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Abstract 
Recent collapses of Session Initiation Protocol (SIP) servers indicate that the built-in SIP overload control mechanism cannot mitigate overload 
effectively. In this paper, we propose a new SIP overload control algorithm by introducing a novel analytical approach to model the dynamic 
behaviour of a SIP network where each server has a finite buffer. Three key breakthroughs of our modeling approach are the formulations of message 
loss process, message retransmission process, and the complex departure process through detailed analysis. Our modeling results indicate that 
retransmissions triggered by the queuing delay are redundant, thus we propose a feedback control mechanism that regulates retransmission message 
rate to mitigate the overload. We then demonstrate how to extend our analytical approach to the modelling of our overload control solution. 
Simulation based on this analytical model runs much faster than event-driven simulation which needs to track thousands of retransmission timers for 
outstanding messages and may crash a simulator due to limited computation resources. Performance evaluation demonstrates that: (1) without the 
control algorithm applied, the overload at a downstream server may propagate to its upstream servers and cause widespread network failure; (2) in 
case of short-term overload, our feedback control solution can mitigate the overload effectively without rejecting calls intentionally or reducing 
network utilization, thus avoiding the disadvantages of existing overload control solutions. In addition, compared with the pushback solution, our 
retransmission-based solution achieves a better trade-off between the speed to cancel the overload and the call rejection rate when an overload lasts a 
short period. 
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1. Introduction 

Internet telephony is experiencing rapidly growing 

deployment due to its lower-cost telecommunications 

solutions for both consumer and business services. Session 

Initiation Protocol (SIP) [1] has become the main signaling 

protocol to manage multimedia sessions for numerous Internet 

telephony applications such as Voice-over-IP, instant 

messaging and video conferencing. 3rd Generation Partnership 

Project (3GPP) has adopted SIP as the basis of its IP 

Multimedia Subsystem (IMS) architecture [2]. With the 3rd 

Generation (3G) wireless technology being adopted by more 

and more carriers, most cellular phones and other mobile 

devices are starting to use or are in the process of supporting 

SIP for multimedia session establishment [3]. 
RFC 5390 [4] identified the various reasons that may cause 

server overload in a SIP network. These include but not 
limited to poor capacity planning, dependency failures, 
component failures, avalanche restart, flash crowds, etc. In 
general, anything that may trigger a demand burst or a server 
slowdown can cause server overload and lead to server crash. 
There are many published works [5-31] discussing how to 
control SIP overload through call rejection or load balancing. 
These mechanisms can either increase call rejection rate or 
cause SIP server underutilized. Rejecting calls can cancel the 
overload effectively, but it may cause a large amount of 
revenue loss to carriers. We believe that arbitrarily high 
volume of call rejection can be avoided in most overload 
situations if we can understand the root cause of widespread 
network failures by modeling server overloading behaviour 
before designing appropriate overload control algorithm. 

Traffic modeling has played a large impact on network 

simulation reliability in the past years [32]. Modeling and 

simulation can help enterprise engineers to optimize the 

planning and the dimensioning of their communication 

network or system [33]. Numerous models for different 

communication system have been developed recently, e.g., a 

model was proposed by [32] to mimic packet defragmentation 

process based on the measured network traffic. In order to find 

the optimum number of input connections required for serving 

a certain quota of users, the paper [33] presented a model for 

predicting the system capacity of accepting the calls into a 

server. 

The objective of this paper is to develop a new overload 

control algorithm through analytical modeling approach that 

allows us to investigate how server overloading and 

widespread SIP network failure may happen under short term 

demand bursts or server slowdowns. We want to demonstrate 

that the major cause of this kind of failures is the hop-by-hop 

retransmission mechanism designed for reliability purpose in 

SIP. Different from existing overload control solutions that try 

to mitigate overload through rejecting calls or load balancing, 

our approach will address redundant retransmissions directly. 

This is particularly useful when the overload is caused by 

short term demand bursts or temporary server slow down. For 

overloading caused by persistent demand surge or server 

slowdown, our solution can be used together with existing 

solutions to maximize server utilization. 

The contributions of this paper are: (1) Creating an 

innovative approach to formulate analytical models for SIP 

server networks with finite buffer sizes using difference 
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equations. The arrival and service processes of each SIP server 

can be arbitrary, which makes our modeling approach quite 

general. We have successfully analyzed different types of 

message losses, retransmission messages triggered by queuing 

delay or message drops, and formulated the complex departure 

processes. These analytical results allow us to understand the 

impacts of redundant retransmissions and finite buffer sizes; 

(2) Developing a novel overload control algorithm to mitigate 

the overload by controlling retransmission probability based 

on the average CPU utilization of the overloaded downstream 

server. In addition, we apply our analytical modeling approach 

to show that the proposed overload control mechanism is 

effective in preventing overload collapse under two typical 

scenarios of short-term overload. For a short-term overload, 

our retransmission-based solution achieves a better trade-off 

between the speed to cancel the overload and the call rejection 

rate when compared with the pushback solution; (3) 

Demonstrating the efficiency and accuracy of our analytical 

model through a performance comparison between fluid-based 

Matlab simulation and event-driven OPNET simulation of a 

SIP network. 

This study will help network planners, operators, and 

researchers to understand the root cause of an important 

network failure scenario triggered by short term traffic surges 

such as flash crowds and database maintenance. Network 

planners can therefore plan their SIP networks better by 

engineering their SIP networks to avoid redundant 

retransmissions. Operators can apply our feedback control 

mechanism to mitigate the short-term overload and maintain 

the revenue without rejecting calls intentionally. Researchers 

can use our model to speed up the performance evaluation of 

various SIP overload control solutions using the fluid-based 

simulation, when a SIP network is scaled up. 

The paper is organized as follows. Section 2 reviews 

existing overload control solutions and simulation approaches. 

Section 3 briefly reviews SIP protocol. Section 4 proposes our 

analytical modeling approach for SIP networks. The overload 

control algorithm is developed and corresponding analytical 

model is created in Section 5. Section 6 evaluates performance 

of a SIP network under two typical overload scenarios via 

Matlab simulation and OPNET simulation. Conclusions are 

given in Section 7. 

2. Related work 

2.1. SIP overload control 

Experimental evaluation of SIP server showed the overload 

collapse behaviour in [34]. Recent collapses of SIP servers 

due to emergency induced call volume or “American Idol” 

flash crowd in real carrier networks have attracted great 

research attention and motivated different types of strategies 

to address SIP server overload problem (e.g., [5-29]). 

1) Load Balancing: As a default part of numerous operating 

systems, SIP Express Router (SER) developed load balancing 

module to mitigate the overload caused by large subscriber 

populations or abnormal operational conditions [8]. In order to 

balance the demands for bandwidth and the call failure rates of 

a SIP proxy, request batching was combined with parallel 

execution to improve call throughput and reduce call failure 

rate significantly in [9]. Three novel approaches were 

introduced for load balancing in cluster-based SIP servers [10]. 

The load balancer performed session-aware request 

assignment to route SIP transactions to the proper back-end 

nodes [10]. Peer-to-Peer network technology was integrated 

with SIP to balance the traffic load (e.g., [11, 12]). 

In an IMS core network, a load balancing scheme was 

proposed to reduce overload probability by re-directing 

consequent SIP traffic from the over-utilized Serving 

Call/Session Control Function (S-CSCF) server to the other 

under-utilized ones [13]. A SIP message overload transfer 

scheme can leverage redundant Interrogating CSCF (I-CSCF) 

servers to reduce the message disruption in cases of server 

failures [14]. A user equipment registration scheme not only 

balanced the workload over multiple Proxy-CSCF (P-CSCF) 

nodes, but also reduced the required P-CSCF nodes up to 40% 

from the standard session initialization procedure of IMS [15]. 

However, load balancing tries to avoid SIP network failures 

by reducing the utilization of those servers that may become 

overloaded. This will increase network cost and therefore 

reduce revenue. When the total message arrival rate exceeds 

the aggregated processing capacities of all local servers, load 

balancing schemes cannot prevent the overload collapse. 

2) Priority-Based Overload Control: Before finding its 

application in preventing SIP overload due to CPU constraint, 

priority mechanism has been adopted for active queue 

management due to bandwidth constraint, e.g., stateless fair 

admission control (SFAC) aims at guaranteeing fair bandwidth 

allocation for each flow [35]. A priority enqueuing scheme 

provided differentiate service for different types of SIP 

messages in every SIP proxy server, where INVITE requests 

were placed into low priority queue [16]. Once the proxy 

server was overloaded, every INVITE request was hardly 

forwarded to its destination, thus forbidding the successive 

non-INVITE transactions to reduce the traffic load [16]. 

Another queuing strategy applied a queue threshold for the 

INVITE request message queue to detect the overload [17]. 

When the overload was anticipated, part of INVITE requests 

would be rejected to mitigate the overload, and the 

corresponding calls were blocked [17]. Priority queue was 

used to overcome the overload problem of IMS system by 

blocking non-priority calls [18]. Similar to the priority scheme, 

a novel authentication protocol was developed to reduce the 

load on the centralized authentication database dramatically 

and improve the overall security of a carrier-scale VoIP 

network [19]. 

3) Pushback Overload Control: Since the cost of rejecting a 

session intentionally is usually comparable to the cost of 

serving a session [21], cancelling INVITE transaction using 

priority queuing scheme is not very cost effective. Therefore, 

numerous pushback solutions have been proposed to reduce 

the traffic loads of an overloaded receiving server by 

advertising its upstream sending servers to decrease their 

sending rates. 

Both centralized and distributed overload control 

mechanisms for SIP were developed in [7]. Retry-after control, 

processor occupancy control, queuing-delay control and 

window-based control were proposed to improve goodput and 

prevent overload collapse in [20]. Three window-based 
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feedback algorithms were proposed to adjust the message 

sending rate of the upstream SIP servers based on the queue 

length [21]. Other pushback solutions can be found in [5, 22-

28]. 
Such pushback control solutions aim at preventing the 

overload of a server by reducing the sending rate of its 
upstream servers. This would increase the queuing delays of 
newly arrival original messages at the upstream servers, which 
in turn cause overload at the upstream servers. Overload may 
thus propagate server-by-server to sources. Unlike TCP 
situation where a source typically generates large amount of 
data, a UAC in SIP only generates very few signalling 
messages [7]. Pushback solution leads to rejection of a large 
number of calls which means revenue loss for carriers. 
However, it may be unnecessary to reject calls intentionally 
when temporary overload only lasts a short period of time. 

4) Proposal of Retransmission-Based Overload Control: 

Our approach proposed in this paper is different from the 

existing solutions discussed above. When retransmissions are 

caused by the overload rather than the message loss, they will 

bring extra overhead instead of reliability to the network and 

exacerbate the overload as we will demonstrate later through 

our analytical modeling and simulation. Therefore, when a 

short-term overload occurs at a server, we propose to reduce 

the retransmission rate instead of reducing original message 

sending rate of the upstream servers. 
Such retransmission-based solution will mitigate the 

overload while maintaining original message sending rate, 
which leads to less blocking calls and more revenue for 
carriers. The key to this novel solution is to differentiate 
necessary retransmissions from redundant ones. Direct or 
indirect ways may be used to address this goal. With indirect 
approaches, the upstream servers can try to guess whether 
downstream servers are overloaded through differences in 
delays of response messages [36-39]. Although this kind of 
control mechanisms does not require any modification to SIP 
protocol, it unfortunately might lead to overreaction and 
potential throughput loss. Therefore, we propose in this paper 
to control retransmission rate based on explicit indication from 
downstream server. Analytical and simulation results shown 
later indicate that by introducing a minor change to SIP 
protocol, our new control mechanism eliminates the short-
term overload more quickly. 

When an overload lasts for a long period, our 
retransmission-based solution can be combined with pushback 
solution to reject some calls by reducing the original message 
rates of SIP sources. Under this kind of situation, our solution 
can help maximize server utilization and therefore serve as a 
complementary mechanism to the existing solutions. 

2.2. Fluid-based simulation vs. event-driven simulation 

Fluid-based simulation was originally created to speed up 

simulation processes [40]. Before fluid-based simulation was 

introduced, event-driven simulation had been widely used for 

network performance evaluation. Its computation cost grows 

linearly with network size and bandwidth [40]. Therefore, it is 

necessary to develop some other approaches to simplify the 

event-driven simulation. Fluid-based simulations have been 

successfully used to achieve scalability by aggregating events 

into time slots [40]. However, fluid-based simulation is highly 

dependent on whether analytical models can be established to 

capture the dynamic process of a system. The retransmission 

mechanism of TCP was not modelled in [40] due to the 

complexity of modeling retransmission mechanism. 

In this paper, our goal is to develop an analytical model that 

can help us understand how the widespread failure of a SIP 

network may happen due to the SIP retransmission mechanism 

so that we can design a simple and effective overload control 

mechanism. It should be noted that it is difficult to apply the 

fluid-based simulations in [40] directly to SIP because a large 

number of variable timers in SIP generate complex correlation 

structures at different time scales. In order to solve this 

problem, we have to study the message loss process, message 

retransmission process, and service departure process in detail 

by introducing some new techniques which will be discussed 

in later sections. 

Our analytical model can also be used to conduct fluid-

based simulation and speed up simulation process as [40]. 

This is another important benefit of our model. We will 

demonstrate that our fluid-based simulation can speed up 

simulation process significantly compared with event-driven 

approach, when a SIP network has to process a large number 

of signaling messages. 

We have investigated the chaotic behaviour of SIP 

retransmission mechanism by assuming that each SIP server 

has infinite buffer and no message will be dropped due to 

buffer overflow, while no any SIP overload control algorithm 

is activated [41, 42]. In this paper, each SIP server has finite 

buffer, and messages will be dropped when the buffer 

becomes full. In addition, an analytical model of SIP overload 

control algorithm is also developed. 

3. SIP Protocol overview 

Figure 1 illustrates a basic operation of a SIP system. To set 

up a call, a user agent client (UAC) sends an INVITE request 

to a user agent server (UAS) via the two proxy servers. The 

proxy server returns a provisional 100 (Trying) response to 

confirm the receipt of the INVITE request. The user agent 

server returns a 180 (Ringing) response after confirming that 

the parameters are appropriate. It also evicts a 200 (OK) 

message to answer the call. The user agent client sends an 

ACK response to the user agent server after receiving the 200 

(OK) message. Finally the call session is established between 

the user agent client and the user agent server through the SIP 

session. The BYE request is generated to close the session 

thus terminating the communication. When a SIP proxy server 

is overloaded, it will send a 503 Service Unavailable message 

in response to an INVITE request. The call will then be 

rejected. Many existing pushback SIP overload control 

proposals are based on the 503 Service Unavailable messages 

to reject calls when servers are overloaded as discussed in the 

previous section. Processing SIP INVITE requests and 

generating 503 Service Unavailable messages still consume a 

large amount of CPU time. Therefore it is questionable that 

the server load can be actually reduced through this kind of 

approach. 

As the INVITE message is the most complex message to be 

processed by a SIP server and thus the major CPU load 

contributor [1], we will focus on the INVITE-100Trying 
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transaction and ignore other non-INVITE transactions in this 

paper. Given the proportionate nature and the general 

similarity of the retransmission mechanisms between the 

INVITE and non-INVITE messages in a typical session [1], 

our modeling approach can be naturally extended to include 

non-INVITE transactions. 

INVITE

100Trying
INVITE

INVITE
100Trying

180Ringing
180Ringing

180Ringing

200OK
200OK

200OK

ACK
ACK

ACK

Session Data

BYE
BYE

BYE

UAC UAS
SIP

Proxy-2

200OK
200OK

200OK

SIP

Proxy-1

 
Figure 1. A typical procedure of session establishment. 

SIP introduces a retransmission mechanism to maintain its 
reliability [1, 43]. In practice, a SIP sender uses timeout to 
detect message losses. One or more retransmissions would be 
triggered if the corresponding reply message is not received in 
predetermined time intervals. 

SIP RFC 3261 [1] suggests that the SIP retransmission 
mechanism should be disabled for hop-by-hop transaction 
when running SIP over TCP to avoid redundant 
retransmissions at both SIP and TCP layer. However, SIP 
retransmission mechanism is mandatory for end-to-end 
transactions no matter TCP or UDP is used [1]. 

Recent experimental evaluation on SIP-over-TCP overload 
behaviour in [5] demonstrates that TCP flow control 
mechanism cannot prevent SIP overload collapse for time-
critical session-based applications due to lack of application 
context awareness at the transport layer. Other experiments 
(e.g., [6, 7]) also indicate that the throughput with SIP-over-
TCP exhibits similar overload collapse behaviour as that with 
SIP-over-UDP. In addition, experiment performed by IBM 
research center in [34] claims that using TCP to deliver SIP 
messages degrades server performance from 43% (under 
stateful proxy with authentication) to 65% (under stateless 
proxy without authentication) when compared with using UDP. 
Therefore, running SIP over UDP is a good option for vendors 
in practice. 

The retransmission for an INVITE transaction is confirmed 

on a hop-by-hop basis. For each hop, the sender starts the first 

retransmission of the original message at T1 seconds, and the 

time interval doubles after every retransmission (exponential 

back-off), if the corresponding reply message is not received. 

The last retransmission is sent out at the maximum time 

interval 64T1 seconds. Thus there is a maximum of 6 

retransmissions. The default value of T1 is 0.5s [1]. 

To select a topology that can be considered typical, we first 

consider the different types of SIP nodes. There are in general 

two types of SIP nodes as shown in Figure 1: UAs vs. proxy 

servers. In some cases, application servers can take the place 

of UAs. In the following study, we will start with a tandem 

server topology to cover both types of nodes, as shown in 

Figure 2. Server 1 represents an arbitrary proxy server, while 

Server 2 represents an arbitrary UA. Therefore, we consider 

that Server 1 receives the responses from downstream nodes 

while Server 2 does not. The original messages and the 

retransmitted messages arriving at Server 1 are merged 

aggregate streams from multiple upstream servers. If there are 

more proxy servers between Server 1 and Server 2, their 

behaviour patterns will be similar to Server 1 in our tandem 

server scenario. 

UAC

UAS

Tandem Server

21

Proxy

UAC

UAC

UAC

 
Figure 2. SIP network topology with an overloaded tandem server which is 

marked with diagonal lines. 

After finishing the study on the tandem server, we will 

discuss the impact of splitting the output of Server 1 to 

multiple downstream servers and merging traffic from 

multiple upstream servers at Server 2. This will allow us to 

generalize our results to arbitrary topology in Section 4. 

We make the following statement in accordance with SIP 

RFC 3261 [1] and the requirements for practical SIP networks 

without losing the generality of our approach: 

(a) Delay Consideration: We investigate the 

retransmissions which are mainly caused by long queuing 

delay of the overloaded server. Therefore, for the round trip 

response time between an overloaded server and its 

neighbouring server, the queuing and processing delays are 

dominant, while transmission and propagation delay are 

negligible [21]. This consideration is valid because signaling 

messages are typically CPU capacity constrained rather than 

bandwidth constrained; 

(b) Discrete-time Formulation: Time is divided into 

discrete time slots. This allows us to develop discrete time 

models which are much easier to understand and simulate. It is 

easy to see that the errors caused by the discrete model can be 

made arbitrarily small by making the interval of a timeslot 

smaller and smaller. In this paper, in order to present our 

analysis clearly, we use t and n to denote time and timeslot 

respectively. The default interval of a time slot is 50ms and 

the corresponding values of T1 are 0.5s or 10 timeslots 

respectively; 

(c) Message Enqueuing/Dropping Policy: The SIP RFC 

3261 [1] does not specify the queuing and scheduling 

discipline to be deployed by a SIP server. Without loss of the 

generality of our approach, we let a SIP server maintain a 

first-come-first-served (FCFS) queue for messages arriving at 

different time slots. When a buffer is full, traffic arrivals are 

dropped randomly. Different types of traffic arrivals, such as 

original request messages, retransmitted request messages 
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from upstream servers, retransmitted messages for the 

downstream servers, etc., are therefore dropped proportionally 

according to their corresponding amounts of traffic arrivals. 

When the buffer is not full, traffic arrivals in different time 

slots will follow first-come-first-in policy consistent with the 

FCFS principle. However, for the simplicity of mathematical 

treatment, traffic arrivals within the same time slot will be 

enqueued based on a priority scheme to be described in the 

next section. The impact of this priority scheme within a 

timeslot can be made arbitrarily small when the interval of the 

time slot decreases; 

(d) Response Treatment: Enqueuing response messages 

at the tail of the message queue will delay the processing of 

response messages, thus trigger more redundant 

retransmissions and make the overload worse. We assume 

response messages be handled as interrupts and enter the head 

of message queue if cannot be processed immediately. It 

should be noted that the time to process a response message is 

typically much smaller than a request message; 

(e) Overload Assumption: When overload happens in the 

network, at any time, one of the servers will be the most 

congested one among all the overloaded servers. It becomes 

the bottleneck server. We let the tandem server be the 

bottleneck server by making capacities of all its upstream 

servers large enough to process the messages without any 

delay. The tandem server consists of Server 1 and Server 2 (as 

shown by Figures 2 and 3). Both Server 1 and Server 2 have 

limited capacities. 

4. Modeling a SIP network 

In order to understand the impact of retransmission 

mechanism, we need to analyze the queuing and 

retransmission processes in details. This motivates us to 

develop an analytical model for a general SIP network. To 

provide a better understanding of our modeling approach, we 

create an analytical model for a tandem server first. Then we 

discuss how to extend our modeling approach to an arbitrary 

network with minor modifications. 

There are three main challenges for analyzing SIP servers 

with finite buffer: (1) the different types of arrival messages a 

SIP server has to process; (2) the impact of different types of 

message drops on the SIP retransmissions due to the buffer 

overflow; (3) the complex relations among arrival process, 

service process, retransmission process, response process and 

queuing process, e.g., arrival retransmitted messages and 

arrival response messages depend on the queuing and 

departure processes of both upstream servers and downstream 

servers as discussed later on. 
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Figure 3. Queuing dynamics of a tandem SIP server (For Server 1, 1(n) 

denotes original message arrivals, r1(n) denotes retransmitted message arrivals 

from upstream servers, r'2(n) denotes retransmitted messages created for 

Server 2, q1(n) denotes queue size, 1(n) denotes service rate, B1 denotes finite 

buffer size; For Server 2, 2(n) denotes original message arrivals, r2(n) 

denotes retransmitted message arrivals, q2(n) denotes queue size, 2(n) 

denotes service rate, B2 denotes finite buffer size). 

We start with a tandem server to introduce our fundamental 

modeling approach to address the three challenges. Figure 3 

depicts the queuing dynamics of a tandem server, where 

Server 2 is an arbitrary user agent server and Server 1 is an 

arbitrary proxy server. According to Overload Assumption (e), 

both servers are assumed to have limited capacity and 

therefore are prone to overload. Server 2, as a user agent, does 

not need to consider response messages from downstream 

servers. 

Different types of messages have different processing 

requirements and are typically treated differently by SIP 

servers. Our approach tries to differentiate different types of 

messages into three categories and formulate their processing 

and departure differently. The three types of arrival messages 

of Server 1 are: original INVITE request arrival process 1(n) 

from upstream servers, retransmitted INVITE request arrival 

process r1(n) from upstream server, and response arrival 

process 1(n) from downstream server which depends on 

message departure process of upstream server. 

In order to determine whether an original message needs to 

be retransmitted by an upstream server for Server 1, according 

to SIP RFC [1], we need to know whether the message is still 

in queue at the Server 1 at current time or it has been dropped 

by Server 1 due to buffer overflow. Different types of message 

drops would generate different retransmission scenarios, 

because the drop of redundant retransmitted messages will not 

trigger new retransmissions, while the drop of non-redundant 

retransmitted messages may trigger new retransmissions. 

The arrival process, the departure process and service 

process are related, while retransmission and response depend 

on the queuing behaviour of both upstream server and 

downstream server. Both original message arrival process 2(n) 

of Server 2 and retransmission process r1(n) of Server 1, are 

determined by original message arrival process 1(n) of Server 

1 and the queuing dynamics of Server 1. Response process 

1(n) of Server 1 and retransmission process r2(n) of Server 2, 

are determined by original message arrival process 2(n) of 

Server 2 and the queuing dynamics of Server 2. The arrival 

processes at Server 2 including the original INVITE request 

messages 2(n) and retransmitted request messages r2(n) 

depend on the departure process of Server 1. The queuing 

dynamics of both Server 1 and Server 2 are determined by 

original message arrival process, service process 

retransmission process and response process. 

Given that both original message arrival process 1(n) of 

Server 1, server service process 1(n) of Server 1, and server 

service process 2(n) of Server 2 can be arbitrarily distributed, 

the relation between all different dynamic processes is not 

trivial. Thus obtaining retransmission process r1(n) and r2(n), 

departure process 2(n) and 1(n) is a difficult task. Since they 

all depend on the queuing processes at both servers (as shown 

by Figure 3), we start with the queuing processes for our 

modeling. 
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We consider the Server 2 first. Since Server 2 has finite 

buffer size, the new arriving messages (including original and 

retransmitted messages) are dropped when the buffer is full 

(i.e., the queue size q2(n)=B2, where B2 denotes the finite 

buffer size of Server 2, as shown in Figure 3). At the current 

time slot n, the original INVITE requests arrive with an 

aggregate rate 2(n): only 2
e(n), which are called effective 

original arriving messages, enter the buffer of Server 2 and 

2
d(n) are dropped; similarly the retransmitted INVITE 

requests arrive with an aggregate rate r2(n): only r2
e(n), which 

are called effective retransmitted message arrivals, enter the 

buffer of Server 2 and r2
d(n) are dropped; Server 2 can process 

2(n) messages and 2(n) can be an arbitrary stochastic 

process. 

Similarly, for Server 1, the queue size is q1(n) and the finite 

buffer size is B1. At current time slot n, the original INVITE 

requests (from all the upstream servers of Server 1) arrive with 

an aggregate rate 1(n): only 1
e(n) enter the buffer and 1

d(n) 

are dropped; the retransmitted INVITE requests arrive with an 

aggregate rate r1(n), where r1(n) denotes the retransmitted 

messages: only r1
e(n) enter the buffer and r1

d(n) are dropped; 

Server 1 generates the retransmitted messages for 2(n) with a 

rate r'2(n) which also need to go through Server 1: only r'2
e(n) 

enter the buffer and r'2
d(n) are dropped; the response messages 

from Server 2 corresponding to 2(n) arrive at Server 1 with a 

rate 1(n); Server 1 can process 1(n) messages. Since the 

processing time for different type of messages may be 

different, 1(n) denotes an arbitrary and generic process. 

Based on Enqueuing Policy (c), r'2
e(n) is not equal to r2(n) due 

to queuing and processing delays at Server 1. 

We derive the queuing dynamics of Server 1 first. 

Assuming 1(n), 1(n), and B1 given, our goal is to calculate 

1
e(n), 1

d(n), r1
e(n), r1

d(n), r'2
e(n), r'2

d(n), 1(n) and q1(n). 

Clearly the key issue to be addressed is how to know which 

messages are actually lost. It is a difficult and challenging 

issue because message losses are random in nature. They can 

happen to original messages and retransmitted messages. With 

arbitrary message arrival processes and server serving 

processes, the issue becomes even harder to solve. In the 

following, we will show how we successfully solve the 

problem in a step-by-step manner. 

At the beginning of current time slot n, the available buffer 

size will be B1–q1(n), and the server can process 1(n) 

messages in the slot. Since Server 1 has enough CPU capacity 

to process the incoming response messages (i.e., Response 

Treatment (d)), the buffer only allows maximum B1–q1(n)–

1(n)+1(n) new arrival request messages to enter the queue. If 

the total arrival request messages exceed the available 

processing capacity, the buffer overflow happens and the 

request messages are dropped randomly. Within a timeslot, 

messages are dropped proportionally according to their 

corresponding amounts of traffic arrivals (i.e., Dropping 

Policy (c)). Thus the drop probability pd1 can be obtained as 
















)()()(

)()()()()()(
)(

211

1111211
1

nrnrn

nBnqnnrnrn
npd




(1) 

where use []+ to denote nonnegative value. 

Then the original messages 1(n) enter the buffer with the 

probability (1pd1). We can obtain 1
e(n) as 

1
e(n)=1(n)(1pd1(n)).                            (2) 

If the buffer overflow happens, then the extra messages 

1
d(n) are dropped. So we can obtain 1

d(n) as 

1
d(n)=1(n)1

e(n).                            (3) 

Similarly we can obtain r1
e(n), r1

d(n), r'2
e(n), and r'2

d(n) 

recursively as follows, 

r1
e(n)=r1(n)(1pd1(n)),                            (4) 

r1
d(n)=r1(n)r1

e(n).                            (5) 

r'2
e(n)=r'2(n)(1pd1(n)),                            (6) 

r'2
d(n)=r'2(n)r'2

e(n).                            (7) 

Obviously 1(n)+1
e(n)+r1

e(n)+r'2
e(n) give the total arriving 

messages which enter the queue of Server 1 at current time 

slot n. Adding q1(n) and deducting 1(n) would generate a new 

queue size of Server 1 at the next time slot n+1, i.e., 

q1(n+1)=[min{q1(n)+1
e(n)+r1

e(n)+r'2
e(n)+1(n)1(n), B1}]+ 

(8) 

The queue size should be not more than the buffer size B1. 

Like describing the queuing dynamics of Server 1, we can 

obtain 2
e(n), 2

d(n), r2
e(n) and r2

d(n) as follows, 

pd2=[(2(n)+r2(n)+q2(n)B22(n))/(2(n)+r2(n))]+,            (9) 

2
e(n)=2(n)(1pd2(n)),                          (10) 

2
d(n)=2(n)2

e(n),                          (11) 

r2
e(n)=r2(n)(1pd2(n)),                          (12) 

r2
d(n)=r2(n)r2

e(n).                          (13) 

where pd2 denotes the drop probability of Server 2 due to the 

buffer overflow. 

Then we can find the queue size of Server 2 at next time 

slot n+1 based on the information at the current time slot n, 

i.e., 

q2(n+1)=[min{q2(n)+2
e(n)+r2

e(n)2(n), B2}]+.          (14) 

The equation for the queue size at Server 1 is different from 

Server 2 because Server 1 has to receive response messages 

from Server 2 and retransmit request messages to Server 2 if 

timer expires, while Server 2 does not need to do so because it 

is an arbitrary UA (or end-server). 

It should be noted that the above equations are useful only 

when we know how to obtain the arrival retransmitted 

messages r1(n) and the response messages 1(n) of Server 1, as 

well as the arrival original messages 2(n) and the arrival 

retransmitted messages r2(n) of Server 2. All of them depend 

on the queuing and departure processes of Server 1 and Server 

2. Therefore they are all intertwined. Our approach is to 

calculate all quantities in a recursive way and use a divide-

and-conquer strategy to solve the complex queuing and 

departure process as demonstrated in the following 

subsections. 

4.1. Derivation of retransmission process 

In order to calculate r1(n), we first have to look at r'1(n), the 

total retransmitted messages generated by all upstream servers 

of Server 1 at current time slot n. Following the divide-and-

conquer strategy, we divide r'1(n) into 6 components where 

each component can be calculated easier. The original request 

messages which arrived at Server 1 at time nT1 will be 

retransmitted the first time by upstream server at time n if they 
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have not been processed by Server 1 by time n. These 

retransmitted messages constitute the first component. 

Similarly a message arrived at time nTj, Tj=(2j1)T1, will be 

retransmitted the jth time at time n if the original request 

messages have not been processed by time n. Let r'1j(n) denote 

all the jth retransmissions generated by all upstream servers at 

time n for the original request messages arriving at time nTj, 

and 1≤j≤6, because there are maximum 6 retransmissions for 

every original request message [1]. We can obtain the total 

retransmitted messages r'1(n) generated by all the upstream 

servers at current time slot n as 

 
 6

1 11 )()(
j j nrnr .             (15) 

To focus our study on the tandem server, Overload 

Assumption (e) indicates that the upstream servers have 

infinite capacity and can process the retransmitted messages 

without any delay, i.e., r1(n)=r'1(n) and r1j(n)=r'1j(n). Then we 

have 

 


6
1 11 )()(

j j nrnr .             (16) 

So our focus now is how to find r1j(n). For the purpose of a 

clear analysis, we suggest an enqueuing priority scheme to 

differentiate different types of message arrivals within the 

same time slot n. The order of the message priority is: the 

original request messages > the retransmitted request 

messages from the upstream server > the retransmitted request 

messages for the downstream server (as shown in Figure 3). 

The order of the retransmitted message priority is: first-time 

retransmitted messages > second-time retransmitted 

messages >  > sixth-time retransmitted messages (as shown 

in Figure 4). Figure 4 illustrates the enqueuing order of 

different types of retransmission messages when the queue is 

not full. The messages with higher priority enter the tail of the 

queue prior to the messages with lower priority. However, 

such enqueuing priority scheme does not apply to the traffic 

arrivals at different time slots, which will follow first-come-

first-in policy consistent with the FCFS principle. Therefore, 

the impact of this priority scheme within a timeslot can be 

made arbitrarily small when the interval of the time slot 

decreases. 
 

1 

)(1 ne  

 

100Trying Response 

 

q1(n) 

Retransmitted 

Request 
 

B1 

)(1 nd  

 

r15(n) 
r14(n) 

r13(n) 
r12(n) 

r11(n) 

r16(n) 

Invite Request 

 
Figure 4. Priority order of the retransmission messages r1j(n). 

In order to determine whether an original message needs to 

be retransmitted by an upstream server, according to SIP RFC 

[1], we need to know whether the message is still in queue at 

Server 1 at current time or it has been dropped by Server 1 due 

to buffer overflow: (a) If the original messages enter the queue 

at Server 1, future retransmissions of these messages depend 

on whether these messages are still in queue at their 

designated retransmission times; (b) If the original messages 

are dropped, their first retransmissions will happen at their 

designated first retransmission time for sure. To make things 

complex is the fact that their second retransmissions depend 

on whether their first retransmission messages enter the queue 

or not. If their first retransmission messages enter the queue, 

future second retransmissions of these messages will again 

depend on whether their first retransmission messages are still 

in queue at their designated second retransmission times. If, on 

the other hand, the first retransmissions are dropped again, the 

second retransmissions of these messages will be deemed to 

happen at their designated second retransmission times. This 

logic will continue until the maximum six retransmissions 

have been exhausted. 

In order to calculate the retransmissions r1j(n) accurately, 

we propose an innovative strategy to classify various 

retransmission scenarios as discussed above, as illustrated in 

Figure 5. Figure 5 provides the key for analyzing the 

complicated message dropping. For example, r111(n) denotes 

the first retransmissions at current time n caused by the 

original messages which entered the queue at time n–T1, and 

r112(n) denotes the first retransmissions at current time n 

caused by the original messages which got dropped at time n–

T1. The sum of r111(n) and r112(n) generates the total first 

retransmitted messages r11(n). Similarly r1j(n) consists of r1ji(n) 

(i=1,,j+1, 1<j≤6): r1j1(n) denotes the jth retransmissions at 

current time n caused by the original messages which entered 

the queue at time n–Tj; r1ji(n) (1<i<j+1) denote the amount of 

messages that are being retransmitted the jth time at time n 

while their corresponding original messages and the related 

retransmissions had been dropped until their (i–1)st 

retransmissions which entered the queue at time n–Tj+Ti-1; 

r1jj+1(n) denote the amount of messages that are being 

retransmitted jth-time at time n while their corresponding 

original messages and all earlier retransmissions have been 

dropped. It can be seen that all the scenarios form a tree 

structure, where each internal node has either one or two 

children corresponding to the different scenarios we 

mentioned earlier. 

r1(n)

r111(n) r112(n)r11(n)

r12(n) r121(n) r122(n) r123(n)

r13(n) r131(n) r132(n) r133(n) r134(n)

r14(n) r141(n) r142(n) r143(n) r144(n) r145(n)

r15(n) r151(n) r152(n) r153(n) r154(n) r155(n) r156(n)

r16(n) r161(n) r162(n) r163(n) r164(n) r165(n)r166(n) r167(n)  
Figure 5. Classification of the retransmission messages r1(n). 

From the above discussion and Figure 5, we can obtain a 

generalized formula for the total jth retransmission messages 

r1j(n) by deriving its component r1ji(n) through a recursive 

approach. To simplify our presentation, we denote Tji to be 

Tji=Tj–Ti (1≤i<j≤6). Since the response messages enter the 

queue head and are processed without any delay, we denote 
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the total processed request messages from the time m to n as 

s1(m,n)= 


n
ml

ll )]()([ 11  . Due to page limit, we omit the 

detailed mathematical derivation, but provide the recursive 

equations for obtaining r1j(n) as follows. 






1
1 11 )()(

j
i jij nrnr ,             (17) 

)}()]()()(min{[)( 111111 j
e

jjj
e

j Tn, λ,nTnsTnqTnnr  

                               (18) 
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1

1
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ji
e
iijijiji

e
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l

e
l

i

l
ji

e
ilji

e
iiji

TnrnTnsTnqTn

TnrTnrTnrnr











 


 

(19) 

)()()( 11111111   jj
e

jjjjjjjj TnrTnrnr ,           (20) 

))(1)(()( 11111 npnrnr djj
e
jj   .            (21) 

We can use the same strategy to obtain the total generated 

messages r'2(n) for retransmission created by Server 1 for 

Server 2. The only difference is that we need to consider the 

queuing delays and message drops at both Server 1 and Server 

2 for non-redundant retransmitted messages r'2jj+1. 

4.2. Derivation of departure process 

Since the retransmitted messages r2(n) and the response 

messages 1(n) at Server 1 depends on the original messages 

2(n) at Server 2, hence we need to derive 2(n). 

Calculating 2(n) is a more formidable task than calculating 

retransmission rate r1(n) due to the fact that there may be 

redundant INVITE requests in the buffer of Server 1. When 

Server 1 processes an INVITE request, it needs to know 

whether the message is seen by the server the first time or not. 

If it is seen the first time, the request will be forwarded to 

Server 2; otherwise, it will be dropped as a redundant message. 

To make departure process more complex to calculate is the 

fact that the queuing delay between a message arrival time and 

its departure time from Server 1 are also random. So even we 

know which messages actually enter the queue the first time, 

we still need to know when they are leaving the server. In the 

following, we will present our innovative solution in two steps: 

In the first step, we will identify which messages are seen by 

Server 1 the first time; in the second step, we will calculate the 

impact of the delay caused by Server 1. As you will see, the 

first step turns out to be easy by utilizing the results we 

developed in the earlier subsection. The second step requires 

more sophisticated solution. 

In addition to the original messages which enter the queue 

of Server 1, the retransmitted messages which enter the queue 

of Server 1 the first time are treated as non-redundant 

messages and forwarded to Server 2. That is, all the non-

redundant messages consist of 1
e(n) and r1jj+1

e(n) (j=1,,6). 

Thus the arrival rate 2(n) of Server 2 in current time slot n 

consists of the departing non-redundant messages from Server 

1. Assume 2k(n) (k=1,,7) represent the departing non-

redundant messages which enter the queue as 1
e(n), r112

e(n), 

r123
e(n), r134

e(n), r145
e(n), r156

e(n) and r167
e(n) respectively. Our 

solution next is to derive the departure process for each 2k(n) 

(k=1,,7) separately. 

Assume the whole SIP network starts running at time n=0. 

Since varying delays exist between the arrival and departure 

times for the original messages, the relationship between the 

departure original messages 2k(n) (k=1,,7) at current time 

slot n and all the non-redundant messages 1
e(nd) and 

r1jj+1
e(nd) (j=1,,6) at previous time slot nd (d=0,1,2,…,n) 

is very complex and difficult to determine. The non-redundant 

messages, which arrived time slot nd (d=0,1,2,…,n), may or 

may not contribute to 2k (n) depending on whether they are 

still in queue at time n. 

We propose an innovative approach to obtain 2k(n) based 

on divide-and-conquer strategy by dividing 2k(n) into 

individual components so that each of them can be calculated 

easier. We start with our calculation of 21(n) which represents 

the departing original messages 1
e(n). 

We denote the amount of original messages 1
e(nd) which 

arrived at time nd and happened to leave at time n as 21d(n). 

We solve the challenge posed by the uncertainty that all 

original messages arriving prior to and at time n may or may 

not contribute to 21(n) by examining 21d(n) individually. It is 

easy to see 

 


n
d d nn

0 2121 )()(  .             (22) 

Clearly some of these 21d(n) will be null. 
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1 1
e
(nd) 

q1(nd) 

s1(nd, n1) 
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21d(n) 1
e
(nd) 

q1(nd) 

s1(nd, n1) 

1(n) 

Server 1 

1 

s1(nd, n) 

 
(e) 

Figure 6. Arrival rate 21d(n) of Server 2 in five different categories. 

The enqueuing priority scheme indicates that 1
e(n–d) will 

enter the queue and be queued right after q1(n–d). We consider 

all possible scenarios that may happen in the following 

categories: 

1. s1(nd,n1)1
e(nd)+q1(nd) as indicated in Figure 

6(a). This means that the original messages arrived at time nd 

have been fully served by the time n1. Therefore we have 

21d(n)=0 and [1
e(nd)+q1(nd)s1(nd,n1)]+=0. 

2. 1
e(nd)+q1(nd)>s1(nd,n1)q1(nd) as indicated 

in Figure 6(b). This means that the original messages arrived 

at time n-d have been served partially at time n-1. The 

remaining messages to be served at time n should be 

1
e(nd)+q1(nd)s1(nd,n1). We have 

21d(n)=min{1
e(nd)+q1(nd)s1(nd,n1), 1(n)1(n)}. 

3. s1(nd,n1)q1(nd) and s1(nd,n)q1(nd) as 

indicated in Figure 6(c). This means that none of the original 
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messages arrived at time n-d has been served by the time n. 

Therefore we have 21d(n)=0 and [s1(nd,n)q1(nd)]+=0. 

4. s1(nd,n1)q1(nd) and 

1
e(nd)+q1(nd)>s1(nd,n)q1(nd) as indicated in Figure 

6(d). This means that, at time n, the server serves the 

remaining messages in the queue q1(n-d) and then starts 

serving the original messages arrived at time n-d using the left 

capacity. We have 21d(n)=s1(nd,n)q1(nd). 

5. s1(nd,n1)q1(nd) and 

s1(nd,n)q1(nd)+1
e(nd) as indicated in Figure 6(e). This 

means that, at the time n, the server starts serving the original 

messages arrived at time n-d and can finish serving all these 

messages. We have 21d(n)=1
e(nd). 

The above 5 categories are mutual exclusive and have 

covered all the possible scenarios. By summarizing them 

together, we can obtain 21(n) through Equation (22) with 

21d(n)=[min{1
e(nd)+q1(nd)s1(nd, n1), 1(n)1(n), 

s1(nd, n)q1(nd), 1
e(nd)}]+, d=1,,n,                      (23a) 

When d=0, the original messages arrive at current time slot 

n. Whether these messages can be served immediately 

depends on the available capacity [µ1(n)-q1(n)]+. Then we 

have 

210(n)=[min{1(n)1(n)q1(n), 1
e(n)}]+.                      (23b) 

Similar to the derivation of the departing rate for the 

original messages 1
e(n–d), we can obtain, the departing rates 

2k(n) (2≤k≤7) for the non-redundant retransmitted messages 

r1k−1k
e(n) which enter the queue for the 1st-time, as 

7,,2)()(
0 22  

knn
n
d kdk             (24) 

The sum of the departing messages 2k(n) (1≤k≤7) become 

the arrival rate of Server 2 in the current time slot n as 

 


7
1 22 )()(

k k nn  .             (25) 

We can use the same strategy to obtain the retransmission 

messages r2(n) which are equal to the departure retransmission 

messages r'2
e
(n), and the response messages 1(n) which 

corresponds to the departure messages 2(n) and r2(n). 

4.3. Generalization of tandem server to arbitrary topology 

Our tandem server topology is quite general except that it 

does not consider splitting the output of Server 1 to multiple 

downstream servers and merging the traffic from multiple 

upstream servers at Server 2. 

With the departure process calculated in Section 4.2, it is 

quite easy to split the output of Server 1 if the splitting process 

is given based on any splitting policy. 

Merging at Server 2 can be treated similarly as the merging 

at Server 1 except the responses must be sent to their 

corresponding upstream servers. 

We assumed that the upstream servers of Server 1 have 

infinite capacity. If any upstream server of Server 1 has finite 

capacity, it can be modelled using similar equations as those 

for Server 1. 

In summary, we can see that Server 1 and Server 2 in our 

tandem server can be generalized to represent an arbitrary 

proxy server and an arbitrary UA respectively, two basic 

components to build an arbitrary SIP network. Our analytical 

approach can be easily applied to the modeling of an arbitrary 

SIP network with minor changes. An analytical model for an 

arbitrary network is very important to conduct a fluid-based 

simulation for performance evaluation of a large scale network, 

when an event-driven simulation is infeasible due to expensive 

computation cost [40]. 

5. Overload control algorithm 

Through the analysis in the Section 4, we have 
demonstrated the impact of retransmissions. If an original 
INVITE request is dropped due to buffer overflow or message 
corruption, retransmission of the request message by the 
upstream server is necessary. However those retransmissions 
caused by queuing delay in a server are redundant. They 
actually make the overloading situation even worse. Reducing 
this kind of retransmissions will make the retransmission 
mechanism more effective and increase server utilization. This 
observation leads us to propose an overload control 
mechanism that targets at reducing redundant retransmissions. 

The key in our proposal is to differentiate necessary 
retransmissions from redundant ones. We can use either direct 
or indirect approaches. In indirect approaches, we can estimate 
whether a downstream server is overloaded based on the way 
response messages are being received. For example, redundant 
message ratio can be calculated based on the response 
messages. This ratio can be used as an indicator about whether 
a downstream server is overloaded or not. Unfortunately this 
kind of indirect approaches can cause overreaction under 
certain special situations. 

In this paper, we propose to use a direct approach to get the 
information about downstream servers. Instead of letting 
upstream servers guess what are happening at downstream 
servers, we propose to let downstream servers inform 
upstream servers explicitly its server utilization dynamically. 
Server utilization is a good metric to indicate the level of 
server load. It is easy to implement and available in nearly all 
existing servers over the market. We propose the downstream 
servers piggyback this information in response messages. 
After receiving this message, the upstream server can regulate 
its retransmission rate based on overload level at downstream 
servers. To maintain fairness among different users, the 
retransmission rate can be regulated by randomly suppressing 
certain portion of retransmissions. In such way, the 
retransmission probability of each message is related to the 
load levels at downstream servers. 

Without loss of generality, we consider a case that overload 
happens at Server 1. There are two preset thresholds: low 
threshold and high threshold. When the average CPU 

utilization 1avg exceeds the low threshold, an overload is 
anticipated at Server 1, thus its upstream server retransmits the 
messages with a certain probability p1. We choose a linear 

function to determine the relationship between p1 and 1avg, 
The linear function not only makes the calculation for p1 cost-
effective, but also achieves satisfactory efficiency of the 
overload control (as demonstrated by performance evaluation 
later on). Other nonlinear functions can also be used to 

determine the relationship between p1 and 1avg. 
The retransmission probability p1 is initialized to 1. When 

the utilization of the downstream server increases, p1 will 
decrease until it reaches 0 once the utilization reaches a high 
threshold, where no message will be retransmitted. If the 
utilization of downstream servers stays at 1 for a long period 
to indicate a persistent overload, other existing solutions such 



10 
 

as load balancing or call rejections can be used to further 
mitigate overload. Summary of our overload control 
mechanism is shown in Figure 7. 

Like existing pushback overload control solutions (e.g., SIP 
overload control RFC [30]), implementation of our overload 
control algorithm requires minor modification to SIP protocol. 
We need to define and create a field in the response message 
to carry the average CPU utilization of the downstream server 
in order to deliver the overload status to its upstream servers. 

When each retransmission timer fires or expires

if  1avg <  1low

Calculate retransmission probability p1:

Overload Control Algorithm 

else

if 1low ≤ 1avg ≤  1high

p1  1

p1  1high1avg1high1low

else
p1  0

1low : Low threshold for 1

Varying parameter:

1avg:      Average CPU utilization of Server 1

1high: High threshold for 1

Fixed parameters:

 
Figure 7. Overload control algorithm based on average CPU utilization. 

We have developed an innovative approach to set up the 
analytical model for a tandem server and demonstrated how to 
extend our analytical approach to model an arbitrary network. 
When our overload control algorithm is implemented in every 
sending server of a SIP network, we need to create a 
respective analytical model for the fluid-based simulation. The 
model can help the researchers to speed up the performance 
evaluation of various SIP overload control solutions using the 
fluid-based simulation, when a SIP network is scaled up. 

Without loss of generality, we start our analysis at Server 1. 

The total message service rate 1 is bounded by the service 

capacity C1, i.e., 1≤C1. At current time slot n, the 

instantaneous CPU utilization 1 can be obtained as 

1(n)=1(n)C1(n).             (26) 

Since stochastic process of both total message service rate 

1 and service capacity C1 may cause transient fluctuation in 

the instantaneous CPU utilization 1, we use an exponential 

weighted moving average filter to calculate the average CPU 

utilization 1avg as 

1avg(n)=(1−w)1avg(n−1)+w1(n).            (27) 

where w is the filter weight, and the average CPU utilization 

1avg can be initialized as 0.5. According to the overload 

control algorithm described by Figure 7, the retransmission 

probability p1 generated by the upstream server of Server 1 

can be computed as 

p1(n)=min{[(1high1avg(n))(1high1low)]+, 1}.          (28) 

By integrating the retransmission probability p1 into the 

theoretical retransmission rate r1, we can get the actual 

retransmission rate as r1p1. Therefore, we can reuse the 

analytical model developed for the regular server in Section 4 

by replacing the theoretical retransmission rate with the actual 

retransmission rate. For the recursive equations (i.e., 

Equations (17) to (21)) to obtain the retransmission rate r1 of 

Server 1, we only need to update Equation (21) as 

)())(1)(()( 111111 npnpnrnr djj
e
jj   .           (29) 

6. Performance evaluation and simulation 

We evaluate the performance of an overloaded SIP tandem 
server by performing fluid-based Matlab simulation using the 
analytical model we have derived. In the mean time, we 
perform event-driven OPNET simulation to investigate the 
accuracy of our analytical model for the tandem server. In the 
OPNET simulator, messages were handled one by one instead 
of being aggregated over a time slot as in our Matlab 
simulation. All the sending servers maintained a list of all 
outstanding messages for tracking retransmissions. Our 
simulations are based on the SIP network topology depicts by 
Figure 2. Four user agent clients generated original messages 
with equal mean rate, and then sent them to a tandem server. 

For OPNET simulation, the aggregated mean original 
message generation rate is equal to the aggregated mean 
original arrival rate in the corresponding Matlab scenario. 

Currently there is no measurement result for the workload 
characteristics in real SIP networks. Our model can simulate 
any demand arrival process or server service process. Similar 
to the experiment in [7], in our Matlab and OPNET 
simulations, arrival rate follows Poisson distribution while the 
service time of each type of message follows exponential 
distribution, which has been widely adopted by most 
researchers [6, 21]. The mean service rates of Server 1 and 
Server 2 are also set to be the same under normal situations as 
the mean service rates of the corresponding servers in Matlab 
simulation. The processing speeds of the upstream servers of 
Server 1 are set to be so large that their processing times are 
negligible. A large number of replications need to be 
simulated to ensure 95% confidence interval. We have run 10 
simulation replications for both Matlab simulation and 
OPNET simulation, and then calculated 95% confidence 

interval (CI) as NX /*96.1  , where X  and  are the 

mean value and the standard deviation of N=10 replications. 
We have also run up to 60 replications. The results are very 
similar except the confidence intervals are much smaller. 
Therefore 10 replications are enough for illustration purpose. 
In the simulation plots, Matlabmean denotes the mean value of 
Matlab simulation, while OPNETmean and OPNETcl denote the 
mean value and confidential interval of OPNET simulation 
respectively. 

To demonstrate the effectiveness of our overload control 
solution, two typical overload scenarios were simulated: (1) 
Overload at Server 2 due to a server slowdown; (2) Overload 
at Server 1 due to a demand burst. In each scenario, we 
performed our simulations without overload control algorithm 
and with overload control algorithm separately. 

The maximum and minimum thresholds for average CPU 

utilization were set as 1max=2max=0.9 and 1min=2min=0.6 

respectively. The moving average filter weight w was 0.1. 
The buffer sizes of Server 1 and Server 2 were set as B1=1000 
messages and B2=500 messages respectively. The interval of 
each time slot was ts=50 ms and the 1st-time retransmission 
timer is T1=500ms [1]. Each scenario was simulated 60s. Since 
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processing a response message took much less time than 
processing a request message, the proportional ratio was set as 
0.5. The mean service capacities of Server 1 and Server 2 were 
measured based on the processing time of request message, 
e.g., C1=1000 request messages/sec indicated that the mean 
processing times for a request message and a response 
message were 1ms and 0.5ms respectively. The total message 

service rate  was bounded by the service capacity C at each 

server, i.e., ≤C. 

6.1. Overload at Server 2 

In this scenario, we let an initial overload happen at Server 

2 due to a server slow down. The mean original message 

generation rate for each user agent client was 50 messages/sec, 

i.e., the aggregated original message arrival rate of four user 

agent clients was 1=200 messages/sec. The mean server 

capacities of the two proxy servers were C1=1000 

messages/sec from time t=0s to t=60s, C2=100 messages/sec 

from time t=0s to t=20s (emulating a server slow down due to 

the routine maintenance), and C2=1000 messages/sec from 

time t=20s to t=60s (emulating the normal service). 
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Figure 8. Mean queue size q1 (messages) of Server 1 and 95% confidential 

interval versus time upon an initial overload at Server 2 when overload control 

algorithm was not activated. 
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Figure 9. Mean queue size q2 (messages) of Server 2 and 95% confidential 

interval versus time upon an initial overload at Server 2 when overload control 

algorithm was not activated. 

1) Performance Without Overload Control Algorithm 
Applied: Figures 8 to 11 show the dynamic behaviour of a 
tandem server when overloaded happened at the downstream 
Server 2. Without overload control algorithm applied, Server 2 
became overloaded first, which was followed by a later 
overload at Server 1. After Server 2 resumed its normal 
service at time t=20s, Server 1 and Server 2 had the same 
service capacity. Because Server 1 had to process part of r1 
which would not enter Server 2, the total arrival rate at Server 

2 was less than its service capacity. Eventually the overload 
was cancelled at both Server 1 and Server 2. The confidence 
intervals in Figures 8 to 11 are quite tight compared to their 
sample means. Also note the sample means of our analytical 
model and OPNET model overlap nearly perfectly which 
indicate a good matching between the two types of models. 
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Figure 10. Mean retransmission rate r1 (messages/sec) of Server 1 and 95% 
confidential interval versus time upon an initial overload at Server 2 when 
overload control algorithm was not activated. 
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Figure 11. Mean retransmission rate r'2 (messages/sec) of Server 2 and 95% 
confidential interval versus time upon an initial overload at Server 2 when 
overload control algorithm was not activated. 
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Figure 12. Queue size q1 (messages) of Server 1 versus time upon an initial 
overload at Server 2 when overload control algorithm was activated. 

2) Effectiveness of Overload Control Algorithm: We 

activated the overload control algorithm at every sending 

server. When a server slowdown caused the CPU to perform at 

full utilization at Server 2 (as shown in Figure 14), our 

overload control algorithm forbade the retransmissions r2 to 

consume the resources of both Server 1 and Server 2 (as 

shown in Figure 15). One can see that Server 1 remained 

almost buffer empty (as shown in Figure 12), and the overload 

was not propagated from Server 2 to Server 1. After Server 2 
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resumed its normal service at time t=20s, its buffer became 

empty very quickly (see Figure 13), and the retransmissions 

were allowed to recover the original messages dropped by 

Server 2 (see Figure 15). 
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Figure 13. Queue size q2 (messages) of Server 2 versus time upon an initial 
overload at Server 2 when overload control algorithm was activated. 
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Figure 14. Average CPU utilization 2avg of Server 2 versus time upon an 

initial overload at Server 2 when overload control algorithm was activated. 
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Figure 15. Retransmission rate r2 (messages/sec) for Server 2 versus time 

upon an initial overload at Server 2 when overload control algorithm was 

activated. 

3) Impact of Different Buffer Size: In order to investigate 

the impact of different buffer sizes on the server performance 

when an initial overload happened at Server 2 and the 

overload control algorithm was not activated, we run the fluid-

based simulation again. 
We would like to observe the server performance under the 

four different sub-scenarios which includes both extremely 
small and extremely large buffer sizes: (I) small buffer B1 and 
small buffer B2; (II) large buffer B1 and small buffer B2; (III) 
small buffer B1 and large buffer B2; (IV) large buffer B1 and 
large buffer B2. 

Since the maximum queue size q1 of Server 1 was less than 
1000 messages when Server 2 had a small buffer size (see 
Figure 8), increasing the buffer size of Server 1 would not 
influence the server performance, i.e., sub-scenario II would 
exhibit the same behaviour as sub-scenario I. Therefore, four 
sub-scenarios could be merged into two sub-scenarios which 
our simulations were based on: (I) small buffer B1=1000 
messages and varying buffer B2; (II) varying buffer B1 and 
large buffer B2=15,500 messages. 
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(a) Queue size q1 (messages) versus time. 
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(b) Queue size q2 (messages) versus time. 

Figure 16. Queuing dynamics of a tandem server upon an initial overload at 

Server 2 when Server 1 had small buffer B1 (B1=1000 messages) and Server 2 

had different buffer sizes B2 (messages). 

Figures 16 and 17 show the queuing dynamics of both 
Server 1 and Server 2 upon an initial overload happened at 
Server 2, when Server 1 and Server 2 had different buffer 
sizes. The queuing delay is equal to the queue size divided by 

the server capacity approximately, i.e., q1 q1/C1 and q2 
q2/C2. A large queue size corresponds to a long queuing delay. 
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(a) Queue size q1 (messages) versus time. 
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(b) Queue size q2 (messages) versus time. 

Figure 17. Queuing dynamics of a tandem server upon an initial overload at 
Server 2 when Server 1 had different buffer sizes B1 (messages) and Server 2 
had large buffer B2 (B2=15,500 messages). 

One can see that the overload was always propagated from 
Server 2 to Server 1 when Server 1 had a limited service 
capacity. After Server 2 resumed its normal service at time 
t=20s, since both Server 1 and Server 2 had the same service 
capacities, the overload at Server 2 was cancelled eventually 
no matter what the buffer size of Server 1 or Server 2 was (see 
Figures 16(b) and 17(b)). Smaller buffer size would help 
Server 1 to cancel the overload more quickly by rejecting calls, 
while an extremely large buffer size (e.g., B1=7500 messages) 
would maintain the overload at Server 1 continuously, thus 
bringing down Server 1 eventually (see Figure 17(a)). 

4) Comparison of Simulation Time: In order to obtain the 

simulation result for stochastic systems, we must run a large 

number of replications to evaluate the system performance. In 

addition, the original message rates and server capacities may 

be extremely large in a real SIP network. It would be 

necessary to compare the total simulation time between fluid-

based Matlab simulation and event-driven OPNET simulation. 

When both original message arrival rate 1 and server 

service capacities C1 and C2 are scaled up 10 and 100 times 

respectively, e.g., the mean server capacity C1 becomes 10,000 

messages/sec and 100,000 messages/sec respectively. We 

perform the simulation and record the simulation time for one 

replication when an initial overload happened at Server 2 and 

the overload control algorithm was not activated. 
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Figure 18. Simulation time (seconds) of different mean server capacities: 

OPNET simulation vs. Matlab simulation. 

Figure 18 shows the simulation time of different server 

capacities for Matlab simulation and OPNET simulation. 

Since messages arriving within the same time slot are 

aggregated and processed together, the computation cost for 

Matlab simulation is invariant with respect to the server 

capacity, while the simulation time of OPNET simulation 

increased exponentially. For example, evaluating the 

performance of a server with a mean server capacity of 10,000 

messages/sec, OPNET simulation took almost 8 days, while 

Matlab simulation reduced the simulation time 19,000 times to 

37 seconds, as shown in Figure 18. 

6.2. Overload at Server 1 

In this scenario, a short period of demand burst overloaded 

Server 1 from time t=0s to t=30s, emulating a short surge of 

user demands; Normal original request messages arrived at the 

overloaded server with a mean rate =200 messages/sec, 

emulating regular user demands. The mean service capacities 

of Server 1 and Server 2 were C1=1000 messages/sec and 

C2=1000 messages/sec respectively. 

1) Performance Without Overload Control Algorithm 

Applied: Figures 19 and 20 show the dynamic behaviour of a 

tandem SIP server upon an initial overload at Server 1. One 

can see that the mean values of Matlab simulation replications 

stayed inside the confidence interval of OPNET simulation 

replications, which confirmed the relative accuracy of our 

analytical model for a tandem server again. 
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Figure 19. Queue size q1 (messages) of Server 1 versus time upon an initial 
overload at Server 1 when overload control algorithm was not activated. 

0 10 20 30 40 50 60

0

500

1000

1500

2000

2500

Time (sec)

R
e
tr

a
n

sm
is

si
o

n
 r

a
te

 (
m

sg
s/

se
c
)

 

 

Matlab
mean

OPNET
mean

OPNET
ci

 
Figure 20. Retransmission rate r1 (messages/sec) for Server 1 versus time 

upon an initial overload at Server 1 when overload control algorithm was not 

activated. 

Without overload control applied, the redundant 
retransmissions were triggered to enter Server 1 (see Figure 
20), thus the queue size of Server 1 increased quickly and took 
around 3.8s to reach the buffer limit (see Figure 19). The finite 
buffer could mitigate the overload by dropping the messages. 
At time t=30s, the mean original request rate decreased from 
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800 messages/sec to 200 messages/sec at Server 1, making the 
total arrival rate of new original requests and corresponding 
responses less than the server capacity. Then Server 1 took 
about 16s to cancel the overload, as marked in Figure 19. 
Since the service capacities of Server 1 and Server 2 were the 
same, Server 2 maintained almost empty buffer, and its queue 
size was not shown here to save the space. 

2) Effectiveness of Overload Control Algorithm: Between 
time t=0s and t=30s, the overload occurred due to a short 
surge in demands. The overload control algorithm prevented 
the retransmissions from exacerbating the overload at Server 1, 
i.e., no retransmissions happened (see Figure 22), thus the 
queue size of Server 1 increased slowly and took around 8.5s 
to reach the buffer limit (see Figure 21). After the original 
message rate decreased at time t=30s, Server 1 became buffer 
empty and the overload was cancelled within 3s, as marked in 
Figure 21. 
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Figure 21. Queue size q1 (messages) of Server 1 versus time upon an initial 
overload at Server 1 when overload control algorithm was activated. 
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Figure 22. Retransmission rate r1 (messages/sec) for Server 1 versus time 
upon an initial overload at Server 1 when overload control algorithm was 
activated. 
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Figure 23. Queue size q1 (messages) of Server 1 with different buffer size B1 
(messages) versus time upon an initial overload at Server 1 when overload 
control algorithm was not activated. 

3) Impact of Different Buffer Size: In order to investigate 

the impact of different buffer sizes on the server performance 

when an initial overload happened at Server 1 and the 

overload control algorithm was not activated, we run the fluid-

based simulation again. 
Since the overload at Server 1 would not propagate to the 

downstream Server 2, we only need to evaluate the queuing 
dynamics of Server 1 with different buffer sizes, as shown by 
Figure 23. After the original message arrival rate was 
decreased significantly at time t=30s, smaller buffer sizes (e.g., 
500 messages and 1500 messages) could help Server 1 to 
cancel the overload within the simulation period, while Server 
1 with larger buffer sizes (e.g., 3500 messages and 7500 
messages) continued to maintain the overload throughout the 
whole simulation period. 

4) Performance Comparison with Pushback Solution: In 

addition to server utilization, queuing delay has also been used 

as a metric to identify the overload state. Queuing-delay 

controlled pushback solution suggested by [20, 21] has been 

adopted by SIP overload control RFC [30] recently. 

The basic idea of queuing-delay controlled pushback 

solution [20, 21] is that each overloaded downstream server 

(e.g., Server 1) advertises a desirable message sending rate to 

its upstream server. The advertised message sending rate 1 is 

calculated as, 

1=1(1−(q1−q1o)/ts),             (30) 

where 1 is the estimated service rate, q1 is the estimated 

server queuing delay, q1o is the desirable target server queuing 

delay, ts is the sampling interval for performing calculation 

(i.e., the interval of a time slot for our analytical model), and 

1 includes both original and retransmitted request rate (i.e., 

1=1+r1) [20, 21]. In our simulation, the target server queuing 

delay was set as q1o=400ms, less than 500ms (the default 

timer for triggering the 1st retransmission [1]). 
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Figure 24. Queue size q1 (messages) of Server 1 versus time upon an initial 
overload at Server 1. 

By performing the fluid-based Matlab simulation using our 
analytical model, we use Figures 24 and 25 to depict the 
queuing dynamics and call rejecting rate of the overloaded 
Server 1 under non-overload control algorithm, our 
retransmission-based algorithm, and queuing delay controlled 
pushback algorithm suggested by [20, 21]. In the two plots, 
NOLC denotes no overload control algorithm was activated; 

OLCRb denotes retransmission-based overload control 



15 
 

algorithm was activated; and OLCPb denotes queuing-delay 
controlled pushback overload control algorithm was activated. 
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Figure 25. Call rejecting rate (calls/sec in logarithm scale) of Server 1 versus 
time upon an initial overload at Server 1. 

As shown in Figure 24, after a short surge in demands 
ended at time t=30s, pushback solution cancelled the overload 
using about 1 second, and retransmission-based solution spent 
3 seconds (also shown in Figure 21). Without any overload 
control solution applied, the server had to wait about 16s to 
become buffer empty (also shown in Figure 19). 

However, the cost of quickly cancelling the overload is not 
free. For a short-term overload that lasted for 30 seconds, 
queuing-delay controlled pushback solution rejected 10 times 
more calls than both retransmission-based solution and the 
case without overload control solution; the call rejection rate 
of retransmission-based solution was comparable with the case 
without overload control solution, as shown in Figure 25. The 
reason behind the fact that the retransmission-based solution 
also had to reject a small amount of calls unintentionally is the 
retransmission-based solution forbids the necessary 
retransmissions for recovering the original INVITE requests 
dropped by the overloaded Server 1 due to the buffer overflow. 

One can see that compared with the pushback solution, our 
retransmission-based solution achieves a better trade-off 
between the speed to cancel the overload and the call rejection 
rate when the overload only lasts a short period. 

6.2. Remarks 

A small buffer size can help a server to cancel the overload 
by dropping excessive original messages, which may block 
more calls and cause unnecessary revenue loss. 

1) Short-term Overload: If an overload lasts a short period, 
our overload control algorithm can mitigate the overload 
effectively and prevent network collapse from overload 
propagation by restricting retransmission rate, while 
maintaining the original request rate to avoid blocking 
excessive calls. After the overloaded server performs its 
normal operation, the overload is cancelled rapidly, and the 
upstream servers can generate the retransmission freely to 
retain full reliability. 

2) Long-term Overload: If an overload lasts a long period, 
existing pushback solutions need to be activated and the 
original request rate should be reduced and some calls have to 
be blocked intentionally. Since pushback solutions mitigate 
the overload by rejecting calls intentionally and causing the 
revenue loss, they cancel the overload much faster than the 
proposed retransmission-based solution in this paper. 

To achieve a satisfactory trade-off between call blocking 
probability and the time to cancel the overload, we suggest 

integrating our retransmission-based solution with other 
pushback solution. During the real-time implementation, each 
server specifies a threshold for the overload period, and 
creates an overload timer to monitor the overload status: (1) 
activates the retransmission-based solution to control 
retransmissions only, at the initial stage of an overload; (2) 
activates the pushback solutions to block some calls 
intentionally, if the overload period exceeds its threshold. A 
good value for the threshold of the overload period can be 
chosen as the total time allowed for maximum 6 
retransmissions during hop-by-hop INVITE transaction [1], 
which is approximately 30s. 

3) Non-INVITE Transactions: As each server needs to 
consume CPU to process non-INVITE transactions, different 
type of messages pose potential threat to the overload collapse. 
Our overload control algorithm is applicable for mitigating the 
overload caused by non-Invite transactions. Our modeling 
approach can be naturally extended to include non-INVITE 
messages for non-INVITE transactions by introducing a 
proportional ratio to take into account the different processing 
times for INVITE and non-INVITE messages. 

7. Conclusions 

In order to propose an effective overload control 
mechanism, we have studied the impact of retransmission on 
the overload by modeling the dynamic behaviour of a SIP 
network where each server has finite buffer. We have 
introduced our novel modeling strategy by modeling a tandem 
server, and then demonstrated how to extend our innovative 
methodology to model an arbitrary SIP network. Unlike 
various existing signaling models based on Poisson distributed 
arrival rate and exponentially distributed service time, our 
study considered a general case that both arrival rate and 
service rate for signaling messages are arbitrary stochastic 
processes. Our three key analytical results are: (1) the 
formulation of different types of message drops; (2) the 
formulation of different types of retransmission messages due 
to queuing delay or message drops and (3) the formulation of 
the departure process through the analysis of all possible 
departure scenarios. Our solution is computationally efficient, 
and the scalability of the analytical model allows the network 
operators or the researchers to evaluate the performance of a 
large scale SIP network that is well beyond the capabilities of 
current discrete event simulators. 

Our mathematical analysis and simulation have led us to the 
conclusion that redundant retransmissions can make overload 
much worse and therefore should be controlled before any 
other mechanisms are applied. 

Based on our modeling results, we have proposed a novel 
yet simple feedback control algorithm to mitigate the short-
term SIP overload effectively by reducing retransmission rate 
based on downstream server utilization. We have 
demonstrated how to extend our modeling strategy to model a 
SIP server with our overload control mechanism. When 
combined with existing overload control mechanisms, our 
proposal can improve overload situation and increase server 
utilization significantly. 

The effectiveness of our overload control algorithm and the 
accuracy of our analytical model have been confirmed by 
performance evaluation of both Matlab simulation and 
OPNET simulation. Our study on the impact of buffer size 
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demonstrates that a small buffer size can help a server to 
cancel the overload by blocking excessive calls. However, this 
approach will degrade quality of service and reduce revenue 
for carriers. In addition, for a short-term overload, the 
retransmission-based solution achieves a better trade-off 
between the call rejection rate and the speed to cancel the 
overload when compared with the pushback solution. 

In the future work, we would like to investigate how to 
combine the retransmission-based solution with the pushback 
solution to achieve a satisfactory performance under different 
overload scenarios and network topologies. 
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