
A Universal Protocol Mechanism for Network

Function Virtualization and Application-Centric

Traffic Steering

Changcheng Huang

Department of Systems and Computer Engineering

Carleton University

Ottawa, Canada

huang@sce.carleton.ca

Jiafeng Zhu

Huawei Technologies Inc.

Santa Clara, US

jiafeng.zhu@huawei.com

Abstract— New services such as network virtualization,

service chaining, and application-centric traffic steering bring

new opportunities for network providers and service providers.

While Software Defined Network is poised to support new

services, it is still in development stage. Mechanisms supporting

new services are still missing. In this paper, we propose a new

application driven mechanism called Service Forwarding Label

that can be used as a universal group-based label to differentiate

various services and forward packets based on different service

requirements. Compared with existing solutions such as VXLAN,

our SFL approach provides universal support for a variety of

existing and new services with much less overhead.

Keywords—Software Defined Network, Network Function

Virtualization, Traffic Steering, Service Chaining, VXLAN

I. INTRODUCTION

Routing and forwarding in Software Defined Network
(SDN) is based on a flow concept that is more general than the
traditional 5-tuple IP flow. As stated in OpenFlow specification
[1], each OpenFlow switch will have a flow table with each
flow entry having a set of match fields for matching packet
headers. A match field may be wildcarded (match any value) or
bitmasked so that an arbitrary flow can be defined as matching
all the match fields of a flow entry. While this may seem to be
quite flexible, it is still under the constraint of the existing
packet header fields. If a new service cannot be clearly defined
by the existing header fields, the service is hard to be deployed.
Although there may be numerous such new services, we only
discuss three of them to demonstrate the issues in the following
paragraphs.

One of the primary new services that have been envisioned
is the network virtualization, which allows physical network
provider to sell different virtual networks to different service
network providers [2]. Each service network provider can use
its virtual network just like the way it uses its own private
network while sharing underlying physical network resources
with other service network providers. The physical network
provider, on the other hand, can enjoy new revenue growth
through selling virtual networks with different granularities. In
order to do so, each router/switch in a physical network must
have the capability to differentiate packets belonging to
different virtual networks and forward them differently as

required. This is not an easy task with current packet header
structure.

Service function chaining (SFC) is another area that SDN
can play an important role. Traditionally an SFC consists of a
set of dedicated network service boxes such as firewall, load
balancers, and application delivery controllers that are
concatenated together to support a specific SFC [3]. With a
new service, new devices must be installed and interconnected
in certain order. This can be a very complex, time-consuming,
and error-prone process, requiring careful planning of topology
changes and network outages and incurring high OPEX. This
situation is exacerbated when a tenant requires different service
sequences for different traffic flows or when multiple tenants
share the same datacenter network. Through network function
virtualization (NFV) service, SDN can dynamically create a
virtual environment for a specific SFC and eliminate the
complex hardware and labor work. However each virtual node
in a service provider network must have the capability to
differentiate packets belonging to different SFCs so that it can
process and forward them differently. This can be very
challenging because each virtual node is in a virtual network
rather than a physical network.

The third area is application-centric traffic steering.
Application service providers have tried various ways to
differentiate their users so that they can maximize their
revenues and minimize their costs [4]. The fact that a user
today is likely to have multiple access devices and his/her
location is typically mobile has made it very hard to route and
steer packets based on application characteristics.

There are various proposals to address the abovementioned
issues. A good example is VXLAN [5], which is designed with
two major objectives: a) to extend Virtual LAN (VLAN)
service from a local area network to a network that can span an
IP network; b) to address the shortage of VLAN ID. It
advocates the architecture that overlays virtualized Layer 2
networks over Layer 3 networks. A 24-bit VXLAN network
identifier is added to allow identifications of more than 16M
different VLANs. While VXLAN can be implemented
relatively easily with existing technologies, it has several major
disadvantages that make it difficult to meet the long term
challenges. First, VXLAN is an extension of Layer 2 VLAN.
Its main objective is to extend VLAN service rather than to

support arbitrary new services. Therefore, it inherits
characteristics of Layer 2 technologies, which make it far away
from application-centric concept. It is hard to generalize the
VLANs supported by VXLAN to other services such as service
chaining. Second, it is hard to support resource allocation and
optimization for virtual networks due to its distributed nature.
Third, the overhead for overlaying Layer 2 networks over
Layer 3 networks is overwhelming. Fourth, it is hard to
imagine how to support recursive services (discussed more in
the next section) with VXLAN.

OpenADN [4] is another option that has been proposed
recently. With OpenADN, two new labels are added, one at
Layer 3.5 and another at Layer 4.5. The label at Layer 3.5 is
used for hop-by-hop transport between waypoints in a segment
and the label at Layer 4.5 is used for segment switching. Both
labels cannot be used as an end-to-end identifier of a service.
Furthermore, issues such as recursive services still cannot be
supported.

Similar to OpenADN, Serval [6] tries to address the issues
related to mobility and multi-homed services by adding a
Service Access Layer (SAL), sitting between the network and
transport layer, that gives a group-based service abstraction.
The SAL includes a source flow ID, a destination flow ID, and
a service ID. The two flow IDs are used to de-multiplex traffic
at the receiving host. The service ID is used to identify a
service. However, Serval assumes packets are still forwarded
based on their IP addresses, which requires dynamic binding
between service IDs and IP addresses through control plan. It
may also be hard to maintain the service ID after going through
a middle box. Serval also does not support recursive service.

In this paper, we propose a new Service Forwarding Label
(SFL) mechanism at Layer 5 that can be used to identify a
group-based service instance for packet forwarding so that
NFV and application-centric traffic steering can be realized
with very little overhead. Our label creation process is
application driven, allowing close integration of applications
and forwarding functions. Different from existing approaches,
we do not require the binding between SFL and IP address. By
utilizing the flow concept in SDN, packets may be forwarded
directly based on their SFLs.

The paper is organized as follows. In Section II, we will
discuss in more detail about the issues to be resolved and the
recursive service concept. In Section III, we will propose our
SFL scheme. This will be followed by several use case
scenarios in Section IV. We will finish the paper with some
concluding remarks in Section V.

II. RECURSIVE SERVICES

In a real world, it is quite common that users, service
providers, and network providers are separate entities. They
may all have their own objectives that may conflict with each
other. Take the example of enterprise network. With the fast
growth of datacenters, enterprises are becoming increasingly
interested in outsourcing their enterprise networks to
datacenters. Under this scenario, the owner of the physical
network now is the owner of the datacenter, such as Amazon.
The service network providers are the enterprises who
outsource their enterprise networks to the datacenters.

Therefore a service provider is independent from the network
provider as well as independent from other service network
providers who share the same physical network. Recognizing
this need, the pioneers of SDN advocate a layer called
FlowVisor [7] that plays the same role as the hypervisor for
virtual machines. FlowVisor allows a physical network
provider to partition its physical network into slices for various

Fig. 1. The architecture of virtual network service.

service network providers. Each service network provider can
virtually own one slice which has its own virtual network
topology and related resources generated through a topology
abstraction process. The service network provider can then
optimize its usage of the slice which it owns. A physical
network provider can sell network virtualization service to
service providers with different granularities at different prices.
This will change the situation that physical network providers
today can only sell pipes and equip physical network providers
a new venue for revenue growth.

 The SDN architecture [1] for virtual network service is
shown in Fig. 1. As shown in the figure, each entity has its own
OpenFlow Controller (OFC). The OFC of a service provider is
in charge of routing user flows and optimizing resource usage
within its own virtual topology. The OFC of the network
provider will execute the topology abstraction process through
a topology virtualizer based on a global topology map of the
underlying physical network.

It is envisioned in SDN architecture that a service provider
can further partition its virtual network and sell virtual network
service to other service providers. This kind of recursive
network virtualization is illustrated in Fig. 2. As shown in the
figure, a network provider sells a virtual network to a tier-1
service provider who in turn sells a virtual network to a tier-2
service provider. This process can continue several iterations
making service providers become network providers in a
recursive manner. This kind of recursive service is becoming
popular today. For example, Amazon sells virtual server
service to Netflix and Netflix in turn sells video streaming
service to its clients.

While virtual network is a powerful concept, it also faces
several challenges to be addressed. These include overlapping
address spaces, middle-box traversal, SDN network migration,
multiple tenants, etc. We will briefly discuss these problems in
the following paragraphs.

As we mentioned earlier, each service provider treats its
virtual network as its private property. They decide how to
assign VLAN IDs and IP addresses within their own virtual
networks without consulting each other. Most likely they will
use private IP address blocks to avoid the shortage of address
space. This creates a high possibility of overlapped address
spaces being used by multiple virtual networks sharing the
same physical network. Using Fig.1 as an example, if the two
virtual networks owned by Tenant A and Tenant B respectively
use the same address space, switches in the physical network
will not be able to differentiate packets for the two virtual
networks. Clearly some mechanism is required to identify
packets belonging to different virtual networks.

In a service chain application, packets need to traverse
multiple middle-boxes before reaching their destinations. Each
middle-box such as firewall or load balancer provides
functions that may require processing packets up to the
transport layer. Therefore the header information including all
layers up to the transport layer will not be maintained end-to-
end. This will make it difficult for physical switches to steer
traffic to the correct next middle-box on the path to the
destination. This issue suggests that an end-to-end ID above
the transport layer is required to identify traffic belonging to
the same service chain.

SDN as a new architecture is attracting many vendors and
network providers. Given the size of the Internet today, the
evolution towards SDN networks will likely be a long and slow
process. It is easy to see that SDN networks will be deployed
initially as islands within Internet. Datacenters, for example,
are the first place where SDN will be adopted early. When

datacenters provide virtual network services to clients, most of
the clients are unlikely to be attached directly to the
datacenters. Therefore, traffic from these clients has to travel
through legacy IP networks before they can reach SDN based
datacenters. Any information used to identify virtual networks
in the lower three layers may be lost when traffic reaches the
datacenters. Inter-datacenter traffic may also span multiple
legacy IP networks making it difficult to support virtual
networks across multiple datacenters.

Recursive network virtualization raises another new
challenge. As we mentioned earlier, each virtual network may
be owned by a different entity. This leads to the situation that
multiple entities may be involved in recursive network
virtualization. Each entity has the right to control the resources
within its own virtual network and decide how to route traffic
based on its own policy. Orchestration among multiple OFCs is
calling for simple mechanisms that help streamline business
relationship among different entities.

In summary, the above mentioned challenges must be
addressed before the benefits of SDN can be fully realized. In
the next section, we will describe in detail how our SFL works.

III. SERVICE FORWARDING LABEL

As discussed in the last section, we need an ID that can be
used to identify a group-based service instance (In our context,
a virtual network or a service chain instance is considered as a
single service instance. A mobile user with multiple devices
can also be treated as a service instance). This ID needs to sit
above Layer 4 so that it can stay intact while a packet traverses
legacy IP networks and middle-boxes. This naturally points to
an ID at Layer 5.

In OSI model, Layer 5 is called the session layer which is
designed to establish, manage, and terminate connections
between local and remote applications. A good example is a
video conference session where multiple parties join and leave
dynamically. This bears similarity to a service instance such as
a virtual network that has many nodes and carries a large
number of dynamic traffic flows. This similarity motivates us
to define an ID at Layer 5 for the identification of a service
instance. We call this ID as Service Forwarding Label (SFL).

SFLs will be created and maintained by a service provider
and used by its clients and OpenFlow switches to identify and
steer traffic belonging to different service instances. SFLs can
be stacked for applications such as recursive service where
each level of the stack is administered by the owner of the
service level in a recursive business relationship as discussed in
the last section. This allows easy scale to multiple levels of
services with multiple ownerships nested in the SFL stack.

An SFL must be unique within the space of the service
provider who administers the SFL. Multiple service providers
at the same level will be differentiated by their SFLs at the
lower level. The combination of the SFLs across different
levels in a label stack uniquely identifies a service at any layer
in a physical substrate domain.

We now discuss SFL format and the process to establish
and terminate an SFL. As shown in Fig.3, each SFL is
represented by 4 octets. Starting from bit 0 of the 4 octets, the

Fig. 2. Illustration of recursive network virtualization.

first 30 bits hold the label, bit 30 is reserved for experimental
use, bit 31 is the top-of-stack bit (S). The S bit is set to one for
the last entry in a label stack, and zero for all other label entries
in the stack. As the header at Layer 5, SFL can run either over
UDP or TCP making it applicable to all kinds of traffic
belonging to the same service instance.

Fig. 3. (a) Format of Service Forwarding Label; (b) Illustration of a packet

header with SFL stack.

Each SFL is associated with a lifetime. When the lifetime
expires, the SFL will be terminated or be renewed. This
dynamic mechanism allows a service provider to maintain a
smaller pool of SFLs.

We propose to add the SFL field as a match field in the
flow table of an OpenFlow switch. Different from other
existing approaches, an SFL does not have to be mapped to an
IP address. The SFL match field can be used alone or in
combination with other match fields to define a flow. When
used alone, it allows an OpenFlow switch to forward traffic
only based on the SFL in a packet. With our approach,
transport and IP layers will stay the same.

There are various scenarios that may happen during the
lifetime of a SFL. The procedures for establishing and
terminating SFL depend on the actual scenario encountered. A
typical scenario is shown in Fig. 4. We describe the procedures
step by step in the following part.

 A client sends a service request to the OFC of a service
provider with its user ID and requested service type
using HTTP request message. Metadata can be sent
through HTTP Post message;

 The OFC of the service provider decides whether it can
accept the request by applying optimization process
which determines how to route traffic and allocate
resources for the requested service within the service
provider domain;

 If the request is admissible, the OFC will create a new
SFL which is unique to the service provider and send
the SFL and associated lifetime to the client, and
relevant OpenFlow switches or middle-boxes that need
to steer or process traffic based on the SFL through an
OpenFlow OFPT_FLOW_MOD message;

 Upon receiving the message from the OFC, the
OpenFlow switches or middle-boxes will set the SFL
and its lifetime into their flow tables as part of a rule
set;

 The OFC will send HTTP response message with the
SFL and associated lifetime to the client confirming the
acceptance of the request;

 The client will add the label as Layer 5 header to its
packets destined for the requested service and send
them out;

 When the packets reach the switches or middle-boxes
within the service provider network, the service
provider will match the Layer 5 header (and other
headers in other layers if necessary) to its rule set and
decide how to forward or process the packets based on
their service requirement;

 The switches or middle-boxes will then process those
packets and steer them to the next switch or middle-
box if necessary;

 When the lifetime of the SFL expires, the client can
choose either to renew the service or leave. If it decides
to renew, it will send a HTTP request message with the
SFL to the OFC, the above procedures will be repeated
except that the original SFL will be used instead of
generating a new SFL.

In the next section, we will discuss some use cases that will
help illustrate how the SFL can be used in real applications.

IV. SAMPLE USE CASES

There are numerous use cases that the proposed SFL can be
applied to. We will discuss some common use cases briefly in
this section.

The first use case is the virtual network service we
mentioned earlier. Here a physical network provider will serve
as the service provider and service network providers will
serve as clients. Service network providers request virtual
networks from the physical network provider. Each service
network provider will have full control over its virtual network.

Fig. 4. Flowchart of labeling process.

One issue we mentioned earlier is that the address space
used by service providers can be overlapped. An example is
shown in Fig. 5 where Client Network 1 owns Virtual Network
1 and Client Network 2 owns Virtual Network 2. Both Virtual
Network 1 and Virtual Network 2 share a physical network
owned by a SDN network provider. When a packet reaches a
switch in the SDN network, the switch needs to decide which
virtual network the packet belongs to.

Through the procedures discussed in the last section, each
client network will receive an SFL assigned by the SDN
network as an identifier of its virtual network. The client
network will inform its users of adding the SFL for all packets
that need to use the virtual network it owns. When packets
reach the switches in the SDN network, they can be
differentiated using their SFLs even though their IP address
spaces may be overlapped. This can be done by a simple match
in the flow table. Without SFL, multiple header fields may
need to be matched in order to identify packets belong to a
virtual network, which will likely cause flow table fragmented
and bloated.

Fig. 5. Virtual networks with overlapped address space.

When recursive network virtualization is deployed, each
service network will serve as client as well as service provider
at the same time. As a client, it receives a SFL from the service
provider one level below it. As the service provider, it
administers the SFLs that identify the virtual networks it sells.
A physical switch can use multiple levels of the label stack to
steer packets for the correct virtual networks they belong to.

Now we look at the second use case that demonstrates how
SFC can be supported. It is easy to see that an SFC instance
can be realized using NFV where each virtual node represents
a specific service such as firewall that can be dynamically
mapped to a physical node in the lower level. By the
virtualization of a service chain, dynamic sharing of physical
resources can be achieved. Traffic flows for different service
chain instances can be uniquely identified and steered by the
combinations of the multiple SFLs in their label stacks. This
enables great flexibility and leads to significant cost reduction
in OPEX. An example is illustrated in Fig.6.

One of the key issues introduced by the hierarchy of
recursive SFC relationship is the relationship between different
levels. There are three types of relationship that can be

envisioned. The first one is called independent relationship
where the lower level is agnostic of the SFCs created by upper
levels. Therefore all the service functions created by an upper
level will be implemented and enforced at the upper level SFC
modules while the lower level modules are completely
unaware. When traffic arrives at a lower level module, the
module processes the incoming traffic based on its service
function requirements and de-multiplexes the traffic to the
right upper level module using the SFLs it assigned. The lower
level module does not execute the service functions of upper
level. The upper level applies different service functions based
on the SFLs it assigned. In this case, the upper level module
does not have to be the same type as the lower level module.

Another type is the opaque relationship where service
functions defined by the upper level require collaboration from
lower level. For example, Enterprise B may inform Cloud
Provider A about some service functions it needs and ask
Cloud Provider A to help implement those service functions.
When traffic arrives at Cloud Provider A, it will identify traffic
flows using both the SFL it assigned and the SFL assigned by
upper level as a concatenated ID and then apply associated
service functions. The traffic stream will be delivered to upper
level module for extra service functions. In this case, upper
level functions inherit properties from lower level functions.
They are also constrained by the functions available from
lower level. However the upper level can create new properties
such as new firewall rules as long as it doesn’t violate the
constraint posed by the lower level. Whenever service
functions at lower level are changed, upper level service
functions will also be changed. However changes made to the
upper level may not apply to lower level. In reality, a tenant is
more likely to retain some functions as independent (e.g.
encryption function) and some functions as opaque (e.g. load
balance).

Other than the two types mentioned above, it is also
possible that Enterprise C, as a customer of Enterprise B, may
delegate its administrative role to Enterprise B, which in turn
delegates its authority to Cloud Provider A. The benefit of this
single administrative domain approach is that Enterprises B
and C do not need to handle the administrative work. However,
both B and C need to disclose all information to A, forming a
transparent relationship. With transparent relationship, Cloud
Provider A has to implement all SFCs with a hierarchical
structure that satisfies the roles and responsibilities distributed
according to the organizational structure of Enterprises B and
C. This kind of structured service is likely to become one of the
SFC deployment paradigms.

Application service providers such as Google are
increasingly interested in providing different treatments [8] to
different types of customers, e.g. subscribers vs. casual users.
Based on the SFLs they are carrying, user traffic flows can be
steered to different environments with different networking and
computing resources provisioned. Under this context, SFL
provides a simple and effective hook that connects applications
to physical layer devices directly and enables application-
centric traffic steering. For example, there are many existing
Quality of Service (QoS) schemes such as VLAN and
DiffServ. But they are Layer 2 or 3 mechanisms that are hard
to scale to end-to-end applications. As mentioned earlier, it is

difficult to maintain any code points in headers up to Layer 4
for end-to-end services due to middle boxes and different
domains a packet may traverse. By sitting at Layer 5, our SFL
can travel through networks and middle boxes easily and
therefore provide a very strong support for various end-to-end
applications.

Fig. 6. Service chain as network function virtualization.

 There are many other application scenarios that can
demonstrate the usage of SFL. For example, a service provider
may want some of its user traffic be protected from server or
link failures while other traffic not. When a server or link
failure happens, the traffic that needs protection is steered to a
protection path. In OpenFlow switches, packets that require
protection will be matched at a group table instead of the
regular flow table. Therefore incoming packets must be de-
multiplexed into regular flow table or group table based on
whether they need protection or not. The proposed SFL
provides an excellent option to achieve this function.
Specifically, we can assign one SFL to identify traffic
requiring protection and another SFL for traffic not requiring
protection. As shown in Fig.7, when packets arrive at a switch,
it first goes to a regular flow table. If the SFL matching
indicates a packet without protection requirement, other header
fields will be matched as regular case; otherwise, the packets
will be forwarded to a group table for protection matching.

Fig. 7. Forwarding packets with or without protection.

V. CONCLUSION

By separating control plane from data plane and
centralizing resource allocation, SDN has the potential to allow
network and service providers to create a variety of new
services. Existing SDN products have been focused on some
basic functions such as flow setup and teardown. The potential
to create new services has not been fully explored.

In this paper, we proposed a universal group-based SFL as
an identifier for service instance. It is controlled by service
providers and used by clients and OpenFlow switches to steer
traffic to different services. The format of SFL is simple
enough to minimize overhead. Through SFL stacking,
recursive services such as recursive network virtualization can
be supported easily while allowing different entities to exercise
their controls over their own resources. With SFL as a Layer 5
mechanism, it can traverse middle-boxes and legacy networks
without any changes so that the relationship between clients
and service providers can be maintained end-to-end.

We have demonstrated various use cases ranging from
network virtualization, service chaining, to application-centric
traffic steering. Through these use cases, we can see that the
proposed mechanism is simple to implement with existing
protocols and technologies and can effectively enable various
new services. In specific, we introduced recursive service as an
important requirement for scaling up business relationship. We
illustrate how the SFL can be used to support recursive service
through stacking.

REFERENCES

[1] https://www.opennetworking.org/

[2] M.M.M.K. Chowdhury and R. Boutaba, “Network virtualization: state
of the art and research challenges,” IEEE Communications Magazine 47
(7),20-26.

[3] D. Jacobs, “How SDN and NFV simplify network service chain
provisioning,” http://searchsdn.techtarget.com/tip/How-SDN-and-NFV-
simplify-network-service-chain-provisioning.

[4] S. Paul, R. Jain, J. Pan, J. Iyer, D. Oran, “OpenADN: A Case for Open
Application Deliver Network,” Proceedings of ICCCN 2013, July 2013,
Nassau, Bahamas.

[5] M. Mahalingam, et al., “VXLAN: A Framework for Overlaying
Virtulized Layer 2 Networks over Layer 3 Networks,” IETF draft,
http://datatracker.ietf.org/doc/draft-mahalingam-dutt-dcops-vxlan/.

[6] E. Nordstrom, et al., “Serval: an end-host stack for service-centric
networking,” Proceeding of 9th USENIX Symposium on Networked
Systems Design and Implementation, April 25-27, 2012, San Jose, US.

[7] R. Sherwood, et al., “FlowVisor: A Network Virtualization Layer,”
OPENFLOW-TR-2009-1, OpenFlow Consortium, October 2009

[8] S. Jain, et al., “B4: Experience with a Globally-Deployed Software
Defined WAN,” ACM SIGCOMM 2013, August 12-16, 2013, Hong
Kong

