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Abstract—Network virtualization is ubiquitously an essential
attribute to enable the success of the future virtualized networks
(e.g. forthcoming 5G network, smart Internet of Things (IoT)).
Virtual Network Embedding (VNE) is the main challenge in
network virtualization that allows multiple heterogeneous Virtual
Networks (VNs) to simultaneously coexist on top of a shared
substrate infrastructure. Many VNE algorithms have been pro-
posed over past decades but most of them are merely focusing
on VNE node mapping and leaving link mapping task for the
popular k-shortest path algorithms or multi-commodity flow
(MCF) mechanism. In this paper, we propose an intelligent VNE
orchestration for link mapping stage which exploits distributed
parallelism to considerably reduce the processing time with high
efficiency. Extensive simulations have shown that our proposed
algorithm outperforms the most popular VNE algorithms.

Index Terms—Virtual Network Embedding, Parallel Algo-
rithm, 5G network, IoT, Artificial Intelligent.

I. INTRODUCTION

In recent years, network virtualization (VN) has been
receiving significant attention from both industry and academia
as it is a vast promising paradigm for the success of the next
generation networks such as virtualized 5G network [1], IoT
virtualized networks [2]. NV enables sharing the underlying
substrate resources among multiple virtual networks seamlessly
and enabling isolated coexistence of multiple VNs on a single
substrate network (SN), which prevents the infrastructure
expansion and improves network utilization. Additionally, lower
hardware costs for computing have benefited parallel algorithms
in dealing with complex computing tasks. In general, the service
provider (SP) converts an application or a service into a VN
and then deliver to an infrastructure provider (InP) as a request.
InP tries to map the corresponding VN with a set of nodes
connected via links to make up a specific topology onto its
infrastructure through an optimization process with multiple
constraints. In fact, VN requests (VNRs) dynamically arrive
and stay in the network during a random duration in most
real-life scenarios. Due to its intricacy, scalability and time
consumption to achieve optimal solutions within polynomial
time, the formulated optimization models such as Integer Linear
Programming (ILP) are not tailored for online VNE problems.

Conceptually, VNE process that is to embed requested
VNs onto a underlying shared SN can be divided into two
sub-problems: Virtual Node Mapping (VNoM) and Virtual
Link Mapping (VLiM). It is worth noting that VLiM is more
challenging than the counterpart VNoM because of its special
requirements since all substrate links that a constituent path
traverses for the embedding solutions of a requested virtual link
must necessarily have enough residual capacities, which causes
bandwidth fragmentation more likely to occur. Embedding
the virtual links on the underlying shared SN under stringent
constraints is still NP-Hard [3]. Furthermore, most research

work [3], [4], [5], [6], [7], [8], [9] focuses on node mapping
and leaves link mapping stage for only k-shortest path or multi-
commodity flow (MCF) algorithms, which obviously restricts
VNE link mapping options.

Along with 5G virtualized networking and IoT, embedding
VNs where the physical network enables path splittable and
unsplittable configurations is evidently also a fundamental
research aspect in Software Defined Network (SDN), Network
Function Virtulization (NFV) and Future Edge Clouds. Though
splittable-based embedding obtains better resource utilization
in theory, it was declared to be simpler than the unsplittable
mechanism and to generate a larger overhead to consistently
maintain the network state [10]. Furthermore, such mechanism
may result in out-of-order package delivery that may intro-
duce unacceptable latency for delay-sentitive applications. In
this paper, we present an intelligent algorithm that exploits
distributed parallel machines dealing with VNE link mapping
problems to achieve near-optimal solutions and considerably
cut down the operation time.

The remainder of this paper is organized as follows: The
related work is presented in Section II. Section III formulates
the network model and then we introduce the parallel genetic
algorithm for VNE link mapping in Section IV. We present the
performance evaluation of the proposed algorithm in Section V.
Section VI is a conclusion of this paper.

II. RELATED WORK

With the demanding research efforts made to network
virtualization, [11] has provided a comprehensive survey to this
research field. [12] resolved the one-by-one online embedding
scheme where virtual network requests dynamically arrive and
depart. This mapping problem is conclusively proven NP-hard.
A path splittable-support mapping of a virtual link over multiple
substrate paths, which deposes the link embedding issue to
multicommodity flow problem by considering a virtual link as
a commodity is introduced in [3]. In contrast, a coordination
approach between node and link mapping solving NP-hard node
embedding problem that relaxes the integer constraints to gain
a linear program and then benefits rounding techniques to select
distinct node mapping is first proposed in [4]. Nevertheless, the
paper that extends [4] by efficiently supporting node splitting
schemes and node collocation is essentially proposed in [5].
Meanwhile, Genetic Algorithms (GA), one of the approaches
widely used in Artificial Intelligence (AI), applied to VNE
problems were first studied in [6] and [7]. Node ranking
methods based on GA algorithms with topology attribute
concerns were also proposed in [6]. Research work in [7]
eventually makes a performance comparison among Ant Colony
Optimization (ACO), Particle Swarm Optimization (PSO) and
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GA in which they were concerned with node mapping stage.
A VNE model based on GA algorithm that handles multiple
InP domains is investigated in [8] while a research study [9]
revised the typical GA algorithm by reordering the mutation
phase to generate higher quality offspring in initial population.

Fig. 1: Parallel operation scheme

III. NETWORK MODEL AND PROBLEM DESCRIPTIONS

A. Virtual Network Assignment

A substrate network is modelled as a weighted undirected
graph and denoted as G

s = (Ns
, L

s) where N
s is the

set of substrate nodes and L
s is the set of substrate links.

Each substrate node n
s
2 N

s that has a geographic location
loc(ns) is associated with the available CPU capacity weight
value C (ns), while each substrate link l

s
2 L

s between two
substrate nodes has the bandwidth capacity value B (ls). For
simplification, memory and storage resources are not considered
in this paper. Similarly, we model the i

th arriving VNR as
a weighted undirected graph denoting by G

v
i = (Nv
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between the corresponding virtual source s
i and destination

nodes d
i has a bandwidth requirement b (lvi ). Embedding a

VNR G
v
i onto the corresponding G

s can be dissolved into two
major components as discussed above: Virtual Node Mapping
(VNoM) and Virtual Link Mapping (VLiM). In node mapping,
each virtual node from the same VNR can be mapped to a
substrate node AN : Nv

i ! N
s with n

v
2 N

v
i subject to:

C(nv)  RN (AN (nv
i )) (1)
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i ), loc(AN (nv
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where i ! j denotes the virtual node i is hosted on the
substrate node j, D(i, j) measures the distance between the
locations of node i and j and RN (ns) is the residual or the
available CPU capacity of a substrate node. In contrast, each
virtual link can be mapped to a substrate path or a defined set
of substrate paths between the corresponding substrate nodes

hosting the virtual nodes of such virtual link. It is defined
by AL : Lv

i ! L
s with l

v = (sv, tv) 2 L
v
i , Es is a set of

substrate paths from a source node to a destination node.
AL(s

v
, t

v) ✓ E
s(AN (sv),AN (tv)) (5)

subject to: X

E2AL(lv)

RL(E) � B(lv) (6)

RL(E) = minls2ERL(l
s) (7)

RL(l
s) = B(ls)�

X

lv!ls

B(lv) (8)

where RL(E) and RL(ls) are the available bandwidth of a
substrate path E 2 E

s and the residual capacity of a substrate
edge respectively.
B. Performance metrics

In this paper, the revenue is defined as the sum of total
virtual resources embedded to the SN over time. The revenue
for the i

t
h VNR G

v
i is defined below:

R(Gv
i ) = w↵ ⇤

X

lvi 2Lv
i

b(lvi ) + w� ⇤

X

nv
i 2Nv

i

c(nv
i ) (9)

where b(lvi ) and c(nv
i ) are the bandwidth requirement of the

virtual link l
v
i and the CPU requirement of the virtual node

n
v
i while w↵ and w� are the unit weights of the embedded

bandwidth and CPU resources respectively.
Acceptance ratio: the ratio between the number of accepted
virtual network requests over the number of virtual network
requests arriving in the time interval ⌧ is calculate as below:

A
⌧
c =

����
�
a(⌧)

�(⌧)

���� (10)

where �
a(⌧) and �(⌧) denotes the number of the successfully

embedded VNRs and the number of virtual network requests.
Cost: similarly, we define the cost of the i

th VNE C(Gv
i ) as

the sum of total substrate resources allocated to the i
th virtual

network.
C(Gv

i ) =
X
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X
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lvi
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where f
lvi
ls is the bandwidth of substrate link l

s that is allocated
for the virtual link l

v
i

Fitness Function (FF): This is used to evaluate the quality of
each of VLiM solutions among several feasible ones, and it can
also provision a scientific proof for electing the corresponding
chromosomes in GA’s operators. We add hop-count as an
important factor into FF besides bandwidth since it is believed
that minimizing hop-count would help the cost of a VNR
minimized. Fitness function F(Ci) is calculated as below:

F(Ci) =
X

ls2Ls

(
b(lvi ) ⇤ ↵

b(lvi ) +RL(ls)
+

1

hls
⇤ �) (12)

where, Ci, hls are a feasible solution and hop-count of l
s

respectively. ↵ and � are weight parameters equivalent to
bandwidth or hop-count factors.

IV. INTELLIGENT DISTRIBUTED PARALLEL
RESOURCE-ALLOCATION ALGORITHM

Recently, parallel computing is emerged as an effective
solution to solve larger problems with time saving and low
cost by providing concurrency. Moreover, adopted the idea of
natural selection, GA is an intriguing AI approach for solving
both constrained and unconstrained optimization problems.
[13] also proved that the Genetic Algorithm can be naturally
described as a parallel search and there is no dependency
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among different feasible solutions since they are mutually
exclusive. Hence, we propose an intelligent parallel algorithm
based on GA that can be running on a predefined number of
distributed machines in which they are independently operating
to generate feasible solutions denoted as chromosomes. Our
proposed parallel GA scheme is present in Fig 1. As shown,
we defined the procedures, which are functioning sequentially
as working under a single master node such as node mapping,
synchronization, etc,. while the ones independently operating
parallel GA algorithms to find feasible solutions for VNE
link mapping are working as several slave nodes. Each slave
machine is independently running with defined iterations,
the best feasible VLiM solution will be selected among
parallel machines. Unlike previous papers that sequentially
map requested virtual links, our proposed algorithm enables
to map multiple link requests at once. A chromosome Ci is
associated with a feasible link mapping solution of a VN.
Whilst a gene g

j
i indicates a substrate path where i and j

denote its current chromosome and virtual link respectively.

A. Initial path pool generation

Prior to link mapping procedures, we necessarily establish
potential path database for mapping virtual links. For each
pair of source-destination, a k-shortest path algorithm e.g.
Dijkstras algorithm is simply implemented to determine k-
shortest paths for the path pool generation. This primal process
can be absolutely prepared prior online VNR arrivals.
B. Slave node

Population Initialization: each slave machine starts to
operate GA algorithm with a population initialization step. Each
chromosome Ci represents a feasible solution. Assume that
there are N genes and M chromosomes, an initial population
P (MxN size) at the machine k

th can be described as below:

P =

2

666666664

C1

C2

...
Ci

...
CM

3

777777775

=

2

6666666664

g11 · · · gj1 · · · gN1
g12 · · · gj2 · · · gN2
...

. . .
...

. . .
...

g1i · · · gji · · · gNi
...

. . .
...

. . .
...

g1M · · · gjM · · · gNM

3

7777777775

(13)

To form a chromosome, each gene which is associated with the
mapping solution of a requested virtual link request must be
uniformly selected from the initial path pool in random, which
must pass a feasibility check to become a potential solution.
This checking process is to ensure that the SN still has enough
remaining resources to support such request. All N potential
genes passed the feasibility process constitutes a chromosome,
it is considered as a feasible solution for such corresponding
VLiM.
Selection: selects the chromosome individuals as parents
for the crossover operation. One or several pairs of parent
chromosomes can be generally chosen from this step. Aimed
at enhancing the degree of parallelism, we select the parents
randomly with replacement from the initial population. How-
ever, the children produced in crossover may have either better
or worse quality than their parents. Conceptually, we use fitness-
based proportionate selection to select parents from the initial
population, which relies on the cumulative sum of the fitness
relative weights (12).
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2
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r · · · gNr
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c
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(14)
Crossover: combines two parent chromosomes to form new
offspring of the next generation. We denote Cs and Cr as
two parent chromosomes with their indexes s and r in initial
population. Moreover, assume j

c is the random crossover point
between any genes inbound the N length, and new descendant
chromosomes are denoted as C(M+1) and C(M+2) respectively.
The offsprings are produced by swapping two parent genes
starting from the crossover point j + 1 to the end as depicted
in 14. Obviously, the quality of generated children can be
worse than whose ancestors or the duplication of solutions
may happen at different parallel levels. Crossover point jc is
randomly chosen, but should not start at the first or last gene
in the parents chromosomes because the mated children are
apparently same as their parents.
Mutation: applies random changes to individual parents to
form new offspring. Mutation operation then includes randomly
generating the mutation point denoted as jm , and at that point,
a new gene can replace the existing one of the in-processed
chromosome to generate a new child. New selected gene which
has been chosen from the original path pool must pass a
feasibility check. Assume j

m is denoted as mutation point
while g

jm

r0 is a new gene that replaced the existing one in
C(M+1). The mutation solution C

0
(M+1) after such substitution

is C
0
(M+1) = [g1s · · · g

jm

r0 · · · g
N
s ].

C. Solution Sorting and Terminations
The process running at each slave node is terminated when

it reaches a predetermined number of iterations, and then the
best solution among feasible ones after sorting based on its FFs
delivers up to the next component called synchronization for
global ranking. Generally, a parallel computation is constituted
a series of ordered processes, waiting each other accomplished
its all particular tasks is vulnerable to unexpected situations
in which a process excessively takes long time to finish, that
obviously affects total execution time, or two or more processes
are jammed and waiting for each other to complete their work
(e.g. deadlock). Thus, we decide the master GA procedure
will be terminated when the best solution for VLiM has not
been successively changed in t times, and t is defined as a
termination parameter.
D. Synchronization and VNR allocation

After receiving all feasible VNR chromosomes from slave
nodes, they are substantially ranked following their FF values to
elect the final solution for the corresponding VN link mapping.
As the result, VNR will be accepted and allocated into SN
based on node and link mapping solutions. Then, the SN goes
to update its residual resources.
E. Execution Time Analysis

Though there are elements of uncertainty which can increase
the complexity of time calculation, a parallel and distributed
computing model is expected to substantially reduce the
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TABLE I: Compared Algorithms

Notation Description
IDPA Intelligent Distributed Parallel Algorithm

SP Greedy Node Mapping with Shortest Path Based
Link Mapping

R-ViNE Random Node Mapping with Shortest Path Based
Link Mapping

D-ViNE Deterministic Node Mapping with Shortest Path
Based Link Mapping

execution time of our proposed algorithms. We define O
i
m, Oi

n,
O

i
o, Oi

s and O
i
a as the execution time of master node, node

mapping, original path pool generator, synchronization and
VNR allocation respectively whilst ith identifies the current
VNR’s index. We denote the parallel operation time of slave
nodes as O

i
g, that is depended on the last slave node which

finishes its work, and the parallel level p as a trade-off between
available substrate resource and the completion time. If the
execution time of a sub-salve node is Xt in which t

th is slave
node index t 2 [1, p], Oi

m and O
i
g are calculated as below:

O
i
g = max{Xt}, t 2 [1, p] (15)

O
i
m = O

i
n +O

i
o +O

i
g +O

i
s +O

i
a (16)

Similarly, if we denote S
i
m and T

i
g as the sequential operation

time of master node and slave nodes respectively, they can be
calculated as:

T
i
g =

pX

t=1

Xt (17)

S
i
m = O

i
n +O

i
o + T

i
g +O

i
s +O

i
a (18)

Additionally, each slave node is independently operated in
parallel with the same probability distribution and all nodes are
mutually independent, so their execution time can be considered
as independent identically-distributed random variables (iid)
since the VNRs accordingly arrive in random. Following the
numerical results in Section V, Xt obeys Normal Inverse
Gaussian (NIG) as depicted in Fig 3b. We take advantage of the
Chernoff-Cramer method that exploits the Moment Generating
Function (MGF) to extract the upper tail bound of Oi

g . As the
result, MGF of Xt is illustrated as:

MX (z) = E[ez⇤X ] = e

h
z⇤µ+�(

p
↵2��2�

p
↵2�(�+z)2)

i

(19)

with µ, �,↵,� > 0 From Jensen’s inequality equation [14], we
have:

e
z⇤E[Oi

g ]  E[ez⇤O
i
g ] = E[maxt{e

z⇤Oi
g}]

=
pX

t=1

E[ez⇤Xt ] = pE[ez⇤Xt ]
(20)

Take a log of both sides, we have:

E[Oi
g]  log(p)


µ+

�
z
(
p

↵2 � �2 �
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↵2 � (� + z)2)

�

= log(p)

"
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�
p

↵2 � �2

z
(1�

s

1�
z2 + 2�z
↵2 � �2

)

# (21)

E[T i
g ] = pE[Xt] (22)

if z, µ,↵,�, � are constant values, we can see that the general
tendency of parallel running is increasingly logarithmic, which
is compared with the linear tendency of sequential operating in
(20), it is concluded that our proposed algorithm considerably
saves more time since increasing the parallel level p. If there

are K number of VNRs and the total operation time of mapping
all VNRs is denoted as Og , it can be calculated as below:

Og =
KX

i=1

O
i
m (23)

V. PERFORMANCE EVALUATION
A. Simulation setup

We have implemented a discrete event simulator to evaluate
the proposed algorithm with same settings as [4]. The substrate
network and VN topologies are generated using GT-ITM which
is a well-known topology generator. The SN is configured with
50 nodes, that are randomly placed on a 25 ⇥ 25 Cartesian
plane, with 141 edges randomly connected using Waxman
model with ↵ = 0.5 and � = 0.2. The value of ↵ disposes
of the maximal edge probability while � identifies the length
of edges. The CPU and bandwidth resources of the SNs are
uniformly generated between 50 and 100. VNRs arrive in
Poisson process with an average rate of 4 to 8 VNs per 100 time
units; and the VNR lifetimes follow an exponential distribution
with an average of µ = 1000 time units. In each VN graph, the
number of virtual nodes is randomly determined by a uniform
distribution between 2 and 10 with average VN connectivity at
50%. The CPU requirements of the virtual nodes are real
numbers uniformly distributed between 0 to 20 randomly
located on 25⇥ 25 grids while the bandwidth requirements of
the virtual links are uniformly distributed between 0 to 50. Each
simulation was running for 50, 000 time units that is longer
than 50 times compared to the average lifetime of a virtual
network. This time is enough long to achieve the sufficient
number of independent samples. We plotted the graphs based
on the average values with 95% confidence interval.
B. Compared Methods

In our evaluation, we compare our proposed GA algorithm
with the rivals as described in Table I. They are vitally targeted
because the VLiM algorithms that are performed well in [4]
have been utilized in many VNE research papers. In detail, SP
is simple and fastest algorithm which is considered as one of
the most popular VN link mapping algorithm. Furthermore, we
choose R-ViNE and D-ViNE algorithms since they are regularly
provide the best performance by applying linear programming
approach for node mapping.
C. Evaluation Results

1) Execution Time Analysis: To study execution time dis-
tribution, we essentially collect manifold operation time of
the parallel procedures at several slave nodes. Following the
Xt histogram of IDPA as shown in Fig.3b, Xt basically fits
Normal Inverse Gaussian distribution (NIG) that is defined as
a normal variance-mean mixture where the mixing density is
the inverse Gaussian distribution. The sum of square error of
its fitting measured is 9.32e�3. The sample mean and standard
derivation values of Xt of IDPA are 2.0363ms and 1.478
respectively. Moreover, the average total execution time of
different algorithms is demonstrated in Fig.3c in which the
parallel level p of IDPA algorithm is set to 16. We determine
the p = 16 since we recognized that the overall performance
of IDPA after numerous experiments achieves convergence.

2) Performance Results: As delineated in Fig.2, IDPA
algorithm accepts more VNRs with less cost than the rivals,
which results in higher revenue for our algorithm. The dominant
achievements are because our proposed approach efficiently
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(a) (b) (c)

Fig. 2: (a) VNR Acceptance Ratio (b) Average generated avenue (c) Average cost of accepting VNR

(a) (b) (c)

Fig. 3: (a) Average path length (b) Time distribution of Xt (c) Execution time over different algorithms

explores the searching space to discover more feasible solutions
for evaluation. In addition, our FF directs the GA algorithm
to right track by minimizing both bandwidth usage and hop
count factors. Thanks to parallel running, GA algorithm tends
to examine various feasible solutions within a small time
consumption.

VI. CONCLUSION

Network virtualization is an essential integral element of
the future architecture networks (e.g. virtualized 5G networks,
virtualized IoT networks), so the efficient and practical algo-
rithms for VNE are specially demanded. In this paper, with both
scalability and optimality taken into account, we proposed an
intelligent parallel algorithm based on GA for online VN link
embedding. Our proposed algorithm ultimately outperformed
the existing approaches in all performance matrices. Brilliantly,
IDPA is absolute faster than SP 44.87%, which is known as
the fastest and most popular algorithm for VLiM. It is also
faster than the best performance of our rivals 1, 999%. We
furthermore evaluate the execution time of parallel working
model, and the statistics evidence that time complexity of
our parallel algorithm is reduced to logarithmic O(log(p)).
In future work, we will investigate the benefits of migrations
between the populations of the slave nodes as well as the
feasibility of GA algorithm which supports path-splitting.
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