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A Deterministic Bound for the
Access Delay of Resilient Packet Rings

Changcheng Huang, Member, IEEE, Harry Peng, and Fengjie Yuan

Abstract— Resilient Packet Ring (RPR) is a new technology
being standardized by the IEEE 802.17 working group. This
paper presents a ring access delay bound under steady state. The
bound is then proved analytically. Furthermore we show that the
bound is tight by constructing a worst-case traffic scenario. It
is shown that straight overloading scenarios are not the worst
case.

Index Terms— Multiple access protocols, performance analysis,
high-speed networks.

I. INTRODUCTION

ARESILIENT Packet Ring (RPR) [1] network is a ring-
based architecture that consists of two counter-rotating

rings with each station connecting to two adjacent stations over
a link pair. In the past three decades, various ring technologies
have been proposed in literature and some of them have
been standardized. Token ring [2], for example, is one of the
earliest ring protocols that have been standardized. MetaRing
[3], a well-known scheme that supports spatial reuse, deploys
a quota-based fairness scheme with maximum access delays
within the order of ring round trip times [4].

The RPR scheme discussed in this paper tries to minimize
the access delay by using a rate-based control approach rather
than the quota-based one adopted by all the aforementioned
schemes. It divides a congestion period into two stages: transit
and steady state. The transit behavior of a RPR network is
similar to MetaRing. But the access delays under steady state
are significantly smaller than transit state and they do not
depend on either the ring size or the size of a congestion
span. This difference may not be useful if congestion periods
are short. But it is well known that Internet traffic shows strong
self-similar nature, where congestion periods are typically long
and sustained [5]. The improvement over access delays under
steady state allows RPR to scale to much larger ring sizes
(e.g. 2000km) and much higher ring speeds (e.g. 10 Gb/s or
above) so that it can be applied to MAN/WAN applications.

In this paper, a bound for the access delays under steady
state is developed. It is shown that the bound is much smaller
than the bounds in [4].
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Fig. 1. An example of a congestion span and burst concatenation.

II. THE CM-RPR SCHEME

A typical RPR node with single transit buffer deploys a
priority-based scheduler. The scheduler under the conservative
mode (CM) defined in the draft RPR standard chooses data
packets from five queues according to the following order:
packets from transit buffer, packets from Class A transmit
buffer, packets from Class B transmit buffer, packets from in-
span Class C transmit buffer, packets from out-of-span Class C
transmit buffer. Because the pass-through traffic has absolute
priority over the add-in traffic, only a very small transit buffer
(one or two packets) is required. This significantly simplifies
the hardware implementation of the MAC. But on the other
hand all add-in traffic streams may experience ring access
delays. For high priority traffic (Class A and Class B) this ring
access delay contributes a delay jitter that must be minimized.
To reduce the ring access delay, a fairness algorithm based
on feedback control is designed to control the access of low
priority traffic (Class C) at each node of a congestion span
during periods of congestion. Fig. 1 gives an example of a
congestion span, which is defined as the span of all nodes
contributing to the congestion on a link. A congestion span
typically consists of a head node, several chain nodes and
a tail node. A node that detects a congested outgoing link
is defined as the head node. Based on the utilization of its
downstream link, the head node calculates a fair rate for
Class C traffic and then advertises it to the upstream nodes
in the span when congestion happens. Having received the
normalized advertised rate from the downstream node, each
node calculates its target rate and then applies the rate to its
leaky bucket for the out-of-span Class C traffic. Assume there
be N nodes (node 1 - node N ) in a congestion span. Let ρi be
the token rate of the leaky bucket at node i, wi be the weight
assigned to node i, UT be the target utilization, C be the link
speed and CH be the mean rate of high priority traffic (Class
A and B) on the outgoing link of node N , then we will have

ρi =
wi∑N

j=1 wj

(UT C − CH) (1)
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Using this scheme, the CM-RPR fairness algorithm distributes
any spare capacity to all the nodes in the congestion span in
a weighted fashion.

III. A BOUND FOR ACCESS DELAYS

UNDER STEADY STATE

Based on the scheduling algorithm described in the last
section, we have the following observations:

1) The ring access delays for add-in traffic flows are
caused by either bursts of pass-through traffic or their
own shapers (i.e. empty leaky buckets). The access
delays caused by their own shapers are small during
a congestion period when ring speeds are high. So we
are going to focus on the access delays caused by the
bursts of the pass-through traffic;

2) Each node in a congestion span can generate traffic
bursts contributing to the access delays seen by down
stream nodes. Because the peak rates of the high priority
add-in traffic of upstream nodes are shaped strictly
according to CIR’s (Committed Information Rate), the
maximum high priority burst a node can generate is one
packet. On the other hand, low priority add-in traffic
streams of upstream nodes are shaped by token buckets
which allow much larger bursts decided by their bucket
sizes. So in this paper, we will neglect the bursts caused
by high priority traffic (i.e. CH = 0 ). We are interested
in the case that low priority pass-through traffic bursts
block high priority add-in traffic flows at the down
stream nodes;

3) As shown in Fig. 1, the bursts generated by upstream
nodes can sometimes concatenate together to form a
longer burst when they reach downstream nodes. Clearly
the longest burst seen by a downstream node can be
decided by the possible aggregation of the longest bursts
generated by all upstream nodes in a congestion span.
The transit buffers may contribute extra bursts, but have
very little impact because their sizes are too small. So in
the following, we will neglect transit buffers to simplify
our analysis.

We are only interested in developing a steady state bound
in this paper. Steady state means that the fairness algorithm
has been triggered during a sustained congestion period and
each node in a congestion span has applied a target rate to its
leaky bucket for Class C traffic based on the advertised rate.

Theorem 1. For a congestion span with N +1 nodes where
each node i is regulated by a leaky bucket with parameters
(σi, ρi), then the access delays for high priority traffic at the
Node N + 1 is bounded by

BN =
∑N

i=1 σi

C − ∑N
i=1 ρi

(2)

Proof: The constraints imposed by the leaky bucket in node
i are as follows: If Ai(τ, t) is the amount of flow that leaves
the leaky bucket and enters the ring in time interval (τ, t], then
[6]

Ai(τ, t) ≤ σi + ρi(t − τ),∀t ≥ τ ≥ 0 (3)

Define a burst seen at Node N +1 to be an interval B such
that ∀τ, t ∈ B, τ ≤ t,

N∑

i=1

Ai(τ − Ti, t − Ti) = (t − τ)C (4)

where Ti is the propagation delay from node i to node N +1.
If B = [t1, t2], from (3)(4), we have

B = t2 − t1 ≤
∑N

i=1 σi

C − ∑N
i=1 ρi

(5)

♦
It is interesting to note that the above bound does not depend

on the propagation delay. The above approach is similar to [6]
with a major difference: In [6], it is assumed that there is an
infinite buffer between the leaky buckets and the scheduler
while in our case there is no buffer at all after the leaky
buckets. Therefore the bound in (2) is not tight in [6] but is
tight for our system as it is shown in the following paragraphs.

Although Theorem 1 has shown that (2) is a bound, it is
not necessary a tight bound unless we can find a real traffic
scenario with access delays that can actually reach the bound.
It has been shown in [6] that greedy sessions, sessions that
use as many tokens as possible, are likely to be the worst-
case scenario for a GPS (Generalized Processor Sharing)
multiplexing system. Because any overloading sessions are
greedy sessions, it is very easy to find a scenario that can
achieve the bound for GPS. Unfortunately this is not the case
for the conservative mode RPR scheme. This is because our
congestion span does not have any buffer between its leaky
buckets and its scheduler. Therefore the downstream nodes
will lose tokens when they are blocked by the traffic from
their upstream nodes if their buckets are full. From (2) we
can see that it will make the burst shorter if any token is
lost. In the following we will construct a special deterministic
traffic scenario for an RPR system to achieve the bound.

Theorem 2. The RPR bound in (2) is tight for the ring
access delay of a CM-RPR system.

Proof: We use a constructive approach to prove that the
bound is tight. We will show that we can always find a traffic
scenario in which the maximum ring access delay equals to
the RPR bound for a set of arbitrary parameters that satisfy
(1).

Our deterministic traffic scenario is shown in Fig. 2. Also
shown in Fig. 2 are the dynamics of their corresponding leaky
buckets. We assume that bucket i is full at t0 − T1, i =
1, · · · , N . The ingress traffic rate at node 1 transmit buffer
is set to C−∑N

i=2 ρi at t0−T1, while the ingress traffic rates
at node 2 to node N are set to ρ2, ρ3, · · · , ρN . Therefore the
pass-through traffic rate at node N + 1 at time t0 is

C −
N∑

i=2

ρi + ρ2 + ρ3 + · · · + ρN = C

Therefore the ring is busy at node N +1 from t0. It should
be noted that, at this moment, the number of tokens in the
bucket of node 1 is decreasing while all other buckets stay the
same. We set the ingress traffic rate of node 1 to C−∑N

i=2 ρi

until the leaky bucket in node 1 runs out of tokens at t1 −T1.
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Fig. 2. Source traffic rates and tokens of the N nodes in a congestion span.

It is easy to see that the length of the busy period [t0, t1] will
be

B1 =
σ1

C − ∑N
i=2 ρi − ρ1

=
σ1

C − ∑N
i=1 ρi

As shown in Fig. 2, when node 1 runs out of tokens at t1, we
set the ingress traffic rate of node 1 to ρ1 . At the time t1−T2,
we set the ingress traffic rate of node 2 to C − ρ1 −

∑N
i=3 ρi,

and keep this value until the leaky bucket in node 2 runs out
of tokens at t2−T2 while all other nodes stay at their original
rates. The length of this busy period [t1, t2] will be

B2 =
σ2

C − ρ1 −
∑N

i=3 ρi − ρ2

=
σ2

C − ∑N
i=1 ρi

When there are no tokens left in the leaky bucket of node 2
at t2 −T2 , the ingress traffic rate of node 2 goes back to ρ2 ,
and the ingress traffic rate of node 3 goes up to C−∑2

i=1 ρi−

∑N
i=4 ρi. We can repeat this process until we finish all the

nodes in a congestion span as shown in Fig. 2. Therefore the
total burst length will be

B = B1 + B2 + · · · + BN =
∑N

i=1 σi

C − ∑N
i=1 ρi

(6)

♦
From (6) we can see that the maximum burst length in this

specific case is exactly equal to the bound for the ring access
delay as defined in (2). From Fig. 2 we can see that Node 2 is
not greedy until t1−T2, Node 3 is not greedy until t2−T3 and
so on and so forth. This is very different from the worst-case
scenario in [6] where all the sessions are greedy from time t0.

IV. CONCLUSIONS

Different from all earlier ring technologies such as Meta-
Ring, the CM-RPR scheme uses a rate-based fairness al-
gorithm rather than quota-based approach. This allows it
to significantly reduce the access delays under steady state.
This greatly improves the performance of the ring networks
during a sustained congestion period, a scenario very likely
to happen for Internet traffic due to its strong self-similarity.
Furthermore, the access delays under steady state do not
depend on the ring sizes and therefore allow RPR to scale
for MAN/WAN applications.

In this paper, we have developed a bound for access delays
under steady state. The bound is much smaller than the bounds
found in [4], which are at the order of ring round trip times.
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