Both 
labels cannot be used as an end-to-end identifier of a service. 
Furthermore, issues such as recursive services still cannot be 
supported.  

Similar to OpenADN, Serval [6] tries to address the issues 
related to mobility and multi-homed services by adding a 
Service Access Layer (SAL), sitting between the network and 
transport layer, that gives a group-based service abstraction. 
The SAL includes a source flow ID, a destination flow ID, and 
a service ID. The two flow IDs are used to de-multiplex traffic 
at the receiving host. The service ID is used to identify a 
service. However, Serval assumes packets are still forwarded 
based on their IP addresses, which requires dynamic binding 
between service IDs and IP addresses through control plan. It 
may also be hard to maintain the service ID after going through 
a middle box. Serval also does not support recursive service.  

In this paper, we propose a new Service Forwarding Label 
(SFL) mechanism at Layer 5 that can be used to identify a 
group-based service instance for packet forwarding so that 
NFV and application-centric traffic steering can be realized 
with very little overhead. Our label creation process is 
application driven, allowing close integration of applications 
and forwarding functions. Different from existing approaches, 
we do not require the binding between SFL and IP address. By 
utilizing the flow concept in SDN, packets may be forwarded 
directly based on their SFLs.  

The paper is organized as follows. In Section II, we will 
discuss in more detail about the issues to be resolved and the 
recursive service concept. In Section III, we will propose our 
SFL scheme. This will be followed by several use case 
scenarios in Section IV. We will finish the paper with some 
concluding remarks in Section V.   

II. RECURSIVE SERVICES 

In a real world, it is quite common that users, service 
providers, and network providers are separate entities. They 
may all have their own objectives that may conflict with each 
other. Take the example of enterprise network. With the fast 
growth of datacenters, enterprises are becoming increasingly 
interested in outsourcing their enterprise networks to 
datacenters. Under this scenario, the owner of the physical 
network now is the owner of the datacenter, such as Amazon. 
The service network providers are the enterprises who 
outsource their enterprise networks to the datacenters.  

Therefore a service provider is independent from the network 
provider as well as independent from other service network 
providers who share the same physical network. Recognizing 
this need, the pioneers of SDN advocate a layer called 
FlowVisor [7] that plays the same role as the hypervisor for 
virtual machines. FlowVisor allows a physical network 
provider to partition its physical network into slices for various 

 

Fig. 1. The architecture of virtual network service. 

service network providers. Each service network provider can 
virtually own one slice which has its own virtual network 
topology and related resources generated through a topology 
abstraction process. The service network provider can then 
optimize its usage of the slice which it owns. A physical 
network provider can sell network virtualization service to 
service providers with different granularities at different prices. 
This will change the situation that physical network providers 
today can only sell pipes and equip physical network providers 
a new venue for revenue growth. 

 The SDN architecture [1] for virtual network service is 
shown in Fig. 1. As shown in the figure, each entity has its own 
OpenFlow Controller (OFC). The OFC of a service provider is 
in charge of routing user flows and optimizing resource usage 
within its own virtual topology. The OFC of the network 
provider will execute the topology abstraction process through 
a topology virtualizer based on a global topology map of the 
underlying physical network.   

It is envisioned in SDN architecture that a service provider 
can further partition its virtual network and sell virtual network 
service to other service providers. This kind of recursive 
network virtualization is illustrated in Fig. 2. As shown in the 
figure, a network provider sells a virtual network to a tier-1 
service provider who in turn sells a virtual network to a tier-2 
service provider. This process can continue several iterations 
making service providers become network providers in a 
recursive manner. This kind of recursive service is becoming 
popular today. For example, Amazon sells virtual server 
service to Netflix and Netflix in turn sells video streaming 
service to its clients.  



 

While virtual network is a powerful concept, it also faces 
several challenges to be addressed. These include overlapping 
address spaces, middle-box traversal, SDN network migration, 
multiple tenants, etc. We will briefly discuss these problems in 
the following paragraphs. 

As we mentioned earlier, each service provider treats its 
virtual network as its private property. They decide how to 
assign VLAN IDs and IP addresses within their own virtual 
networks without consulting each other. Most likely they will 
use private IP address blocks to avoid the shortage of address 
space. This creates a high possibility of overlapped address 
spaces being used by multiple virtual networks sharing the 
same physical network. Using Fig.1 as an example, if the two 
virtual networks owned by Tenant A and Tenant B respectively 
use  the same address space, switches in the physical network 
will not be able to differentiate packets for the two virtual 
networks. Clearly some mechanism is required to identify 
packets belonging to different virtual networks. 

In a service chain application, packets need to traverse 
multiple middle-boxes before reaching their destinations. Each 
middle-box such as firewall or load balancer provides 
functions that may require processing packets up to the 
transport layer. Therefore the header information including all 
layers up to the transport layer will not be maintained end-to-
end.   This will make it difficult for physical switches to steer 
traffic to the correct next middle-box on the path to the 
destination. This issue suggests that an end-to-end ID above 
the transport layer is required to identify traffic belonging to 
the same service chain.   

SDN as a new architecture is attracting many vendors and 
network providers. Given the size of the Internet today, the 
evolution towards SDN networks will likely be a long and slow 
process. It is easy to see that SDN networks will be deployed 
initially as islands within Internet. Datacenters, for example, 
are the first place where SDN will be adopted early. When 

datacenters provide virtual network services to clients, most of 
the clients are unlikely to be attached directly to the 
datacenters. Therefore, traffic from these clients has to travel 
through legacy IP networks before they can reach SDN based 
datacenters. Any information used to identify virtual networks 
in the lower three layers may be lost when traffic reaches the 
datacenters. Inter-datacenter traffic may also span multiple 
legacy IP networks making it difficult to support virtual 
networks across multiple datacenters. 

Recursive network virtualization raises another new 
challenge. As we mentioned earlier, each virtual network may 
be owned by a different entity. This leads to the situation that 
multiple entities may be involved in recursive network 
virtualization. Each entity has the right to control the resources 
within its own virtual network and decide how to route traffic 
based on its own policy. Orchestration among multiple OFCs is 
calling for simple mechanisms that help streamline business 
relationship among different entities. 

In summary, the above mentioned challenges must be 
addressed before the benefits of SDN can be fully realized. In 
the next section, we will describe in detail how our SFL works.   

III. SERVICE FORWARDING LABEL 

As discussed in the last section, we need an ID that can be 
used to identify a group-based service instance (In our context, 
a virtual network or a service chain instance is considered as a 
single service instance. A mobile user with multiple devices 
can also be treated as a service instance). This ID needs to sit 
above Layer 4 so that it can stay intact while a packet traverses 
legacy IP networks and middle-boxes. This naturally points to 
an ID at Layer 5.  

In OSI model, Layer 5 is called the session layer which is 
designed to establish, manage, and terminate connections 
between local and remote applications. A good example is a 
video conference session where multiple parties join and leave 
dynamically. This bears similarity to a service instance such as 
a virtual network that has many nodes and carries a large 
number of dynamic traffic flows.  This similarity motivates us 
to define an ID at Layer 5 for the identification of a service 
instance. We call this ID as Service Forwarding Label (SFL).  

SFLs will be created and maintained by a service provider 
and used by its clients and OpenFlow switches to identify and 
steer traffic belonging to different service instances. SFLs can 
be stacked for applications such as recursive service where 
each level of the stack is administered by the owner of the 
service level in a recursive business relationship as discussed in 
the last section. This allows easy scale to multiple levels of 
services with multiple ownerships nested in the SFL stack.  

An SFL must be unique within the space of the service 
provider who administers the SFL. Multiple service providers 
at the same level will be differentiated by their SFLs at the 
lower level. The combination of the SFLs across different 
levels in a label stack uniquely identifies a service at any layer 
in a physical substrate domain.  

We now discuss SFL format and the process to establish 
and terminate an SFL. As shown in Fig.3, each SFL is 
represented by 4 octets. Starting from bit 0 of the 4 octets, the 

Fig. 2. Illustration of recursive network virtualization. 



first 30 bits hold the label, bit 30 is reserved for experimental 
use, bit 31 is the top-of-stack bit (S).  The S bit is set to one for 
the last entry in a label stack, and zero for all other label entries 
in the stack. As the header at Layer 5, SFL can run either over 
UDP or TCP making it applicable to all kinds of traffic 
belonging to the same service instance.   

 

Fig. 3. (a) Format of Service Forwarding Label; (b) Illustration of a packet 

header with SFL stack. 

Each SFL is associated with a lifetime. When the lifetime 
expires, the SFL will be terminated or be renewed. This 
dynamic mechanism allows a service provider to maintain a 
smaller pool of SFLs.  

We propose to add the SFL field as a match field in the 
flow table of an OpenFlow switch. Different from other 
existing approaches, an SFL does not have to be mapped to an 
IP address. The SFL match field can be used alone or in 
combination with other match fields to define a flow. When 
used alone, it allows an OpenFlow switch to forward traffic 
only based on the SFL in a packet. With our approach, 
transport and IP layers will stay the same.  

There are various scenarios that may happen during the 
lifetime of a SFL. The procedures for establishing and 
terminating SFL depend on the actual scenario encountered. A 
typical scenario is shown in Fig. 4. We describe the procedures 
step by step in the following part. 

 A client sends a service request to the OFC of a service 
provider with its user ID and requested service type 
using HTTP request message. Metadata can be sent 
through HTTP Post message; 

 The OFC of the service provider decides whether it can 
accept the request by applying optimization process 
which determines how to route traffic and allocate 
resources for the requested service within the service 
provider domain; 

 If the request is admissible, the OFC will create a new 
SFL which is unique to the service provider and send 
the SFL and associated lifetime to the client, and 
relevant OpenFlow switches or middle-boxes that need 
to steer or process traffic based on the SFL through an 
OpenFlow OFPT_FLOW_MOD message; 

 Upon receiving the message from the OFC, the 
OpenFlow switches or middle-boxes will set the SFL 
and its lifetime into their flow tables as part of a rule 
set; 

 The OFC will send HTTP response message with the 
SFL and associated lifetime to the client confirming the 
acceptance of the request; 

 The client will add the label as Layer 5 header to its 
packets destined for the requested service and send 
them out; 

 When the packets reach the switches or middle-boxes 
within the service provider network, the service 
provider will match the Layer 5 header (and other 
headers in other layers if necessary) to its rule set and 
decide how to forward or process the packets based on 
their service requirement; 

 The switches or middle-boxes will then process those 
packets and steer  them to the next switch or middle-
box if necessary; 

 When the lifetime of the SFL expires, the client can 
choose either to renew the service or leave. If it decides 
to renew, it will send a HTTP request message with the 
SFL to the OFC, the above procedures will be repeated 
except that the original SFL will be used instead of 
generating a new SFL. 

In the next section, we will discuss some use cases that will 
help illustrate how the SFL can be used in real applications. 

IV. SAMPLE USE CASES 

There are numerous use cases that the proposed SFL can be 
applied to. We will discuss some common use cases briefly in 
this section. 

The first use case is the virtual network service we 
mentioned earlier. Here a physical network provider will serve 
as the service provider and service network providers will 
serve as clients. Service network providers request virtual 
networks from the physical network provider. Each service 
network provider will have full control over its virtual network.  

 

Fig. 4. Flowchart of labeling process. 



One issue we mentioned earlier is that the address space 
used by service providers can be overlapped. An example is 
shown in Fig. 5 where Client Network 1 owns Virtual Network 
1 and Client Network 2 owns Virtual Network 2. Both Virtual 
Network 1 and Virtual Network 2 share a physical network 
owned by a SDN network provider. When a packet reaches a 
switch in the SDN network, the switch needs to decide which 
virtual network the packet belongs to.  

Through the procedures discussed in the last section, each 
client network will receive an SFL assigned by the SDN 
network as an identifier of its virtual network. The client 
network will inform its users of adding the SFL for all packets 
that need to use the virtual network it owns. When packets 
reach the switches in the SDN network, they can be 
differentiated using their SFLs even though their IP address 
spaces may be overlapped. This can be done by a simple match 
in the flow table. Without SFL, multiple header fields may 
need to be matched in order to identify packets belong to a 
virtual network, which will likely cause flow table fragmented 
and bloated.   

    

 

Fig. 5. Virtual networks with overlapped address space. 

When recursive network virtualization is deployed, each 
service network will serve as client as well as service provider 
at the same time. As a client, it receives a SFL from the service 
provider one level below it. As the service provider, it 
administers the SFLs that identify the virtual networks it sells.  
A physical switch can use multiple levels of the label stack to 
steer packets for the correct virtual networks they belong to.  

Now we look at the second use case that demonstrates how 
SFC can be supported. It is easy to see that an SFC instance 
can be realized using NFV where each virtual node represents 
a specific service such as firewall that can be dynamically 
mapped to a physical node in the lower level. By the 
virtualization of a service chain, dynamic sharing of physical 
resources can be achieved. Traffic flows for different service 
chain instances can be uniquely identified and steered by the 
combinations of the multiple SFLs in their label stacks. This 
enables great flexibility and leads to significant cost reduction 
in OPEX. An example is illustrated in Fig.6.    

One of the key issues introduced by the hierarchy of 
recursive SFC relationship is the relationship between different 
levels. There are three types of relationship that can be 

envisioned. The first one is called independent relationship 
where the lower level is agnostic of the SFCs created by upper 
levels. Therefore all the service functions created by an upper 
level will be implemented and enforced at the upper level SFC 
modules while the lower level modules are completely 
unaware. When traffic arrives at a lower level module, the 
module processes the incoming traffic based on its service 
function requirements and de-multiplexes the traffic to the 
right upper level module using the SFLs it assigned. The lower 
level module does not execute the service functions of upper 
level. The upper level applies different service functions based 
on the SFLs it assigned. In this case, the upper level module 
does not have to be the same type as the lower level module.  

Another type is the opaque relationship where service 
functions defined by the upper level require collaboration from 
lower level. For example, Enterprise B may inform Cloud 
Provider A about some service functions it needs and ask 
Cloud Provider A to help implement those service functions. 
When traffic arrives at Cloud Provider A, it will identify traffic 
flows using both the SFL it assigned and the SFL assigned by 
upper level as a concatenated ID and then apply associated 
service functions. The traffic stream will be delivered to upper 
level module for extra service functions. In this case, upper 
level functions inherit properties from lower level functions. 
They are also constrained by the functions available from 
lower level. However the upper level can create new properties 
such as new firewall rules as long as it doesn’t violate the 
constraint posed by the lower level. Whenever service 
functions at lower level are changed, upper level service 
functions will also be changed. However changes made to the 
upper level may not apply to lower level. In reality, a tenant is 
more likely to retain some functions as independent (e.g. 
encryption function) and some functions as opaque (e.g. load 
balance). 

Other than the two types mentioned above, it is also 
possible that Enterprise C, as a customer of Enterprise B,  may 
delegate its administrative role to Enterprise B, which in turn 
delegates its authority to Cloud Provider A. The benefit of this 
single administrative domain approach is that Enterprises B 
and C do not need to handle the administrative work. However, 
both B and C need to disclose all information to A, forming a 
transparent relationship. With transparent relationship, Cloud 
Provider A has to implement all SFCs with a hierarchical 
structure that satisfies the roles and responsibilities distributed 
according to the organizational structure of Enterprises B and 
C. This kind of structured service is likely to become one of the 
SFC deployment paradigms. 

Application service providers such as Google are 
increasingly interested in providing different treatments [8] to 
different types of customers, e.g. subscribers vs. casual users. 
Based on the SFLs they are carrying, user traffic flows can be 
steered to different environments with different networking and 
computing resources provisioned. Under this context, SFL 
provides a simple and effective hook that connects applications 
to physical layer devices directly and enables application-
centric traffic steering.  For example, there are many existing 
Quality of Service (QoS) schemes such as VLAN and 
DiffServ. But they are Layer 2 or 3 mechanisms that are hard 
to scale to end-to-end applications. As mentioned earlier, it is 



difficult to maintain any code points in headers up to Layer 4 
for end-to-end services due to middle boxes and different 
domains a packet may traverse. By sitting at Layer 5, our SFL 
can travel through networks and middle boxes easily and 
therefore provide a very strong support for various end-to-end 
applications.  

 

 

Fig. 6. Service chain as network function virtualization. 

 There are many other application scenarios that can 
demonstrate the usage of SFL. For example, a service provider 
may want some of its user traffic be protected from server or 
link failures while other traffic not. When a server or link 
failure happens, the traffic that needs protection is steered to a 
protection path. In OpenFlow switches, packets that require 
protection will be matched at a group table instead of the 
regular flow table. Therefore incoming packets must be de-
multiplexed into regular flow table or group table based on 
whether they need protection or not. The proposed SFL 
provides an excellent option to achieve this function. 
Specifically, we can assign one SFL to identify traffic 
requiring protection and another SFL for traffic not requiring 
protection. As shown in Fig.7, when packets arrive at a switch, 
it first goes to a regular flow table. If the SFL matching 
indicates a packet without protection requirement, other header 
fields will be matched as regular case; otherwise, the packets 
will be forwarded to a group table for protection matching.   

 

Fig. 7. Forwarding packets with or without protection. 

V. CONCLUSION 

By separating control plane from data plane and 
centralizing resource allocation, SDN has the potential to allow 
network and service providers to create a variety of new 
services. Existing SDN products have been focused on some 
basic functions such as flow setup and teardown. The potential 
to create new services has not been fully explored.  

In this paper, we proposed a universal group-based SFL as 
an identifier for service instance. It is controlled by service 
providers and used by clients and OpenFlow switches to steer 
traffic to different services. The format of SFL is simple 
enough to minimize overhead. Through SFL stacking, 
recursive services such as recursive network virtualization can 
be supported easily while allowing different entities to exercise 
their controls over their own resources. With SFL as a Layer 5 
mechanism, it can traverse middle-boxes and legacy networks 
without any changes so that the relationship between clients 
and service providers can be maintained end-to-end.  

We have demonstrated various use cases ranging from 
network virtualization, service chaining, to application-centric 
traffic steering. Through these use cases, we can see that the 
proposed mechanism is simple to implement with existing 
protocols and technologies and can effectively enable various 
new services. In specific, we introduced recursive service as an 
important requirement for scaling up business relationship. We 
illustrate how the SFL can be used to support recursive service 
through stacking. 
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