

1

Abstract— The ability to accurately classify various types of
Internet traffic within a network using Netflow traces
represents a major challenge as there is no payload
information available with Netflow. P2P applications
represent a very large portion of the internet traffic and are
becoming more difficult to classify, as some of these
applications tend to use port masquerading techniques and
encrypted payloads, rendering the traditional classification
approaches obsolete. In this paper, a simple yet effective
classification method is proposed using a set of heuristics
based on the discriminating features and the operation
nature of P2P applications. We mainly focus on identifying
BitTorrent activities using Netflow records. The presented
scheme has been tested with a collection of real data sets.
The results of the classification have shown to be accurate
even when applied to data sets with complex Internet
traffic. The results of the proposed scheme were tested
against two other existing approaches and were observed to
have improved classification accuracy – BitTorrent traffic
was identified with 91-95% accuracy for the five data sets
tested.

I. INTRODUCTION

Accurate traffic classification is important to network
operators for a number of reasons. The ability to accurately
identify P2P applications finds utility in provision of QoS
(Quality of Service), network security and network planning. In
recent years, the increased complexity of Internet applications
and the growth of P2P services have reduced the accuracy of
current traffic classification techniques. This has led to a quest
to develop new, scalable and robust techniques to classify P2P
traffic. Traffic classification approaches can be broadly divided
into four categories: (i) Port based classification [1] (ii) Deep
packet inspection (DPI) [2], (iii) Machine learning [3] (iv) and
Host behavior approaches [4].

Section II is a review of the current approaches proposed for
Internet traffic classification, discussing both their advantages
and disadvantages. Section III introduces BitTorrent
applications explaining their functionality and their nature of
operation. Section IV presents the heuristics used for
classification and the proposed classification model. Finally,
the results of applying the model to a collection of data sets are

presented in Section V and the conclusions are presented in
Section VI.

II. RELATED WORK

Recently, researchers have studied the utility of combining
port-based classification with other identification techniques in
a quest to achieve greater accuracy for classifying P2P traffic.
Karagiannis et al. proposed the BLINC technique [1] where
they combined port classification with host behavior to
accurately classify different types of Internet traffic. The results
from this technique could only classify traffic from a general
perspective labeling all P2P traffic as Peer to Peer without
specifying which specific P2P application generated the traffic.

In [2], for example, Meo et al. implemented a DPI
classification apparatus for P2P traffic by matching the payload
signatures to different P2P applications but the limitations of
DPI approaches prevent this method from being deployed on
Netflow records or transport layer information.

In [3], Rui et al. proposed a P2P classification approach
using machine learning with SVM but the accuracy of the
results solely depends on the accuracy and the quality of the
given trainingdata sets that the algorithms rely on for
classification.

Zhang et al. in [4] proposed a host behavior approach by
exploiting the connection behavior of different applications and
converting them to graphical and statistical representations
based on flow cardinality and directions. This approach also
cannot specify different types of P2P traffic and the
classification accuracy for P2P traffic is significantly low when
compared to the other traffic (85%).

After studying the current approaches suggested for Internet
traffic classification, it was found that DPI fails to classify
applications and services that utilize encrypted payloads. On
the other hand, machine learning techniques are not reliable
when the application features overlap. Moreover, port based
approaches do not yield sufficient accuracy when applied
against the current generation of P2P traffic.

The most promising approach for identifying P2P traffic
appears to be the host behavior approach, due to the fact that it
is application specific. This is important because our main
objective is to identify BitTorrent activity. By analyzing
BitTorrent connection patterns, heuristics and classification
schemes are demonstrated in this paper to accurately identify

Classifying P2P Activity in Netflow Records: A Case Study on
BitTorrent

Ahmed Bashir1, Changcheng Huang1, Biswajit Nandy2, Nabil Seddigh2
1 – Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada

2 – Solana Networks, Ottawa, Ontario, Canada
E-mail: {abashir1, huang}@sce.carleton.ca1, {bnandy, nseddigh}@solananetworks.com2

978-1-4673-3122-7/13/$31.00 ©2013 IEEE

IEEE ICC 2013 - Communication Software and Services Symposium

3018

2

them. The classification model is constructed by integrating
different flow features unique to P2P applications, and the
connection patterns that P2P applications exhibit whilst they
are operating, in order to achieve a solid identification
mechanism capable of accurately classifying the required
traffic.

An important constraint has been added as a consideration
when developing the classification model. We require all the
features and attributes used in the classification model to be
data that can be obtained from the Netflow protocol. Numerous
vendors other than Cisco provide an equivalent technology
capable of exporting IP flow information such as Juniper’s
jFlow and sFlow. The exported IP flow information from those
other technologies is similar to Netflow in terms of the statistics
they can provide regarding IP flow information such as IPs,
ports, byte count and packet count. The adoption of this
constraint means that the classification model developed can be
applied to a wide diversity of traffic flow traces. It will also
facilitate the identification of P2P activities despite missing
payload information or in the presence of encrypted payloads.
Netflow is the most popular protocol for exporting information
regarding traffic flow statistics. Netflow contains over 40
different traffic statistics and defining attributes per traffic flow
that is monitored.

III. BEHAVIOR ANALYSIS

P2P applications have emerged as a dominant portion of
today’s Internet traffic since they provide a wide spectrum of
services such as file sharing, video streaming, and creation of
media hubs. The focus of this paper is on one of the most
important P2P applications – BitTorrent. BitTorrent is widely
considered as the most popular P2P file sharing service. It
allows clients to download a file simultaneously from different
peers. The following section introduces BitTorrent
applications, describing the basic concepts behind their
technology and focusing on their operational behavior inside a
network.

A. BitTorrent Clients

BitTorrent [5] is a set of protocols and services that are used
mainly for massive file sharing among nodes in a P2P network.
To locate a desired file, two alternative sets of mechanisms are
available: tracker based vs. DHT (Distributed Hashing Table)
based.

In a tracker-based system, a client contacts a centrally
maintained tracker for information regarding the nodes that
have the desired file. All the nodes that have the desired file or
parts of it form a group called a “swarm”. If one peer desires to
download from another peer in a swarm identified through the
tracker, it contacts the peer using either TCP or UDP-based
signaling mechanisms.
 For a DHT based system, BitTorrent clients use DHTs for
tracking the location information of different peers in order to
download files without the assistance of a tracker. When DHT
is enabled in a BitTorrent client, it connects to an initial
bootstrap node to enter the DHT swarm. The bootstrap node
provides the BitTorrent client with a set of initial peers to
populate the DHT. Afterwards, the BitTorrent client queries
those initial peers using UDP in order to find other peers that

have the desired file. If a peer having the desired file is located,
the BitTorrent client connects to the peer using TCP.

Figure 1 illustrates the connection patterns of a
BitTorrent client downloading from peers via a tracker as well
as the scenario where the client downloads from peers using
DHT.

IV. CLASSIFICATION HEURISTICS

After analyzing the behavior and connection patterns of
BitTorrent applications, a number of classification heuristics
were deduced based on the obtained results. These heuristics
utilize a number of characteristics such as port number, packet
size, number of flows, flow duration, etc.

As a starting point for the classification procedure, we wish to
distinguish between P2P and non-P2P activities. This is carried
out using the heuristic introduced in subsection (A).

 Afterwards, it is necessary to identify a set of unique
characteristics and connection patterns for BitTorrent
applications in order to achieve accurate classification. The
unique connection patterns for BitTorrent clients are introduced
in both Subsection (B) and (C).

After the BitTorrent host has been identified, it is essential to
extract all the associated flows generated by the BitTorrent
client. This is accomplished by applying the heuristic displayed
in Subsection (D).

Our classification model is developed by integrating the
heuristics displayed in the following subsections. The
combination and the ordering of the heuristics are summarized
in Subsection (E) where the classification model is presented.

A. DHT Probing Heuristic

 Since most BitTorrent clients currently utilize UDP for DHT
probing, it is essential to identify the UDP port associated with
the BitTorrent client in order to extract all the flows related to
the P2P client. This is carried out by identifying all the outgoing
UDP flows from a host that utilize the same source port and
which have sent out more than 100 requests to different
destinations. The number 100 is chosen based on
experimentation and testing results – the summary of which is
displayed in Figure 2. We ran 10 different tests and studied the
behavior during the probing phase – where the application was
idle (no file downloads) during a 10 minute duration.

3019

3

Another metric that is used to differentiate between

BitTorrent and other applications is the packet size of the UDP
DHT probing. After extensive analysis of the behavior of
BitTorrent clients, the following heuristic was proposed:

 The percentage of UDP probing flows that have 1 packet
and a size greater than 100 bytes is significantly more than the
ones having size less than 100 bytes in BitTorrent UDP probing
By applying this heuristic to a data set where BitTorrent
activities were generated in a controlled environment, we can
verify the validity of this heuristic by using the port numbers of
the BitTorrent clients that were running during the process. The
threshold of 100 bytes was selected based on monitoring the
DHT UDP probing for duration of 6 hours and documenting the
packet size distribution for each case. Table 1 presents the
packet size distribution for BitTorrent UDP probing flows that
have 1 packet. During the testing, several BitTorrent clients
were active and their UDP ports were known.

From Table 1 we notice that the distribution of the UDP

probing flows for BitTorrent is concentrated in the 100-400
byte range, representing approximately 87% of the total
distribution. By exploiting the difference between the packet
size distribution for BitTorrent and other applications, we can
utilize the packet sizes as a discriminating feature to identify
the DHT UDP probing of BitTorrent clients.

B. Tracker Contacting Heuristic

As mentioned, some BitTorrent clients use a tracker based
system rather than DHT based. Figure 1 illustrates a BitTorrent
client contacting a tracker to obtain a list of all available peers
using the predefined UDP port in the BitTorrent client`s
settings. The presence of a UDP flow outgoing from the
suspected BitTorrent port to a destination port equal to 80 is a
unique connection pattern for BitTorrent clients as most
applications that utilize port 80 operate on TCP rather than
UDP.

In order to download a file using BitTorrent, the BitTorrent
client contacts all the trackers within the .torrent file using a
UDP/destination port 80 connection. The request is carried out
using the IP address of the machine running the BitTorrent
client and the UDP listening port predefined in the BitTorrent
client’s settings

C. Heavy Hitters Heuristic

We define the term ‘Heavy Hitter’ according to [7] as a TCP
or UDP flow where the consumption of bandwidth is very high.
The conditions for a flow to be considered a heavy hitter varies
from one application to another and are determined by various
features such as the presence of the TCP push flag; as
downloads require frequent packet processing. Also The
duration of the flow is greater than 5 seconds, the number of
incoming bytes is greater than 0.5 MB and the average packet
size is greater than approximately half the value of the MTU of
both TCP and UDP (around 800 bytes per packet). The reason
behind the last condition is due to the collectors setting where a
maximum interval is set for each flow. If the flow is divided
into multiple flows, the true value of the average packet size
cannot be obtained. Another reason for reducing the threshold
is that the MTU for Ethernet is 1500 bytes. However, not all
links have the same MTU values as it depends on the physical
media type and the MTU configuration which may be tweaked
to different values. If a packet comes across a link with a MTU
value less than its size, the packet is dropped and the sender is
notified in order to reduce the packet size and accommodate the
MTU value of the link. Furthermore, most BitTorrent clients
have shifted towards implementing the uTP protocol. uTP
offers a dynamic packet size shaper, where the sizes of the
packets are adjusted dynamically according to the status of the
link. The initial size of the packet is 1500 bytes. If the
connection is slow or congested the packet size is reduced until
a suitable value is reached according to the uTP specification
[12]. All of these factors can result in smaller packet sizes in
BitTorrent file sharing. Usually heavy hitting flows have
relatively higher flow parameters such as duration, packet
count and packet length due to the nature of their large
payloads. We summarize the discussion in this subsection as
the following heuristic:

A set of BitTorrent client flows will contain at least one
‘heavy hitter’ where the byte count, packet count and duration
are much higher when compared to other flows.

D. BitTorrent Traffic Categories

Some torrent clients such as uTorrent [11] use both TCP and
UDP as a transport layer so it is important to differentiate
between DHT probing flows and actual data transfer flows
when it comes to UDP. Packet size can be used to differentiate
UDP probing flows from actual file transfer flows. To achieve
this, we selected the UDP flows that are incoming to the known
host where both the source and destination ports are greater
than 1024, and the size of an incoming packet is greater than
1500 (TCP & UDP MTU) to exclude the small UDP probing
flows and only acquire the UDP file transfer flows. UDP
probing flows have significantly less byte values than file
transfers. We note also that the incoming packets are destined
for the suspected BitTorrent UDP ports discovered using the
port classification method introduced earlier

3020

4

As we demonstrated, peers that are connected by TCP and
were contacted via DHT can be easily extracted by scanning the
records and searching if the TCP flow has a peer UDP
counterpart. And for the torrent clients that use UDP as a
transfer protocol, we can identify them by extracting all the
UDP records that are associated with the suspected port. The
problem lies in determining the TCP flows that were not
created via DHT. These flows represent the peers that were
contacted via the .torrent trackers. To overcome this drawback
we will only select the heavy hitters from the tracker flows, by
excluding the small flows.

We summarize the discussion in this subsection as the
following heuristic:

BitTorrent traffic can be observed in three major segments:
(I) Traffic from peers contacted via DHT, (II) UDP traffic from
peers contacted via trackers, and (III) TCP traffic from peers
contacted via trackers.

E. Integration of Heuristics

When applied in a proper order, the above obtained heuristics
are in general enough to efficiently classify whether a host and
port are BitTorrent related or not.

Figure 3 represents a pseudo code of the classification
algorithm summarizing the proposed scheme where all the
heuristics are combined and integrated together.

 Individually, each heuristic is not sufficient to classify the
required P2P traffic since some of these features are common
between P2P applications and other services. For example,
‘heavy hitters’ exist in any kind of online communication that
requires high bandwidth such as video streaming, downloading,
and online gaming. However, when the heavy hitter’s heuristic
is applied after confirming that a host may be a suspected
BitTorrent participant, we can validate whether the host is
running a BitTorrent client or not, as BitTorrent clients always
have heavy hitting flows associated with them.
 Some of these heuristics can be considered as general
features that most P2P applications have in common. This
includes excessive UDP probing where different P2P

applications utilize this technique and are not sufficient to be
applied on their own for classification. These features must be
combined with stronger heuristics based on the connection
patterns of BitTorrent applications to obtain solid results with
higher accuracy. By combining general P2P features with
application specific heuristics, the accuracy is increased and the
reliability of the classification model is enhanced.

V. TESTING AND EXPERIMENTATION

In order to validate and measure the efficiency of the obtained
heuristics and the chosen features for classification, the
algorithm must be applied to a real life example to see how the
classification apparatus will perform and obtain concrete
results regarding its accuracy and performance.

A. Testing Data Sets and Description

Five data sets are used to test the accuracy of the obtained
heuristics – see Table 2 for details. The 5 data sets were
collected from several locations under varying conditions
during different times of the day to obtain a variety of test sets.
Each data set was collected from a different location to
facilitate testing of different data sets under different
conditions.

Dataset one consists of Netflow records acquired by
monitoring office traffic from 3-4pm. Multiple hosts utilize the
office network with a known host generating P2P activity
through the capture duration. Generated traffic included
downloads using 5 different BitTorrent file sharing clients:
Bitcomet, Azureus, uTorrent, uTorrent Portable and BitTorrent
[12]. The trace also included a 6 minute Skype voice call and 5
minute Skype video call.

Dataset two consists of traffic generated by a single known
computer at a Carleton University lab. Traffic was captured
from 11 am to 1 pm using Wireshark and converted to flow
data. Throughout the capture duration, active applications
included: (i) a BitTorrent file sharing client (ii) a p2p radio
streaming application (iii) a Skype client (iv) a well known
Trojan called ‘SUS/UnkPacker’ was active within a sandbox
application in order to limit its threat within a quarantined zone.
The SUS/UnkPacker’s characteristics are similar to P2P
applications where it sends out UDP requests to the attacker
using random port numbers.

Dataset three was captured using Wireshark (with
subsequent conversion to flow data) from a host computer
connected to the Carleton University residential network.
Traffic was captured from 12pm to 4pm. Active applications
included a BitTorrent file sharing client, a Skype client and 2
P2P T.V streaming applications - Sopcast and PPStream.

Dataset four was captured from the Systems & Computer
Engineering Lab at Carleton University. Traffic was monitored
using NTOP from 10am to 6pm. The traffic consists of multiple
users generating diverse traffic. A known computer utilized the
following applications: (i) two BitTorrent file sharing clients
(uTorrent & Vuze) and (ii) Skype for a 45 minute video call.
The NTOP data was converted to flow data using Wireshark.

Dataset five was captured over a 6 hour period using NTOP at
the Carleton University Residence network. Multiple users
Internet traffic was captured along with a known host running
the following applications: (i) File download via two

3021

5

BitTorrent clients (Bitcomet and uTorrent) and (ii) Skype – a
20 minute voice call was conducted during the captured
session. The NTOP data was converted to flow data using
Wireshark.

B. BitTorrent False Positives, False Negatives and
Accuracy

Three key metrics were used to evaluate the classification
model – False Positives, False Negatives and Accuracy.

The false positive is the probability that non-BitTorrent
traffic counted in bytes is classified as BitTorrent traffic.

The false negative is the probability that BitTorrent traffic
counted in bytes is classified as non-BitTorrent traffic.

Equations 1 and 2 summarize the values of the false positive
probability and the false negative probabilities.

 (1) (2)

Where is equal to the total number of download bytes via

BitTorrent, is equal to the non BitTorrent bytes classified as

BitTorrent bytes and is equal to the BitTorrent bytes

classified as non BitTorrent bytes. While and are equal to
the false positive probability and the false negative probability

respectively.
The accuracy is defined as in Equation 3. The presented

method calculates the byte wise accuracy, where denotes the
byte wise accuracy.

 (3)

 denotes the byte wise accuracy.
The importance of the byte wise accuracy in BitTorrent

classification is displayed by Gossett et al in [8] where they are
mainly concerned with the byte wise accuracy of their
BitTorrent identification apparatus.

C. BitTorrent Testing Results

Table 3 represents the accuracy, false positives, and false
negatives of the proposed scheme when applied to each of the 5
mentioned data sets.

 In order to validate the results of the proposed scheme, the
accuracy results are compared to 2 approaches suggested in
other researches. The first method is a host behavior approach
proposed by Basher et al. in [7]. The suggested approach
utilizes the five features for identifying BitTorrent traffic. A
detailed description of this scheme can be found in [7].

The second method selected for comparison is a machine
learning approach proposed by Yuan et al. in [9]. The suggested
approach utilizes SVM with a RBF kernel function for
extracting BitTorrent flows. A detailed description of this
scheme can be found in [8].

Figure 4 displays the accuracy of the proposed scheme when
compared to the accuracy of the SVM approach suggested in
[9] by Yuan et al. and the host behavior approach suggested in
[7] by Basher et al.

 The approaches suggested in [7] and [9] produce strong
results when applied to data sets that do not contain challenging
background traffic. The accuracy is significantly decreased
when these methods are applied to data sets that contain
BitTorrent traffic overlapped with applications that generate
similar flows and behave in the same fashion.

Our proposed scheme outperformed the approaches
suggested in [7] and [9] in all of the 5 data sets due to the
following:

1. P2P T.V. streaming and radio applications utilize UDP
probing in order to contact peers that are tuned in to the same
channel by using a random UDP listening port predefined in the
software’s settings. The average bytes per packet of the data
transfer flows generated by P2P T.V. streaming and radio
application are within the 200-1200 according to [10]. If a host
is concurrently running BitTorrent and P2P T.V. streaming
applications, the TCP flows within the range of 200-1200 bytes
per packet will contain a mixture of both P2P T.V. streaming
flows and BitTorrent file transfer flows. The scheme proposed
in this paper as well as both the approaches suggested in [7] and
[9] cannot distinguish between these flows as they share similar
flow features, leading to a high value of false positives. The
proposed scheme outperformed the approaches in [7] and [9]
due to the average bytes per packet condition where flows are

3022

6

labeled as BitTorrent flows if the average bytes per packet
value is greater than 800 bytes. This threshold does separate
between BitTorrent and P2P T.V. streaming and radio flows;
nonetheless it ensures capturing the majority of BitTorrent
flows and only a small portion of the P2P T.V and radio. The
accuracy of the proposed approaches in [7] and [9] is severely
hindered due to the similarity of BitTorrent flows and P2P T.V.
streaming flows (data set 3)

2. The SUS/Unkpacker Trojan and other similar viruses
utilize a set of random UDP ports in order to communicate with
the attacker using port 80. This may be similar to other P2P
applications which causes mislabeling the flows generated
from the Trojan as BitTorrent related flows. In the proposed
scheme, a host must satisfy a collection of heuristics in a
sequential manner in order to be considered a BitTorrent
participant. The flows generated by viruses and Trojans are not
mislabeled since they do not satisfy all of the heuristics and
conditions. The proposed approaches in [7] and [9] may
mislabel virus and Trojan flows as P2P flows due to the
similarity between their flow features (data set 2).

3. P2P clients are not the only applications that use ports
greater than 1024. Many other services such as Adobe flash
video and Google Talk use port numbers that are greater than
1024 and are registered as official ports on the IANA port list.
The authors in [7] state that in order for a flow to be classified
as a P2P related flow, the source and destination port number
must be greater than 1024. This assumption results in a high
value of false positives when BitTorrent traffic overlaps with
traffic generated from other services that use ports greater in
1024. In data set 5, a HTTP streaming page was open which
uses the Adobe flash video port (1935). The accuracy of both
selected approaches is heavily affected and produced
inaccurate results when compared to the approach suggested in
this paper as displayed in Table 3 for data set 5.

4. The host behavior approach proposed in [7] operates on the
assumption that all BitTorrent file transfers take place only via
TCP. This assumption leads to a very large value of false
negatives when this approach is applied to traces generated by
the new generation of BitTorrent clients using uTP where all
data transfers use UDP. The approach presented in this paper
and the SVM approach in [9] are not affected by the transport
layer protocol of BitTorrent clients as displayed in Table 3
where 4 out of 5 data sets had BitTorrent clients using UDP for
file transfers.

VI. CONCLUSIONS

In this paper, a set of heuristics and classification schemes
based on the discriminating attributes and behavioral nature of
different P2P applications are presented and integrated together
in order to successfully identify the targeted BitTorrent
applications. The proposed scheme relies solely on information
that is captured by using any traditional Netflow collector
which is the standard tool used to collect Internet traffic traces
within a network. These heuristics have been integrated and
combined together to produce a classification model capable of
identifying BitTorrent flows with high accuracy.

The presented classification scheme has been tested on real
life data sets where P2P and non P2P activities were conducted.
The accuracy output for identifying BitTorrent activity was

very high ranging from 91.3-95.4 %, in the case of byte
comparison. The information regarding the total amount of
downloaded bytes is very useful for network analysts and
administrators as it can be used for bandwidth management and
allocation, and in identifying ‘bandwidth hogs’ that cause
congestion and deteriorate network performance.

The results of the proposed scheme have proven to be
superior to other existing approaches in terms of accurately
identifying BitTorrent flows within Netflow traces.

REFERENCES

[1] T. Karagiannis , K. Konstantina, and A. Papagiannaki. “
BLINC: Multilevel traffic classification in the dark”, In Proc.
SIGCOMM'05, Philadelphia, PA, USA, 2005.
[2] A. Finamore, M. Mellia, , M. Meo and M. Rossi. “KISS:
Stochastic Packet Inspection” in Proc. Traffic Measurement
and Analysis (TMA) Workshop at IFIP Networking 2009,
Aachen, Germany,May 2009.
 [3] W. Rui, L.Yang, Y.Yuexiang, “Solving the app-level
classification problem of P2P traffic via optimized support
vector machines” . In Proc. Sixth International Conference on
Intelligent Systems Design and Applications (ISDA '06): Vol 2,
Oct 16-18, 2006, Jinan, China.
[4] S. Zhang, C. Gu, and X. Xue. “Encrypted Internet Traffic
Classification Method based on Host Behavior”, JDCTA:
International Journal of Digital Content Technology and its
Applications, Vol. 5, No. 3, pp. 167 ~ 174, 2011.
[5] B. Cohen, “BitTorrent Protocol Specification”, Retrieved:
21 October 2011, http://bittorrent.org/beps/bep_0003.html
[6] Cisco, “Netflow”, Retrieved 4 February 2012,
http://www.cisco.com/go/netflow
[7] N. Basher, A. Mahanti, C. Willamson, M. Arlitt, “A
Comparative Analysis of Web and Peer-to-Peer Tra c”, In
Proc. WWW’08, pages 287–296,Beijing, China, April 2008.
[8] A. Gossett , I. Papapanagiotou, and M. Devetsikiotis. “An
apparatus for P2P classification in Netflow traces”, In Proc
GLOBECOM Workshops (GC Wkshps), 2010 IEEE , vol., no.,
pp.1361-1366, 6-10, Miami, Florida, U.S.A, December 2010.
[9] R. Yuan, Z. Li, X. Guan, L. Xu. “An SVM-based machine
learning method for accurate Internet traffic classification”, In
Proc. Information System Frontier 12(2):149–156,Hingham,
MA, U.S.A, 2010.
[10] T. Silverston, O. Fourmaux, A. Botta, A. Dainotti, A.
Pescap`e, G. Ventre, and K. Salamatian “Traffic analysis of
Peer-to-Peer IP T.V. communities”, Computer Networks, vol.
53, no. 4, pp. 470–484, New York, NY, U.S.A, 2009.
[11] BitTorrent Inc.,”uTorrent”, Retrieved: 26 October 2011,
http://www.utorrent.com
[12] B. Cohen. “BitTorrent Client”, Retrieved: 28 April 2012,
http://www.bittorrent.com/

3023

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

