
1

Modeling and design of session initiation protocol

overload control algorithm

Yang Hong, Changcheng Huang, James Yan

Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada

E-mail: {yanghong, huang}@sce.carleton.ca, jim.yan@sympatico.ca

(received 28 September 2011; revised 21 December 2011; accepted 3 March 2012)

Abstract
Recent collapses of Session Initiation Protocol (SIP) servers indicate that the built-in SIP overload control mechanism cannot mitigate overload
effectively. In this paper, we propose a new SIP overload control algorithm by introducing a novel analytical approach to model the dynamic
behaviour of a SIP network where each server has a finite buffer. Three key breakthroughs of our modeling approach are the formulations of message
loss process, message retransmission process, and the complex departure process through detailed analysis. Our modeling results indicate that
retransmissions triggered by the queuing delay are redundant, thus we propose a feedback control mechanism that regulates retransmission message
rate to mitigate the overload. We then demonstrate how to extend our analytical approach to the modelling of our overload control solution.
Simulation based on this analytical model runs much faster than event-driven simulation which needs to track thousands of retransmission timers for
outstanding messages and may crash a simulator due to limited computation resources. Performance evaluation demonstrates that: (1) without the
control algorithm applied, the overload at a downstream server may propagate to its upstream servers and cause widespread network failure; (2) in
case of short-term overload, our feedback control solution can mitigate the overload effectively without rejecting calls intentionally or reducing
network utilization, thus avoiding the disadvantages of existing overload control solutions. In addition, compared with the pushback solution, our
retransmission-based solution achieves a better trade-off between the speed to cancel the overload and the call rejection rate when an overload lasts a
short period.

Keywords
CPU Utilization, Non-redundant Retransmission, Overload Control, SIP, SIP Retransmission.

1. Introduction

Internet telephony is experiencing rapidly growing

deployment due to its lower-cost telecommunications

solutions for both consumer and business services. Session

Initiation Protocol (SIP) [1] has become the main signaling

protocol to manage multimedia sessions for numerous Internet

telephony applications such as Voice-over-IP, instant

messaging and video conferencing. 3rd Generation Partnership

Project (3GPP) has adopted SIP as the basis of its IP

Multimedia Subsystem (IMS) architecture [2]. With the 3rd

Generation (3G) wireless technology being adopted by more

and more carriers, most cellular phones and other mobile

devices are starting to use or are in the process of supporting

SIP for multimedia session establishment [3].
RFC 5390 [4] identified the various reasons that may cause

server overload in a SIP network. These include but not
limited to poor capacity planning, dependency failures,
component failures, avalanche restart, flash crowds, etc. In
general, anything that may trigger a demand burst or a server
slowdown can cause server overload and lead to server crash.
There are many published works [5-31] discussing how to
control SIP overload through call rejection or load balancing.
These mechanisms can either increase call rejection rate or
cause SIP server underutilized. Rejecting calls can cancel the
overload effectively, but it may cause a large amount of
revenue loss to carriers. We believe that arbitrarily high
volume of call rejection can be avoided in most overload
situations if we can understand the root cause of widespread
network failures by modeling server overloading behaviour
before designing appropriate overload control algorithm.

Traffic modeling has played a large impact on network

simulation reliability in the past years [32]. Modeling and

simulation can help enterprise engineers to optimize the

planning and the dimensioning of their communication

network or system [33]. Numerous models for different

communication system have been developed recently, e.g., a

model was proposed by [32] to mimic packet defragmentation

process based on the measured network traffic. In order to find

the optimum number of input connections required for serving

a certain quota of users, the paper [33] presented a model for

predicting the system capacity of accepting the calls into a

server.

The objective of this paper is to develop a new overload

control algorithm through analytical modeling approach that

allows us to investigate how server overloading and

widespread SIP network failure may happen under short term

demand bursts or server slowdowns. We want to demonstrate

that the major cause of this kind of failures is the hop-by-hop

retransmission mechanism designed for reliability purpose in

SIP. Different from existing overload control solutions that try

to mitigate overload through rejecting calls or load balancing,

our approach will address redundant retransmissions directly.

This is particularly useful when the overload is caused by

short term demand bursts or temporary server slow down. For

overloading caused by persistent demand surge or server

slowdown, our solution can be used together with existing

solutions to maximize server utilization.

The contributions of this paper are: (1) Creating an

innovative approach to formulate analytical models for SIP

server networks with finite buffer sizes using difference

2

equations. The arrival and service processes of each SIP server

can be arbitrary, which makes our modeling approach quite

general. We have successfully analyzed different types of

message losses, retransmission messages triggered by queuing

delay or message drops, and formulated the complex departure

processes. These analytical results allow us to understand the

impacts of redundant retransmissions and finite buffer sizes;

(2) Developing a novel overload control algorithm to mitigate

the overload by controlling retransmission probability based

on the average CPU utilization of the overloaded downstream

server. In addition, we apply our analytical modeling approach

to show that the proposed overload control mechanism is

effective in preventing overload collapse under two typical

scenarios of short-term overload. For a short-term overload,

our retransmission-based solution achieves a better trade-off

between the speed to cancel the overload and the call rejection

rate when compared with the pushback solution; (3)

Demonstrating the efficiency and accuracy of our analytical

model through a performance comparison between fluid-based

Matlab simulation and event-driven OPNET simulation of a

SIP network.

This study will help network planners, operators, and

researchers to understand the root cause of an important

network failure scenario triggered by short term traffic surges

such as flash crowds and database maintenance. Network

planners can therefore plan their SIP networks better by

engineering their SIP networks to avoid redundant

retransmissions. Operators can apply our feedback control

mechanism to mitigate the short-term overload and maintain

the revenue without rejecting calls intentionally. Researchers

can use our model to speed up the performance evaluation of

various SIP overload control solutions using the fluid-based

simulation, when a SIP network is scaled up.

The paper is organized as follows. Section 2 reviews

existing overload control solutions and simulation approaches.

Section 3 briefly reviews SIP protocol. Section 4 proposes our

analytical modeling approach for SIP networks. The overload

control algorithm is developed and corresponding analytical

model is created in Section 5. Section 6 evaluates performance

of a SIP network under two typical overload scenarios via

Matlab simulation and OPNET simulation. Conclusions are

given in Section 7.

2. Related work

2.1. SIP overload control

Experimental evaluation of SIP server showed the overload

collapse behaviour in [34]. Recent collapses of SIP servers

due to emergency induced call volume or “American Idol”

flash crowd in real carrier networks have attracted great

research attention and motivated different types of strategies

to address SIP server overload problem (e.g., [5-29]).

1) Load Balancing: As a default part of numerous operating

systems, SIP Express Router (SER) developed load balancing

module to mitigate the overload caused by large subscriber

populations or abnormal operational conditions [8]. In order to

balance the demands for bandwidth and the call failure rates of

a SIP proxy, request batching was combined with parallel

execution to improve call throughput and reduce call failure

rate significantly in [9]. Three novel approaches were

introduced for load balancing in cluster-based SIP servers [10].

The load balancer performed session-aware request

assignment to route SIP transactions to the proper back-end

nodes [10]. Peer-to-Peer network technology was integrated

with SIP to balance the traffic load (e.g., [11, 12]).

In an IMS core network, a load balancing scheme was

proposed to reduce overload probability by re-directing

consequent SIP traffic from the over-utilized Serving

Call/Session Control Function (S-CSCF) server to the other

under-utilized ones [13]. A SIP message overload transfer

scheme can leverage redundant Interrogating CSCF (I-CSCF)

servers to reduce the message disruption in cases of server

failures [14]. A user equipment registration scheme not only

balanced the workload over multiple Proxy-CSCF (P-CSCF)

nodes, but also reduced the required P-CSCF nodes up to 40%

from the standard session initialization procedure of IMS [15].

However, load balancing tries to avoid SIP network failures

by reducing the utilization of those servers that may become

overloaded. This will increase network cost and therefore

reduce revenue. When the total message arrival rate exceeds

the aggregated processing capacities of all local servers, load

balancing schemes cannot prevent the overload collapse.

2) Priority-Based Overload Control: Before finding its

application in preventing SIP overload due to CPU constraint,

priority mechanism has been adopted for active queue

management due to bandwidth constraint, e.g., stateless fair

admission control (SFAC) aims at guaranteeing fair bandwidth

allocation for each flow [35]. A priority enqueuing scheme

provided differentiate service for different types of SIP

messages in every SIP proxy server, where INVITE requests

were placed into low priority queue [16]. Once the proxy

server was overloaded, every INVITE request was hardly

forwarded to its destination, thus forbidding the successive

non-INVITE transactions to reduce the traffic load [16].

Another queuing strategy applied a queue threshold for the

INVITE request message queue to detect the overload [17].

When the overload was anticipated, part of INVITE requests

would be rejected to mitigate the overload, and the

corresponding calls were blocked [17]. Priority queue was

used to overcome the overload problem of IMS system by

blocking non-priority calls [18]. Similar to the priority scheme,

a novel authentication protocol was developed to reduce the

load on the centralized authentication database dramatically

and improve the overall security of a carrier-scale VoIP

network [19].

3) Pushback Overload Control: Since the cost of rejecting a

session intentionally is usually comparable to the cost of

serving a session [21], cancelling INVITE transaction using

priority queuing scheme is not very cost effective. Therefore,

numerous pushback solutions have been proposed to reduce

the traffic loads of an overloaded receiving server by

advertising its upstream sending servers to decrease their

sending rates.

Both centralized and distributed overload control

mechanisms for SIP were developed in [7]. Retry-after control,

processor occupancy control, queuing-delay control and

window-based control were proposed to improve goodput and

prevent overload collapse in [20]. Three window-based

3

feedback algorithms were proposed to adjust the message

sending rate of the upstream SIP servers based on the queue

length [21]. Other pushback solutions can be found in [5, 22-

28].
Such pushback control solutions aim at preventing the

overload of a server by reducing the sending rate of its
upstream servers. This would increase the queuing delays of
newly arrival original messages at the upstream servers, which
in turn cause overload at the upstream servers. Overload may
thus propagate server-by-server to sources. Unlike TCP
situation where a source typically generates large amount of
data, a UAC in SIP only generates very few signalling
messages [7]. Pushback solution leads to rejection of a large
number of calls which means revenue loss for carriers.
However, it may be unnecessary to reject calls intentionally
when temporary overload only lasts a short period of time.

4) Proposal of Retransmission-Based Overload Control:

Our approach proposed in this paper is different from the

existing solutions discussed above. When retransmissions are

caused by the overload rather than the message loss, they will

bring extra overhead instead of reliability to the network and

exacerbate the overload as we will demonstrate later through

our analytical modeling and simulation. Therefore, when a

short-term overload occurs at a server, we propose to reduce

the retransmission rate instead of reducing original message

sending rate of the upstream servers.
Such retransmission-based solution will mitigate the

overload while maintaining original message sending rate,
which leads to less blocking calls and more revenue for
carriers. The key to this novel solution is to differentiate
necessary retransmissions from redundant ones. Direct or
indirect ways may be used to address this goal. With indirect
approaches, the upstream servers can try to guess whether
downstream servers are overloaded through differences in
delays of response messages [36-39]. Although this kind of
control mechanisms does not require any modification to SIP
protocol, it unfortunately might lead to overreaction and
potential throughput loss. Therefore, we propose in this paper
to control retransmission rate based on explicit indication from
downstream server. Analytical and simulation results shown
later indicate that by introducing a minor change to SIP
protocol, our new control mechanism eliminates the short-
term overload more quickly.

When an overload lasts for a long period, our
retransmission-based solution can be combined with pushback
solution to reject some calls by reducing the original message
rates of SIP sources. Under this kind of situation, our solution
can help maximize server utilization and therefore serve as a
complementary mechanism to the existing solutions.

2.2. Fluid-based simulation vs. event-driven simulation

Fluid-based simulation was originally created to speed up

simulation processes [40]. Before fluid-based simulation was

introduced, event-driven simulation had been widely used for

network performance evaluation. Its computation cost grows

linearly with network size and bandwidth [40]. Therefore, it is

necessary to develop some other approaches to simplify the

event-driven simulation. Fluid-based simulations have been

successfully used to achieve scalability by aggregating events

into time slots [40]. However, fluid-based simulation is highly

dependent on whether analytical models can be established to

capture the dynamic process of a system. The retransmission

mechanism of TCP was not modelled in [40] due to the

complexity of modeling retransmission mechanism.

In this paper, our goal is to develop an analytical model that

can help us understand how the widespread failure of a SIP

network may happen due to the SIP retransmission mechanism

so that we can design a simple and effective overload control

mechanism. It should be noted that it is difficult to apply the

fluid-based simulations in [40] directly to SIP because a large

number of variable timers in SIP generate complex correlation

structures at different time scales. In order to solve this

problem, we have to study the message loss process, message

retransmission process, and service departure process in detail

by introducing some new techniques which will be discussed

in later sections.

Our analytical model can also be used to conduct fluid-

based simulation and speed up simulation process as [40].

This is another important benefit of our model. We will

demonstrate that our fluid-based simulation can speed up

simulation process significantly compared with event-driven

approach, when a SIP network has to process a large number

of signaling messages.

We have investigated the chaotic behaviour of SIP

retransmission mechanism by assuming that each SIP server

has infinite buffer and no message will be dropped due to

buffer overflow, while no any SIP overload control algorithm

is activated [41, 42]. In this paper, each SIP server has finite

buffer, and messages will be dropped when the buffer

becomes full. In addition, an analytical model of SIP overload

control algorithm is also developed.

3. SIP Protocol overview

Figure 1 illustrates a basic operation of a SIP system. To set

up a call, a user agent client (UAC) sends an INVITE request

to a user agent server (UAS) via the two proxy servers. The

proxy server returns a provisional 100 (Trying) response to

confirm the receipt of the INVITE request. The user agent

server returns a 180 (Ringing) response after confirming that

the parameters are appropriate. It also evicts a 200 (OK)

message to answer the call. The user agent client sends an

ACK response to the user agent server after receiving the 200

(OK) message. Finally the call session is established between

the user agent client and the user agent server through the SIP

session. The BYE request is generated to close the session

thus terminating the communication. When a SIP proxy server

is overloaded, it will send a 503 Service Unavailable message

in response to an INVITE request. The call will then be

rejected. Many existing pushback SIP overload control

proposals are based on the 503 Service Unavailable messages

to reject calls when servers are overloaded as discussed in the

previous section. Processing SIP INVITE requests and

generating 503 Service Unavailable messages still consume a

large amount of CPU time. Therefore it is questionable that

the server load can be actually reduced through this kind of

approach.

As the INVITE message is the most complex message to be

processed by a SIP server and thus the major CPU load

contributor [1], we will focus on the INVITE-100Trying

4

transaction and ignore other non-INVITE transactions in this

paper. Given the proportionate nature and the general

similarity of the retransmission mechanisms between the

INVITE and non-INVITE messages in a typical session [1],

our modeling approach can be naturally extended to include

non-INVITE transactions.

INVITE

100Trying
INVITE

INVITE
100Trying

180Ringing
180Ringing

180Ringing

200OK
200OK

200OK

ACK
ACK

ACK

Session Data

BYE
BYE

BYE

UAC UAS
SIP

Proxy-2

200OK
200OK

200OK

SIP

Proxy-1

Figure 1. A typical procedure of session establishment.

SIP introduces a retransmission mechanism to maintain its
reliability [1, 43]. In practice, a SIP sender uses timeout to
detect message losses. One or more retransmissions would be
triggered if the corresponding reply message is not received in
predetermined time intervals.

SIP RFC 3261 [1] suggests that the SIP retransmission
mechanism should be disabled for hop-by-hop transaction
when running SIP over TCP to avoid redundant
retransmissions at both SIP and TCP layer. However, SIP
retransmission mechanism is mandatory for end-to-end
transactions no matter TCP or UDP is used [1].

Recent experimental evaluation on SIP-over-TCP overload
behaviour in [5] demonstrates that TCP flow control
mechanism cannot prevent SIP overload collapse for time-
critical session-based applications due to lack of application
context awareness at the transport layer. Other experiments
(e.g., [6, 7]) also indicate that the throughput with SIP-over-
TCP exhibits similar overload collapse behaviour as that with
SIP-over-UDP. In addition, experiment performed by IBM
research center in [34] claims that using TCP to deliver SIP
messages degrades server performance from 43% (under
stateful proxy with authentication) to 65% (under stateless
proxy without authentication) when compared with using UDP.
Therefore, running SIP over UDP is a good option for vendors
in practice.

The retransmission for an INVITE transaction is confirmed

on a hop-by-hop basis. For each hop, the sender starts the first

retransmission of the original message at T1 seconds, and the

time interval doubles after every retransmission (exponential

back-off), if the corresponding reply message is not received.

The last retransmission is sent out at the maximum time

interval 64T1 seconds. Thus there is a maximum of 6

retransmissions. The default value of T1 is 0.5s [1].

To select a topology that can be considered typical, we first

consider the different types of SIP nodes. There are in general

two types of SIP nodes as shown in Figure 1: UAs vs. proxy

servers. In some cases, application servers can take the place

of UAs. In the following study, we will start with a tandem

server topology to cover both types of nodes, as shown in

Figure 2. Server 1 represents an arbitrary proxy server, while

Server 2 represents an arbitrary UA. Therefore, we consider

that Server 1 receives the responses from downstream nodes

while Server 2 does not. The original messages and the

retransmitted messages arriving at Server 1 are merged

aggregate streams from multiple upstream servers. If there are

more proxy servers between Server 1 and Server 2, their

behaviour patterns will be similar to Server 1 in our tandem

server scenario.

UAC

UAS

Tandem Server

21

Proxy

UAC

UAC

UAC

Figure 2. SIP network topology with an overloaded tandem server which is

marked with diagonal lines.

After finishing the study on the tandem server, we will

discuss the impact of splitting the output of Server 1 to

multiple downstream servers and merging traffic from

multiple upstream servers at Server 2. This will allow us to

generalize our results to arbitrary topology in Section 4.

We make the following statement in accordance with SIP

RFC 3261 [1] and the requirements for practical SIP networks

without losing the generality of our approach:

(a) Delay Consideration: We investigate the

retransmissions which are mainly caused by long queuing

delay of the overloaded server. Therefore, for the round trip

response time between an overloaded server and its

neighbouring server, the queuing and processing delays are

dominant, while transmission and propagation delay are

negligible [21]. This consideration is valid because signaling

messages are typically CPU capacity constrained rather than

bandwidth constrained;

(b) Discrete-time Formulation: Time is divided into

discrete time slots. This allows us to develop discrete time

models which are much easier to understand and simulate. It is

easy to see that the errors caused by the discrete model can be

made arbitrarily small by making the interval of a timeslot

smaller and smaller. In this paper, in order to present our

analysis clearly, we use t and n to denote time and timeslot

respectively. The default interval of a time slot is 50ms and

the corresponding values of T1 are 0.5s or 10 timeslots

respectively;

(c) Message Enqueuing/Dropping Policy: The SIP RFC

3261 [1] does not specify the queuing and scheduling

discipline to be deployed by a SIP server. Without loss of the

generality of our approach, we let a SIP server maintain a

first-come-first-served (FCFS) queue for messages arriving at

different time slots. When a buffer is full, traffic arrivals are

dropped randomly. Different types of traffic arrivals, such as

original request messages, retransmitted request messages

5

from upstream servers, retransmitted messages for the

downstream servers, etc., are therefore dropped proportionally

according to their corresponding amounts of traffic arrivals.

When the buffer is not full, traffic arrivals in different time

slots will follow first-come-first-in policy consistent with the

FCFS principle. However, for the simplicity of mathematical

treatment, traffic arrivals within the same time slot will be

enqueued based on a priority scheme to be described in the

next section. The impact of this priority scheme within a

timeslot can be made arbitrarily small when the interval of the

time slot decreases;

(d) Response Treatment: Enqueuing response messages

at the tail of the message queue will delay the processing of

response messages, thus trigger more redundant

retransmissions and make the overload worse. We assume

response messages be handled as interrupts and enter the head

of message queue if cannot be processed immediately. It

should be noted that the time to process a response message is

typically much smaller than a request message;

(e) Overload Assumption: When overload happens in the

network, at any time, one of the servers will be the most

congested one among all the overloaded servers. It becomes

the bottleneck server. We let the tandem server be the

bottleneck server by making capacities of all its upstream

servers large enough to process the messages without any

delay. The tandem server consists of Server 1 and Server 2 (as

shown by Figures 2 and 3). Both Server 1 and Server 2 have

limited capacities.

4. Modeling a SIP network

In order to understand the impact of retransmission

mechanism, we need to analyze the queuing and

retransmission processes in details. This motivates us to

develop an analytical model for a general SIP network. To

provide a better understanding of our modeling approach, we

create an analytical model for a tandem server first. Then we

discuss how to extend our modeling approach to an arbitrary

network with minor modifications.

There are three main challenges for analyzing SIP servers

with finite buffer: (1) the different types of arrival messages a

SIP server has to process; (2) the impact of different types of

message drops on the SIP retransmissions due to the buffer

overflow; (3) the complex relations among arrival process,

service process, retransmission process, response process and

queuing process, e.g., arrival retransmitted messages and

arrival response messages depend on the queuing and

departure processes of both upstream servers and downstream

servers as discussed later on.

1
)(1 n

 

)('

2 nr e

)(1 nq

)(1 nr d

2
)(2 n

 

)(2 nq

)(2 nr

)(1 n

Server 1
Server 2

B2

 

)('2 nr

B1

)(1 ne

)(1 nd

)('

2 nr d

100Trying Response

Invite Request

)(1 nr

)(1 nr e

)(2 ne

)(2 nd

)(2 nr e

100Trying Response

)(2 nr d

Figure 3. Queuing dynamics of a tandem SIP server (For Server 1, 1(n)

denotes original message arrivals, r1(n) denotes retransmitted message arrivals

from upstream servers, r'2(n) denotes retransmitted messages created for

Server 2, q1(n) denotes queue size, 1(n) denotes service rate, B1 denotes finite

buffer size; For Server 2, 2(n) denotes original message arrivals, r2(n)

denotes retransmitted message arrivals, q2(n) denotes queue size, 2(n)

denotes service rate, B2 denotes finite buffer size).

We start with a tandem server to introduce our fundamental

modeling approach to address the three challenges. Figure 3

depicts the queuing dynamics of a tandem server, where

Server 2 is an arbitrary user agent server and Server 1 is an

arbitrary proxy server. According to Overload Assumption (e),

both servers are assumed to have limited capacity and

therefore are prone to overload. Server 2, as a user agent, does

not need to consider response messages from downstream

servers.

Different types of messages have different processing

requirements and are typically treated differently by SIP

servers. Our approach tries to differentiate different types of

messages into three categories and formulate their processing

and departure differently. The three types of arrival messages

of Server 1 are: original INVITE request arrival process 1(n)

from upstream servers, retransmitted INVITE request arrival

process r1(n) from upstream server, and response arrival

process 1(n) from downstream server which depends on

message departure process of upstream server.

In order to determine whether an original message needs to

be retransmitted by an upstream server for Server 1, according

to SIP RFC [1], we need to know whether the message is still

in queue at the Server 1 at current time or it has been dropped

by Server 1 due to buffer overflow. Different types of message

drops would generate different retransmission scenarios,

because the drop of redundant retransmitted messages will not

trigger new retransmissions, while the drop of non-redundant

retransmitted messages may trigger new retransmissions.

The arrival process, the departure process and service

process are related, while retransmission and response depend

on the queuing behaviour of both upstream server and

downstream server. Both original message arrival process 2(n)

of Server 2 and retransmission process r1(n) of Server 1, are

determined by original message arrival process 1(n) of Server

1 and the queuing dynamics of Server 1. Response process

1(n) of Server 1 and retransmission process r2(n) of Server 2,

are determined by original message arrival process 2(n) of

Server 2 and the queuing dynamics of Server 2. The arrival

processes at Server 2 including the original INVITE request

messages 2(n) and retransmitted request messages r2(n)

depend on the departure process of Server 1. The queuing

dynamics of both Server 1 and Server 2 are determined by

original message arrival process, service process

retransmission process and response process.

Given that both original message arrival process 1(n) of

Server 1, server service process 1(n) of Server 1, and server

service process 2(n) of Server 2 can be arbitrarily distributed,

the relation between all different dynamic processes is not

trivial. Thus obtaining retransmission process r1(n) and r2(n),

departure process 2(n) and 1(n) is a difficult task. Since they

all depend on the queuing processes at both servers (as shown

by Figure 3), we start with the queuing processes for our

modeling.

6

We consider the Server 2 first. Since Server 2 has finite

buffer size, the new arriving messages (including original and

retransmitted messages) are dropped when the buffer is full

(i.e., the queue size q2(n)=B2, where B2 denotes the finite

buffer size of Server 2, as shown in Figure 3). At the current

time slot n, the original INVITE requests arrive with an

aggregate rate 2(n): only 2
e(n), which are called effective

original arriving messages, enter the buffer of Server 2 and

2
d(n) are dropped; similarly the retransmitted INVITE

requests arrive with an aggregate rate r2(n): only r2
e(n), which

are called effective retransmitted message arrivals, enter the

buffer of Server 2 and r2
d(n) are dropped; Server 2 can process

2(n) messages and 2(n) can be an arbitrary stochastic

process.

Similarly, for Server 1, the queue size is q1(n) and the finite

buffer size is B1. At current time slot n, the original INVITE

requests (from all the upstream servers of Server 1) arrive with

an aggregate rate 1(n): only 1
e(n) enter the buffer and 1

d(n)

are dropped; the retransmitted INVITE requests arrive with an

aggregate rate r1(n), where r1(n) denotes the retransmitted

messages: only r1
e(n) enter the buffer and r1

d(n) are dropped;

Server 1 generates the retransmitted messages for 2(n) with a

rate r'2(n) which also need to go through Server 1: only r'2
e(n)

enter the buffer and r'2
d(n) are dropped; the response messages

from Server 2 corresponding to 2(n) arrive at Server 1 with a

rate 1(n); Server 1 can process 1(n) messages. Since the

processing time for different type of messages may be

different, 1(n) denotes an arbitrary and generic process.

Based on Enqueuing Policy (c), r'2
e(n) is not equal to r2(n) due

to queuing and processing delays at Server 1.

We derive the queuing dynamics of Server 1 first.

Assuming 1(n), 1(n), and B1 given, our goal is to calculate

1
e(n), 1

d(n), r1
e(n), r1

d(n), r'2
e(n), r'2

d(n), 1(n) and q1(n).

Clearly the key issue to be addressed is how to know which

messages are actually lost. It is a difficult and challenging

issue because message losses are random in nature. They can

happen to original messages and retransmitted messages. With

arbitrary message arrival processes and server serving

processes, the issue becomes even harder to solve. In the

following, we will show how we successfully solve the

problem in a step-by-step manner.

At the beginning of current time slot n, the available buffer

size will be B1–q1(n), and the server can process 1(n)

messages in the slot. Since Server 1 has enough CPU capacity

to process the incoming response messages (i.e., Response

Treatment (d)), the buffer only allows maximum B1–q1(n)–

1(n)+1(n) new arrival request messages to enter the queue. If

the total arrival request messages exceed the available

processing capacity, the buffer overflow happens and the

request messages are dropped randomly. Within a timeslot,

messages are dropped proportionally according to their

corresponding amounts of traffic arrivals (i.e., Dropping

Policy (c)). Thus the drop probability pd1 can be obtained as
















)()()(

)()()()()()(
)(

211

1111211
1

nrnrn

nBnqnnrnrn
npd




(1)

where use []+ to denote nonnegative value.

Then the original messages 1(n) enter the buffer with the

probability (1pd1). We can obtain 1
e(n) as

1
e(n)=1(n)(1pd1(n)). (2)

If the buffer overflow happens, then the extra messages

1
d(n) are dropped. So we can obtain 1

d(n) as

1
d(n)=1(n)1

e(n). (3)

Similarly we can obtain r1
e(n), r1

d(n), r'2
e(n), and r'2

d(n)

recursively as follows,

r1
e(n)=r1(n)(1pd1(n)), (4)

r1
d(n)=r1(n)r1

e(n). (5)

r'2
e(n)=r'2(n)(1pd1(n)), (6)

r'2
d(n)=r'2(n)r'2

e(n). (7)

Obviously 1(n)+1
e(n)+r1

e(n)+r'2
e(n) give the total arriving

messages which enter the queue of Server 1 at current time

slot n. Adding q1(n) and deducting 1(n) would generate a new

queue size of Server 1 at the next time slot n+1, i.e.,

q1(n+1)=[min{q1(n)+1
e(n)+r1

e(n)+r'2
e(n)+1(n)1(n), B1}]+

(8)

The queue size should be not more than the buffer size B1.

Like describing the queuing dynamics of Server 1, we can

obtain 2
e(n), 2

d(n), r2
e(n) and r2

d(n) as follows,

pd2=[(2(n)+r2(n)+q2(n)B22(n))/(2(n)+r2(n))]+, (9)

2
e(n)=2(n)(1pd2(n)), (10)

2
d(n)=2(n)2

e(n), (11)

r2
e(n)=r2(n)(1pd2(n)), (12)

r2
d(n)=r2(n)r2

e(n). (13)

where pd2 denotes the drop probability of Server 2 due to the

buffer overflow.

Then we can find the queue size of Server 2 at next time

slot n+1 based on the information at the current time slot n,

i.e.,

q2(n+1)=[min{q2(n)+2
e(n)+r2

e(n)2(n), B2}]+. (14)

The equation for the queue size at Server 1 is different from

Server 2 because Server 1 has to receive response messages

from Server 2 and retransmit request messages to Server 2 if

timer expires, while Server 2 does not need to do so because it

is an arbitrary UA (or end-server).

It should be noted that the above equations are useful only

when we know how to obtain the arrival retransmitted

messages r1(n) and the response messages 1(n) of Server 1, as

well as the arrival original messages 2(n) and the arrival

retransmitted messages r2(n) of Server 2. All of them depend

on the queuing and departure processes of Server 1 and Server

2. Therefore they are all intertwined. Our approach is to

calculate all quantities in a recursive way and use a divide-

and-conquer strategy to solve the complex queuing and

departure process as demonstrated in the following

subsections.

4.1. Derivation of retransmission process

In order to calculate r1(n), we first have to look at r'1(n), the

total retransmitted messages generated by all upstream servers

of Server 1 at current time slot n. Following the divide-and-

conquer strategy, we divide r'1(n) into 6 components where

each component can be calculated easier. The original request

messages which arrived at Server 1 at time nT1 will be

retransmitted the first time by upstream server at time n if they

7

have not been processed by Server 1 by time n. These

retransmitted messages constitute the first component.

Similarly a message arrived at time nTj, Tj=(2j1)T1, will be

retransmitted the jth time at time n if the original request

messages have not been processed by time n. Let r'1j(n) denote

all the jth retransmissions generated by all upstream servers at

time n for the original request messages arriving at time nTj,

and 1≤j≤6, because there are maximum 6 retransmissions for

every original request message [1]. We can obtain the total

retransmitted messages r'1(n) generated by all the upstream

servers at current time slot n as

 
 6

1 11)()(
j j nrnr . (15)

To focus our study on the tandem server, Overload

Assumption (e) indicates that the upstream servers have

infinite capacity and can process the retransmitted messages

without any delay, i.e., r1(n)=r'1(n) and r1j(n)=r'1j(n). Then we

have

 


6
1 11)()(

j j nrnr . (16)

So our focus now is how to find r1j(n). For the purpose of a

clear analysis, we suggest an enqueuing priority scheme to

differentiate different types of message arrivals within the

same time slot n. The order of the message priority is: the

original request messages > the retransmitted request

messages from the upstream server > the retransmitted request

messages for the downstream server (as shown in Figure 3).

The order of the retransmitted message priority is: first-time

retransmitted messages > second-time retransmitted

messages >  > sixth-time retransmitted messages (as shown

in Figure 4). Figure 4 illustrates the enqueuing order of

different types of retransmission messages when the queue is

not full. The messages with higher priority enter the tail of the

queue prior to the messages with lower priority. However,

such enqueuing priority scheme does not apply to the traffic

arrivals at different time slots, which will follow first-come-

first-in policy consistent with the FCFS principle. Therefore,

the impact of this priority scheme within a timeslot can be

made arbitrarily small when the interval of the time slot

decreases.

1

)(1 ne

100Trying Response



q1(n)

Retransmitted

Request


B1

)(1 nd

r15(n)
r14(n)

r13(n)
r12(n)

r11(n)

r16(n)

Invite Request

Figure 4. Priority order of the retransmission messages r1j(n).

In order to determine whether an original message needs to

be retransmitted by an upstream server, according to SIP RFC

[1], we need to know whether the message is still in queue at

Server 1 at current time or it has been dropped by Server 1 due

to buffer overflow: (a) If the original messages enter the queue

at Server 1, future retransmissions of these messages depend

on whether these messages are still in queue at their

designated retransmission times; (b) If the original messages

are dropped, their first retransmissions will happen at their

designated first retransmission time for sure. To make things

complex is the fact that their second retransmissions depend

on whether their first retransmission messages enter the queue

or not. If their first retransmission messages enter the queue,

future second retransmissions of these messages will again

depend on whether their first retransmission messages are still

in queue at their designated second retransmission times. If, on

the other hand, the first retransmissions are dropped again, the

second retransmissions of these messages will be deemed to

happen at their designated second retransmission times. This

logic will continue until the maximum six retransmissions

have been exhausted.

In order to calculate the retransmissions r1j(n) accurately,

we propose an innovative strategy to classify various

retransmission scenarios as discussed above, as illustrated in

Figure 5. Figure 5 provides the key for analyzing the

complicated message dropping. For example, r111(n) denotes

the first retransmissions at current time n caused by the

original messages which entered the queue at time n–T1, and

r112(n) denotes the first retransmissions at current time n

caused by the original messages which got dropped at time n–

T1. The sum of r111(n) and r112(n) generates the total first

retransmitted messages r11(n). Similarly r1j(n) consists of r1ji(n)

(i=1,,j+1, 1<j≤6): r1j1(n) denotes the jth retransmissions at

current time n caused by the original messages which entered

the queue at time n–Tj; r1ji(n) (1<i<j+1) denote the amount of

messages that are being retransmitted the jth time at time n

while their corresponding original messages and the related

retransmissions had been dropped until their (i–1)st

retransmissions which entered the queue at time n–Tj+Ti-1;

r1jj+1(n) denote the amount of messages that are being

retransmitted jth-time at time n while their corresponding

original messages and all earlier retransmissions have been

dropped. It can be seen that all the scenarios form a tree

structure, where each internal node has either one or two

children corresponding to the different scenarios we

mentioned earlier.

r1(n)

r111(n) r112(n)r11(n)

r12(n) r121(n) r122(n) r123(n)

r13(n) r131(n) r132(n) r133(n) r134(n)

r14(n) r141(n) r142(n) r143(n) r144(n) r145(n)

r15(n) r151(n) r152(n) r153(n) r154(n) r155(n) r156(n)

r16(n) r161(n) r162(n) r163(n) r164(n) r165(n)r166(n) r167(n)
Figure 5. Classification of the retransmission messages r1(n).

From the above discussion and Figure 5, we can obtain a

generalized formula for the total jth retransmission messages

r1j(n) by deriving its component r1ji(n) through a recursive

approach. To simplify our presentation, we denote Tji to be

Tji=Tj–Ti (1≤i<j≤6). Since the response messages enter the

queue head and are processed without any delay, we denote

8

the total processed request messages from the time m to n as

s1(m,n)= 


n
ml

ll)]()([11  . Due to page limit, we omit the

detailed mathematical derivation, but provide the recursive

equations for obtaining r1j(n) as follows.






1
1 11)()(

j
i jij nrnr , (17)

)}()]()()(min{[)(111111 j
e

jjj
e

j Tn, λ,nTnsTnqTnnr  

 (18)

},)(,)],()()(

)()()(min{[)(

11111

1

1
1

1
11111

ji
e
iijijiji

e

ji

i

l

e
l

i

l
ji

e
ilji

e
iiji

TnrnTnsTnqTn

TnrTnrTnrnr











 



(19)

)()()(11111111   jj
e

jjjjjjjj TnrTnrnr , (20)

))(1)(()(11111 npnrnr djj
e
jj   . (21)

We can use the same strategy to obtain the total generated

messages r'2(n) for retransmission created by Server 1 for

Server 2. The only difference is that we need to consider the

queuing delays and message drops at both Server 1 and Server

2 for non-redundant retransmitted messages r'2jj+1.

4.2. Derivation of departure process

Since the retransmitted messages r2(n) and the response

messages 1(n) at Server 1 depends on the original messages

2(n) at Server 2, hence we need to derive 2(n).

Calculating 2(n) is a more formidable task than calculating

retransmission rate r1(n) due to the fact that there may be

redundant INVITE requests in the buffer of Server 1. When

Server 1 processes an INVITE request, it needs to know

whether the message is seen by the server the first time or not.

If it is seen the first time, the request will be forwarded to

Server 2; otherwise, it will be dropped as a redundant message.

To make departure process more complex to calculate is the

fact that the queuing delay between a message arrival time and

its departure time from Server 1 are also random. So even we

know which messages actually enter the queue the first time,

we still need to know when they are leaving the server. In the

following, we will present our innovative solution in two steps:

In the first step, we will identify which messages are seen by

Server 1 the first time; in the second step, we will calculate the

impact of the delay caused by Server 1. As you will see, the

first step turns out to be easy by utilizing the results we

developed in the earlier subsection. The second step requires

more sophisticated solution.

In addition to the original messages which enter the queue

of Server 1, the retransmitted messages which enter the queue

of Server 1 the first time are treated as non-redundant

messages and forwarded to Server 2. That is, all the non-

redundant messages consist of 1
e(n) and r1jj+1

e(n) (j=1,,6).

Thus the arrival rate 2(n) of Server 2 in current time slot n

consists of the departing non-redundant messages from Server

1. Assume 2k(n) (k=1,,7) represent the departing non-

redundant messages which enter the queue as 1
e(n), r112

e(n),

r123
e(n), r134

e(n), r145
e(n), r156

e(n) and r167
e(n) respectively. Our

solution next is to derive the departure process for each 2k(n)

(k=1,,7) separately.

Assume the whole SIP network starts running at time n=0.

Since varying delays exist between the arrival and departure

times for the original messages, the relationship between the

departure original messages 2k(n) (k=1,,7) at current time

slot n and all the non-redundant messages 1
e(nd) and

r1jj+1
e(nd) (j=1,,6) at previous time slot nd (d=0,1,2,…,n)

is very complex and difficult to determine. The non-redundant

messages, which arrived time slot nd (d=0,1,2,…,n), may or

may not contribute to 2k (n) depending on whether they are

still in queue at time n.

We propose an innovative approach to obtain 2k(n) based

on divide-and-conquer strategy by dividing 2k(n) into

individual components so that each of them can be calculated

easier. We start with our calculation of 21(n) which represents

the departing original messages 1
e(n).

We denote the amount of original messages 1
e(nd) which

arrived at time nd and happened to leave at time n as 21d(n).

We solve the challenge posed by the uncertainty that all

original messages arriving prior to and at time n may or may

not contribute to 21(n) by examining 21d(n) individually. It is

easy to see

 


n
d d nn

0 2121)()( . (22)

Clearly some of these 21d(n) will be null.

1(n)

1 1
e
(nd)

q1(nd)

s1(nd, n1)

21d(n)

Server 1

(a)

 s1(nd, n1)

1(n)

1
e
(nd)

q1(nd)

1

Server 1

21d(n)

(b)

21d(n)

q1(nd)

s1(nd, n) s1(nd, n1)

1(n)

Server 1

1 1
e
(nd)

(c)

21d(n)

s1(nd, n1) s1(nd, n)

Server 1

1

1(n)

1
e
(nd)

q1(nd)

(d)

21d(n) 1
e
(nd)

q1(nd)

s1(nd, n1)

1(n)

Server 1

1

s1(nd, n)

(e)

Figure 6. Arrival rate 21d(n) of Server 2 in five different categories.

The enqueuing priority scheme indicates that 1
e(n–d) will

enter the queue and be queued right after q1(n–d). We consider

all possible scenarios that may happen in the following

categories:

1. s1(nd,n1)1
e(nd)+q1(nd) as indicated in Figure

6(a). This means that the original messages arrived at time nd

have been fully served by the time n1. Therefore we have

21d(n)=0 and [1
e(nd)+q1(nd)s1(nd,n1)]+=0.

2. 1
e(nd)+q1(nd)>s1(nd,n1)q1(nd) as indicated

in Figure 6(b). This means that the original messages arrived

at time n-d have been served partially at time n-1. The

remaining messages to be served at time n should be

1
e(nd)+q1(nd)s1(nd,n1). We have

21d(n)=min{1
e(nd)+q1(nd)s1(nd,n1), 1(n)1(n)}.

3. s1(nd,n1)q1(nd) and s1(nd,n)q1(nd) as

indicated in Figure 6(c). This means that none of the original

9

messages arrived at time n-d has been served by the time n.

Therefore we have 21d(n)=0 and [s1(nd,n)q1(nd)]+=0.

4. s1(nd,n1)q1(nd) and

1
e(nd)+q1(nd)>s1(nd,n)q1(nd) as indicated in Figure

6(d). This means that, at time n, the server serves the

remaining messages in the queue q1(n-d) and then starts

serving the original messages arrived at time n-d using the left

capacity. We have 21d(n)=s1(nd,n)q1(nd).

5. s1(nd,n1)q1(nd) and

s1(nd,n)q1(nd)+1
e(nd) as indicated in Figure 6(e). This

means that, at the time n, the server starts serving the original

messages arrived at time n-d and can finish serving all these

messages. We have 21d(n)=1
e(nd).

The above 5 categories are mutual exclusive and have

covered all the possible scenarios. By summarizing them

together, we can obtain 21(n) through Equation (22) with

21d(n)=[min{1
e(nd)+q1(nd)s1(nd, n1), 1(n)1(n),

s1(nd, n)q1(nd), 1
e(nd)}]+, d=1,,n, (23a)

When d=0, the original messages arrive at current time slot

n. Whether these messages can be served immediately

depends on the available capacity [µ1(n)-q1(n)]+. Then we

have

210(n)=[min{1(n)1(n)q1(n), 1
e(n)}]+. (23b)

Similar to the derivation of the departing rate for the

original messages 1
e(n–d), we can obtain, the departing rates

2k(n) (2≤k≤7) for the non-redundant retransmitted messages

r1k−1k
e(n) which enter the queue for the 1st-time, as

7,,2)()(
0 22  

knn
n
d kdk  (24)

The sum of the departing messages 2k(n) (1≤k≤7) become

the arrival rate of Server 2 in the current time slot n as

 


7
1 22)()(

k k nn  . (25)

We can use the same strategy to obtain the retransmission

messages r2(n) which are equal to the departure retransmission

messages r'2
e
(n), and the response messages 1(n) which

corresponds to the departure messages 2(n) and r2(n).

4.3. Generalization of tandem server to arbitrary topology

Our tandem server topology is quite general except that it

does not consider splitting the output of Server 1 to multiple

downstream servers and merging the traffic from multiple

upstream servers at Server 2.

With the departure process calculated in Section 4.2, it is

quite easy to split the output of Server 1 if the splitting process

is given based on any splitting policy.

Merging at Server 2 can be treated similarly as the merging

at Server 1 except the responses must be sent to their

corresponding upstream servers.

We assumed that the upstream servers of Server 1 have

infinite capacity. If any upstream server of Server 1 has finite

capacity, it can be modelled using similar equations as those

for Server 1.

In summary, we can see that Server 1 and Server 2 in our

tandem server can be generalized to represent an arbitrary

proxy server and an arbitrary UA respectively, two basic

components to build an arbitrary SIP network. Our analytical

approach can be easily applied to the modeling of an arbitrary

SIP network with minor changes. An analytical model for an

arbitrary network is very important to conduct a fluid-based

simulation for performance evaluation of a large scale network,

when an event-driven simulation is infeasible due to expensive

computation cost [40].

5. Overload control algorithm

Through the analysis in the Section 4, we have
demonstrated the impact of retransmissions. If an original
INVITE request is dropped due to buffer overflow or message
corruption, retransmission of the request message by the
upstream server is necessary. However those retransmissions
caused by queuing delay in a server are redundant. They
actually make the overloading situation even worse. Reducing
this kind of retransmissions will make the retransmission
mechanism more effective and increase server utilization. This
observation leads us to propose an overload control
mechanism that targets at reducing redundant retransmissions.

The key in our proposal is to differentiate necessary
retransmissions from redundant ones. We can use either direct
or indirect approaches. In indirect approaches, we can estimate
whether a downstream server is overloaded based on the way
response messages are being received. For example, redundant
message ratio can be calculated based on the response
messages. This ratio can be used as an indicator about whether
a downstream server is overloaded or not. Unfortunately this
kind of indirect approaches can cause overreaction under
certain special situations.

In this paper, we propose to use a direct approach to get the
information about downstream servers. Instead of letting
upstream servers guess what are happening at downstream
servers, we propose to let downstream servers inform
upstream servers explicitly its server utilization dynamically.
Server utilization is a good metric to indicate the level of
server load. It is easy to implement and available in nearly all
existing servers over the market. We propose the downstream
servers piggyback this information in response messages.
After receiving this message, the upstream server can regulate
its retransmission rate based on overload level at downstream
servers. To maintain fairness among different users, the
retransmission rate can be regulated by randomly suppressing
certain portion of retransmissions. In such way, the
retransmission probability of each message is related to the
load levels at downstream servers.

Without loss of generality, we consider a case that overload
happens at Server 1. There are two preset thresholds: low
threshold and high threshold. When the average CPU

utilization 1avg exceeds the low threshold, an overload is
anticipated at Server 1, thus its upstream server retransmits the
messages with a certain probability p1. We choose a linear

function to determine the relationship between p1 and 1avg,
The linear function not only makes the calculation for p1 cost-
effective, but also achieves satisfactory efficiency of the
overload control (as demonstrated by performance evaluation
later on). Other nonlinear functions can also be used to

determine the relationship between p1 and 1avg.
The retransmission probability p1 is initialized to 1. When

the utilization of the downstream server increases, p1 will
decrease until it reaches 0 once the utilization reaches a high
threshold, where no message will be retransmitted. If the
utilization of downstream servers stays at 1 for a long period
to indicate a persistent overload, other existing solutions such

10

as load balancing or call rejections can be used to further
mitigate overload. Summary of our overload control
mechanism is shown in Figure 7.

Like existing pushback overload control solutions (e.g., SIP
overload control RFC [30]), implementation of our overload
control algorithm requires minor modification to SIP protocol.
We need to define and create a field in the response message
to carry the average CPU utilization of the downstream server
in order to deliver the overload status to its upstream servers.

When each retransmission timer fires or expires

if 1avg < 1low

Calculate retransmission probability p1:

Overload Control Algorithm

else

if 1low ≤ 1avg ≤ 1high

p1  1

p1  1high1avg1high1low

else
p1  0

1low : Low threshold for 1

Varying parameter:

1avg: Average CPU utilization of Server 1

1high: High threshold for 1

Fixed parameters:

Figure 7. Overload control algorithm based on average CPU utilization.

We have developed an innovative approach to set up the
analytical model for a tandem server and demonstrated how to
extend our analytical approach to model an arbitrary network.
When our overload control algorithm is implemented in every
sending server of a SIP network, we need to create a
respective analytical model for the fluid-based simulation. The
model can help the researchers to speed up the performance
evaluation of various SIP overload control solutions using the
fluid-based simulation, when a SIP network is scaled up.

Without loss of generality, we start our analysis at Server 1.

The total message service rate 1 is bounded by the service

capacity C1, i.e., 1≤C1. At current time slot n, the

instantaneous CPU utilization 1 can be obtained as

1(n)=1(n)C1(n). (26)

Since stochastic process of both total message service rate

1 and service capacity C1 may cause transient fluctuation in

the instantaneous CPU utilization 1, we use an exponential

weighted moving average filter to calculate the average CPU

utilization 1avg as

1avg(n)=(1−w)1avg(n−1)+w1(n). (27)

where w is the filter weight, and the average CPU utilization

1avg can be initialized as 0.5. According to the overload

control algorithm described by Figure 7, the retransmission

probability p1 generated by the upstream server of Server 1

can be computed as

p1(n)=min{[(1high1avg(n))(1high1low)]+, 1}. (28)

By integrating the retransmission probability p1 into the

theoretical retransmission rate r1, we can get the actual

retransmission rate as r1p1. Therefore, we can reuse the

analytical model developed for the regular server in Section 4

by replacing the theoretical retransmission rate with the actual

retransmission rate. For the recursive equations (i.e.,

Equations (17) to (21)) to obtain the retransmission rate r1 of

Server 1, we only need to update Equation (21) as

)())(1)(()(111111 npnpnrnr djj
e
jj   . (29)

6. Performance evaluation and simulation

We evaluate the performance of an overloaded SIP tandem
server by performing fluid-based Matlab simulation using the
analytical model we have derived. In the mean time, we
perform event-driven OPNET simulation to investigate the
accuracy of our analytical model for the tandem server. In the
OPNET simulator, messages were handled one by one instead
of being aggregated over a time slot as in our Matlab
simulation. All the sending servers maintained a list of all
outstanding messages for tracking retransmissions. Our
simulations are based on the SIP network topology depicts by
Figure 2. Four user agent clients generated original messages
with equal mean rate, and then sent them to a tandem server.

For OPNET simulation, the aggregated mean original
message generation rate is equal to the aggregated mean
original arrival rate in the corresponding Matlab scenario.

Currently there is no measurement result for the workload
characteristics in real SIP networks. Our model can simulate
any demand arrival process or server service process. Similar
to the experiment in [7], in our Matlab and OPNET
simulations, arrival rate follows Poisson distribution while the
service time of each type of message follows exponential
distribution, which has been widely adopted by most
researchers [6, 21]. The mean service rates of Server 1 and
Server 2 are also set to be the same under normal situations as
the mean service rates of the corresponding servers in Matlab
simulation. The processing speeds of the upstream servers of
Server 1 are set to be so large that their processing times are
negligible. A large number of replications need to be
simulated to ensure 95% confidence interval. We have run 10
simulation replications for both Matlab simulation and
OPNET simulation, and then calculated 95% confidence

interval (CI) as NX /*96.1  , where X and  are the

mean value and the standard deviation of N=10 replications.
We have also run up to 60 replications. The results are very
similar except the confidence intervals are much smaller.
Therefore 10 replications are enough for illustration purpose.
In the simulation plots, Matlabmean denotes the mean value of
Matlab simulation, while OPNETmean and OPNETcl denote the
mean value and confidential interval of OPNET simulation
respectively.

To demonstrate the effectiveness of our overload control
solution, two typical overload scenarios were simulated: (1)
Overload at Server 2 due to a server slowdown; (2) Overload
at Server 1 due to a demand burst. In each scenario, we
performed our simulations without overload control algorithm
and with overload control algorithm separately.

The maximum and minimum thresholds for average CPU

utilization were set as 1max=2max=0.9 and 1min=2min=0.6

respectively. The moving average filter weight w was 0.1.
The buffer sizes of Server 1 and Server 2 were set as B1=1000
messages and B2=500 messages respectively. The interval of
each time slot was ts=50 ms and the 1st-time retransmission
timer is T1=500ms [1]. Each scenario was simulated 60s. Since

11

processing a response message took much less time than
processing a request message, the proportional ratio was set as
0.5. The mean service capacities of Server 1 and Server 2 were
measured based on the processing time of request message,
e.g., C1=1000 request messages/sec indicated that the mean
processing times for a request message and a response
message were 1ms and 0.5ms respectively. The total message

service rate  was bounded by the service capacity C at each

server, i.e., ≤C.

6.1. Overload at Server 2

In this scenario, we let an initial overload happen at Server

2 due to a server slow down. The mean original message

generation rate for each user agent client was 50 messages/sec,

i.e., the aggregated original message arrival rate of four user

agent clients was 1=200 messages/sec. The mean server

capacities of the two proxy servers were C1=1000

messages/sec from time t=0s to t=60s, C2=100 messages/sec

from time t=0s to t=20s (emulating a server slow down due to

the routine maintenance), and C2=1000 messages/sec from

time t=20s to t=60s (emulating the normal service).

0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

600

700

800

Time (sec)

Q
u
e
u
e
 s

iz
e
 (

m
e
ss

a
g
e
s)

Matlab
mean

OPNET
mean

OPNET
ci

Figure 8. Mean queue size q1 (messages) of Server 1 and 95% confidential

interval versus time upon an initial overload at Server 2 when overload control

algorithm was not activated.

0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

600

Time (sec)

Q
u
e
u
e
 s

iz
e
 (

m
e
ss

a
g
e
s)

Matlab
mean

OPNET
mean

OPNET
ci

Figure 9. Mean queue size q2 (messages) of Server 2 and 95% confidential

interval versus time upon an initial overload at Server 2 when overload control

algorithm was not activated.

1) Performance Without Overload Control Algorithm
Applied: Figures 8 to 11 show the dynamic behaviour of a
tandem server when overloaded happened at the downstream
Server 2. Without overload control algorithm applied, Server 2
became overloaded first, which was followed by a later
overload at Server 1. After Server 2 resumed its normal
service at time t=20s, Server 1 and Server 2 had the same
service capacity. Because Server 1 had to process part of r1
which would not enter Server 2, the total arrival rate at Server

2 was less than its service capacity. Eventually the overload
was cancelled at both Server 1 and Server 2. The confidence
intervals in Figures 8 to 11 are quite tight compared to their
sample means. Also note the sample means of our analytical
model and OPNET model overlap nearly perfectly which
indicate a good matching between the two types of models.

10 15 20 25 30 35 40
0

50

100

150

200

250

300

Time (sec)

R
e
tr

a
n
sm

is
si

o
n
 r

a
te

 (
m

sg
s/

se
c
)

Matlab
mean

OPNET
mean

OPNET
ci

Figure 10. Mean retransmission rate r1 (messages/sec) of Server 1 and 95%
confidential interval versus time upon an initial overload at Server 2 when
overload control algorithm was not activated.

0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

600

700

800

900

1000

1100

Time (sec)

R
e
tr

a
n
sm

is
si

o
n
 r

a
te

 (
m

sg
s/

se
c
)

Matlab
mean

OPNET
mean

OPNET
ci

Figure 11. Mean retransmission rate r'2 (messages/sec) of Server 2 and 95%
confidential interval versus time upon an initial overload at Server 2 when
overload control algorithm was not activated.

15 20 25 30 35 40 45
-2

0

2

4

6

8

10

12

Time (sec)

Q
u

e
u

e
 s

iz
e
 (

m
e
ss

a
g

e
s)

Matlab
mean

OPNET
mean

OPNET
ci

Figure 12. Queue size q1 (messages) of Server 1 versus time upon an initial
overload at Server 2 when overload control algorithm was activated.

2) Effectiveness of Overload Control Algorithm: We

activated the overload control algorithm at every sending

server. When a server slowdown caused the CPU to perform at

full utilization at Server 2 (as shown in Figure 14), our

overload control algorithm forbade the retransmissions r2 to

consume the resources of both Server 1 and Server 2 (as

shown in Figure 15). One can see that Server 1 remained

almost buffer empty (as shown in Figure 12), and the overload

was not propagated from Server 2 to Server 1. After Server 2

12

resumed its normal service at time t=20s, its buffer became

empty very quickly (see Figure 13), and the retransmissions

were allowed to recover the original messages dropped by

Server 2 (see Figure 15).

0 5 10 15 20 25 30 35 40
0

100

200

300

400

500

600

Time (sec)

Q
u

e
u
e
 s

iz
e
 (

m
e
ss

a
g

e
s)

Matlab
mean

OPNET
mean

OPNET
ci

Figure 13. Queue size q2 (messages) of Server 2 versus time upon an initial
overload at Server 2 when overload control algorithm was activated.

0 5 10 15 20 25 30 35 40
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Time (sec)

C
P

U
 u

ti
li

z
a
ti

o
n

Matlab
mean

OPNET
mean

OPNET
ci

Figure 14. Average CPU utilization 2avg of Server 2 versus time upon an

initial overload at Server 2 when overload control algorithm was activated.

10 15 20 25 30 35 40
0

50

100

150

200

250

300

350

400

450

500

Time (sec)

R
e
tr

a
n
sm

is
si

o
n
 r

a
te

 (
m

sg
s/

se
c
)

Matlab
mean

OPNET
mean

OPNET
ci

Figure 15. Retransmission rate r2 (messages/sec) for Server 2 versus time

upon an initial overload at Server 2 when overload control algorithm was

activated.

3) Impact of Different Buffer Size: In order to investigate

the impact of different buffer sizes on the server performance

when an initial overload happened at Server 2 and the

overload control algorithm was not activated, we run the fluid-

based simulation again.
We would like to observe the server performance under the

four different sub-scenarios which includes both extremely
small and extremely large buffer sizes: (I) small buffer B1 and
small buffer B2; (II) large buffer B1 and small buffer B2; (III)
small buffer B1 and large buffer B2; (IV) large buffer B1 and
large buffer B2.

Since the maximum queue size q1 of Server 1 was less than
1000 messages when Server 2 had a small buffer size (see
Figure 8), increasing the buffer size of Server 1 would not
influence the server performance, i.e., sub-scenario II would
exhibit the same behaviour as sub-scenario I. Therefore, four
sub-scenarios could be merged into two sub-scenarios which
our simulations were based on: (I) small buffer B1=1000
messages and varying buffer B2; (II) varying buffer B1 and
large buffer B2=15,500 messages.

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

Time (sec)

Q
u
e
u
e
 s

iz
e
 (

m
e
ss

a
g
e
s)

B
2
=500

B
2
=1500

B
2
=3500

B
2
=7500

B
2
=15500

(a) Queue size q1 (messages) versus time.

0 5 10 15 20 25 30 35 40 45 50
0

5000

10000

15000

Time (sec)

Q
u

e
u

e
 s

iz
e
 (

m
e
ss

a
g

e
s)

B
2
=500

B
2
=1500

B
2
=3500

B
2
=7500

B
2
=15500

(b) Queue size q2 (messages) versus time.

Figure 16. Queuing dynamics of a tandem server upon an initial overload at

Server 2 when Server 1 had small buffer B1 (B1=1000 messages) and Server 2

had different buffer sizes B2 (messages).

Figures 16 and 17 show the queuing dynamics of both
Server 1 and Server 2 upon an initial overload happened at
Server 2, when Server 1 and Server 2 had different buffer
sizes. The queuing delay is equal to the queue size divided by

the server capacity approximately, i.e., q1 q1/C1 and q2
q2/C2. A large queue size corresponds to a long queuing delay.

10 15 20 25 30 35 40 45 50 55 60
0

1000

2000

3000

4000

5000

6000

7000

8000

Time (sec)

Q
u

e
u

e
 s

iz
e
 (

m
e
ss

a
g

e
s)

B
1
=500

B
1
=1500

B
1
=3500

B
1
=7500

(a) Queue size q1 (messages) versus time.

13

0 5 10 15 20 25 30 35 40 45 50
0

5000

10000

15000

Time (sec)

Q
u

e
u

e
 s

iz
e
 (

m
e
ss

a
g

e
s)

B
1
=500

B
1
=1500

B
1
=3500

B
1
=7500

(b) Queue size q2 (messages) versus time.

Figure 17. Queuing dynamics of a tandem server upon an initial overload at
Server 2 when Server 1 had different buffer sizes B1 (messages) and Server 2
had large buffer B2 (B2=15,500 messages).

One can see that the overload was always propagated from
Server 2 to Server 1 when Server 1 had a limited service
capacity. After Server 2 resumed its normal service at time
t=20s, since both Server 1 and Server 2 had the same service
capacities, the overload at Server 2 was cancelled eventually
no matter what the buffer size of Server 1 or Server 2 was (see
Figures 16(b) and 17(b)). Smaller buffer size would help
Server 1 to cancel the overload more quickly by rejecting calls,
while an extremely large buffer size (e.g., B1=7500 messages)
would maintain the overload at Server 1 continuously, thus
bringing down Server 1 eventually (see Figure 17(a)).

4) Comparison of Simulation Time: In order to obtain the

simulation result for stochastic systems, we must run a large

number of replications to evaluate the system performance. In

addition, the original message rates and server capacities may

be extremely large in a real SIP network. It would be

necessary to compare the total simulation time between fluid-

based Matlab simulation and event-driven OPNET simulation.

When both original message arrival rate 1 and server

service capacities C1 and C2 are scaled up 10 and 100 times

respectively, e.g., the mean server capacity C1 becomes 10,000

messages/sec and 100,000 messages/sec respectively. We

perform the simulation and record the simulation time for one

replication when an initial overload happened at Server 2 and

the overload control algorithm was not activated.

10
3

10
4

10
5

10
1

10
2

10
3

10
4

10
5

10
6

Mean service capacity (msgs/sec)

S
im

u
la

ti
o

n
 t

im
e
 (

se
c
s)

Matlab

OPNET

Figure 18. Simulation time (seconds) of different mean server capacities:

OPNET simulation vs. Matlab simulation.

Figure 18 shows the simulation time of different server

capacities for Matlab simulation and OPNET simulation.

Since messages arriving within the same time slot are

aggregated and processed together, the computation cost for

Matlab simulation is invariant with respect to the server

capacity, while the simulation time of OPNET simulation

increased exponentially. For example, evaluating the

performance of a server with a mean server capacity of 10,000

messages/sec, OPNET simulation took almost 8 days, while

Matlab simulation reduced the simulation time 19,000 times to

37 seconds, as shown in Figure 18.

6.2. Overload at Server 1

In this scenario, a short period of demand burst overloaded

Server 1 from time t=0s to t=30s, emulating a short surge of

user demands; Normal original request messages arrived at the

overloaded server with a mean rate =200 messages/sec,

emulating regular user demands. The mean service capacities

of Server 1 and Server 2 were C1=1000 messages/sec and

C2=1000 messages/sec respectively.

1) Performance Without Overload Control Algorithm

Applied: Figures 19 and 20 show the dynamic behaviour of a

tandem SIP server upon an initial overload at Server 1. One

can see that the mean values of Matlab simulation replications

stayed inside the confidence interval of OPNET simulation

replications, which confirmed the relative accuracy of our

analytical model for a tandem server again.

0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

16s

Time (sec)

Q
u

e
u

e
 s

iz
e
 (

m
e
ss

a
g

e
s)

Matlab
mean

OPNET
mean

OPNET
ci

Figure 19. Queue size q1 (messages) of Server 1 versus time upon an initial
overload at Server 1 when overload control algorithm was not activated.

0 10 20 30 40 50 60

0

500

1000

1500

2000

2500

Time (sec)

R
e
tr

a
n

sm
is

si
o

n
 r

a
te

 (
m

sg
s/

se
c
)

Matlab
mean

OPNET
mean

OPNET
ci

Figure 20. Retransmission rate r1 (messages/sec) for Server 1 versus time

upon an initial overload at Server 1 when overload control algorithm was not

activated.

Without overload control applied, the redundant
retransmissions were triggered to enter Server 1 (see Figure
20), thus the queue size of Server 1 increased quickly and took
around 3.8s to reach the buffer limit (see Figure 19). The finite
buffer could mitigate the overload by dropping the messages.
At time t=30s, the mean original request rate decreased from

14

800 messages/sec to 200 messages/sec at Server 1, making the
total arrival rate of new original requests and corresponding
responses less than the server capacity. Then Server 1 took
about 16s to cancel the overload, as marked in Figure 19.
Since the service capacities of Server 1 and Server 2 were the
same, Server 2 maintained almost empty buffer, and its queue
size was not shown here to save the space.

2) Effectiveness of Overload Control Algorithm: Between
time t=0s and t=30s, the overload occurred due to a short
surge in demands. The overload control algorithm prevented
the retransmissions from exacerbating the overload at Server 1,
i.e., no retransmissions happened (see Figure 22), thus the
queue size of Server 1 increased slowly and took around 8.5s
to reach the buffer limit (see Figure 21). After the original
message rate decreased at time t=30s, Server 1 became buffer
empty and the overload was cancelled within 3s, as marked in
Figure 21.

0 5 10 15 20 25 30 35 40
0

200

400

600

800

1000

1200

3s

Time (sec)

Q
u

e
u

e
 s

iz
e
 (

m
e
ss

a
g

e
s)

Matlab
mean

OPNET
mean

OPNET
ci

Figure 21. Queue size q1 (messages) of Server 1 versus time upon an initial
overload at Server 1 when overload control algorithm was activated.

20 25 30 35 40 45 50 55 60
-50

0

50

100

150

200

250

300

350

400

450

Time (sec)

R
e
tr

a
n

sm
is

si
o

n
 r

a
te

 (
m

sg
s/

se
c
)

Matlab
mean

OPNET
mean

OPNET
ci

Figure 22. Retransmission rate r1 (messages/sec) for Server 1 versus time
upon an initial overload at Server 1 when overload control algorithm was
activated.

0 10 20 30 40 50 60
0

1000

2000

3000

4000

5000

6000

7000

8000

Time (sec)

Q
u

e
u

e
 s

iz
e
 (

m
e
ss

a
g

e
s)

B
1
=500

B
1
=1500

B
1
=3500

B
1
=7500

Figure 23. Queue size q1 (messages) of Server 1 with different buffer size B1
(messages) versus time upon an initial overload at Server 1 when overload
control algorithm was not activated.

3) Impact of Different Buffer Size: In order to investigate

the impact of different buffer sizes on the server performance

when an initial overload happened at Server 1 and the

overload control algorithm was not activated, we run the fluid-

based simulation again.
Since the overload at Server 1 would not propagate to the

downstream Server 2, we only need to evaluate the queuing
dynamics of Server 1 with different buffer sizes, as shown by
Figure 23. After the original message arrival rate was
decreased significantly at time t=30s, smaller buffer sizes (e.g.,
500 messages and 1500 messages) could help Server 1 to
cancel the overload within the simulation period, while Server
1 with larger buffer sizes (e.g., 3500 messages and 7500
messages) continued to maintain the overload throughout the
whole simulation period.

4) Performance Comparison with Pushback Solution: In

addition to server utilization, queuing delay has also been used

as a metric to identify the overload state. Queuing-delay

controlled pushback solution suggested by [20, 21] has been

adopted by SIP overload control RFC [30] recently.

The basic idea of queuing-delay controlled pushback

solution [20, 21] is that each overloaded downstream server

(e.g., Server 1) advertises a desirable message sending rate to

its upstream server. The advertised message sending rate 1 is

calculated as,

1=1(1−(q1−q1o)/ts), (30)

where 1 is the estimated service rate, q1 is the estimated

server queuing delay, q1o is the desirable target server queuing

delay, ts is the sampling interval for performing calculation

(i.e., the interval of a time slot for our analytical model), and

1 includes both original and retransmitted request rate (i.e.,

1=1+r1) [20, 21]. In our simulation, the target server queuing

delay was set as q1o=400ms, less than 500ms (the default

timer for triggering the 1st retransmission [1]).

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

Time (sec)

Q
u
e
u
e
 s

iz
e
 (

m
e
ss

a
g
e
s)

NOLC

OLC-Rb

OLC-Pb

Figure 24. Queue size q1 (messages) of Server 1 versus time upon an initial
overload at Server 1.

By performing the fluid-based Matlab simulation using our
analytical model, we use Figures 24 and 25 to depict the
queuing dynamics and call rejecting rate of the overloaded
Server 1 under non-overload control algorithm, our
retransmission-based algorithm, and queuing delay controlled
pushback algorithm suggested by [20, 21]. In the two plots,
NOLC denotes no overload control algorithm was activated;

OLCRb denotes retransmission-based overload control

15

algorithm was activated; and OLCPb denotes queuing-delay
controlled pushback overload control algorithm was activated.

0 10 20 30 40 50 60
0

0.5

1

1.5

2

2.5

3

Time (sec)

lo
g
1
0
(C

a
ll

 r
e
je

c
ti

o
n
 r

a
te

)

NOLC

OLC-Rb

OLC-Pb

Figure 25. Call rejecting rate (calls/sec in logarithm scale) of Server 1 versus
time upon an initial overload at Server 1.

As shown in Figure 24, after a short surge in demands
ended at time t=30s, pushback solution cancelled the overload
using about 1 second, and retransmission-based solution spent
3 seconds (also shown in Figure 21). Without any overload
control solution applied, the server had to wait about 16s to
become buffer empty (also shown in Figure 19).

However, the cost of quickly cancelling the overload is not
free. For a short-term overload that lasted for 30 seconds,
queuing-delay controlled pushback solution rejected 10 times
more calls than both retransmission-based solution and the
case without overload control solution; the call rejection rate
of retransmission-based solution was comparable with the case
without overload control solution, as shown in Figure 25. The
reason behind the fact that the retransmission-based solution
also had to reject a small amount of calls unintentionally is the
retransmission-based solution forbids the necessary
retransmissions for recovering the original INVITE requests
dropped by the overloaded Server 1 due to the buffer overflow.

One can see that compared with the pushback solution, our
retransmission-based solution achieves a better trade-off
between the speed to cancel the overload and the call rejection
rate when the overload only lasts a short period.

6.2. Remarks

A small buffer size can help a server to cancel the overload
by dropping excessive original messages, which may block
more calls and cause unnecessary revenue loss.

1) Short-term Overload: If an overload lasts a short period,
our overload control algorithm can mitigate the overload
effectively and prevent network collapse from overload
propagation by restricting retransmission rate, while
maintaining the original request rate to avoid blocking
excessive calls. After the overloaded server performs its
normal operation, the overload is cancelled rapidly, and the
upstream servers can generate the retransmission freely to
retain full reliability.

2) Long-term Overload: If an overload lasts a long period,
existing pushback solutions need to be activated and the
original request rate should be reduced and some calls have to
be blocked intentionally. Since pushback solutions mitigate
the overload by rejecting calls intentionally and causing the
revenue loss, they cancel the overload much faster than the
proposed retransmission-based solution in this paper.

To achieve a satisfactory trade-off between call blocking
probability and the time to cancel the overload, we suggest

integrating our retransmission-based solution with other
pushback solution. During the real-time implementation, each
server specifies a threshold for the overload period, and
creates an overload timer to monitor the overload status: (1)
activates the retransmission-based solution to control
retransmissions only, at the initial stage of an overload; (2)
activates the pushback solutions to block some calls
intentionally, if the overload period exceeds its threshold. A
good value for the threshold of the overload period can be
chosen as the total time allowed for maximum 6
retransmissions during hop-by-hop INVITE transaction [1],
which is approximately 30s.

3) Non-INVITE Transactions: As each server needs to
consume CPU to process non-INVITE transactions, different
type of messages pose potential threat to the overload collapse.
Our overload control algorithm is applicable for mitigating the
overload caused by non-Invite transactions. Our modeling
approach can be naturally extended to include non-INVITE
messages for non-INVITE transactions by introducing a
proportional ratio to take into account the different processing
times for INVITE and non-INVITE messages.

7. Conclusions

In order to propose an effective overload control
mechanism, we have studied the impact of retransmission on
the overload by modeling the dynamic behaviour of a SIP
network where each server has finite buffer. We have
introduced our novel modeling strategy by modeling a tandem
server, and then demonstrated how to extend our innovative
methodology to model an arbitrary SIP network. Unlike
various existing signaling models based on Poisson distributed
arrival rate and exponentially distributed service time, our
study considered a general case that both arrival rate and
service rate for signaling messages are arbitrary stochastic
processes. Our three key analytical results are: (1) the
formulation of different types of message drops; (2) the
formulation of different types of retransmission messages due
to queuing delay or message drops and (3) the formulation of
the departure process through the analysis of all possible
departure scenarios. Our solution is computationally efficient,
and the scalability of the analytical model allows the network
operators or the researchers to evaluate the performance of a
large scale SIP network that is well beyond the capabilities of
current discrete event simulators.

Our mathematical analysis and simulation have led us to the
conclusion that redundant retransmissions can make overload
much worse and therefore should be controlled before any
other mechanisms are applied.

Based on our modeling results, we have proposed a novel
yet simple feedback control algorithm to mitigate the short-
term SIP overload effectively by reducing retransmission rate
based on downstream server utilization. We have
demonstrated how to extend our modeling strategy to model a
SIP server with our overload control mechanism. When
combined with existing overload control mechanisms, our
proposal can improve overload situation and increase server
utilization significantly.

The effectiveness of our overload control algorithm and the
accuracy of our analytical model have been confirmed by
performance evaluation of both Matlab simulation and
OPNET simulation. Our study on the impact of buffer size

16

demonstrates that a small buffer size can help a server to
cancel the overload by blocking excessive calls. However, this
approach will degrade quality of service and reduce revenue
for carriers. In addition, for a short-term overload, the
retransmission-based solution achieves a better trade-off
between the call rejection rate and the speed to cancel the
overload when compared with the pushback solution.

In the future work, we would like to investigate how to
combine the retransmission-based solution with the pushback
solution to achieve a satisfactory performance under different
overload scenarios and network topologies.

Acknowledgment

The authors would like to thank the anonymous reviewers for

their constructive comments. This work was supported by the

NSERC grant #CRDPJ 354729-07 and the OCE grant #CA-

ST-150764-8.

References

1. Rosenberg J, Schulzrinne H, Camarillo G, Johnston A, Peterson J,

Sparks R, Handley M and Schooler E. SIP: Session Initiation Protocol.

IETF RFC 3261, June 2002.

2. 3rd Generation Partnership Project. http://www.3gpp.org.

3. Faccin SM, Lalwaney P and Patil B. IP Multimedia Services: Analysis

of Mobile IP and SIP Interactions in 3G Networks. IEEE

Communications Magazine 2004, 42(1): 113-120.

4. Rosenberg J. Requirements for Management of Overload in the Session

Initiation Protocol. IETF RFC 5390, December 2008.

5. Shen C and Schulzrinne H. On TCP-based SIP Server Overload Control.

In: Proceedings of IPTComm, Munich, Germany, August 2010.

6. Noel E and Johnson CR. Initial simulation results that analyze SIP based

VoIP networks under overload. In: Proceedings of 20th International

Teletraffic Congress, 2007, pp. 54-64.

7. Hilt V and Widjaja I. Controlling Overload in Networks of SIP Servers.

In: Proceedings of IEEE ICNP, Orlando, Florida, October 2008, pp. 83-

93.

8. SIP Express Router. http://www.iptel.org/ser/.

9. Dacosta I, Balasubramaniyan V, Ahamad M and Traynor P. Improving

Authentication Performance of Distributed SIP Proxies. In: Proceedings

of IPTComm, Atlanta, GA, July 2009.

10. Jiang H, Iyengar A, Nahum E, Segmuller W, Tantawi A and Wright C.

Load Balancing for SIP Server Clusters. In: Proceedings of IEEE

INFOCOM, April 2009, pp. 2286-2294.

11. Warabino T, Kishi Y and Yokota H. Session Control Cooperating Core

and Overlay Networks for “Minimum Core Architecture. In:

Proceedings of IEEE Globecom, Honolulu, Hawaii, December 2009.

12. Huang L. Locating Interested Subsets of Peers for P2PSIP. In:

Proceedings of International Conference on New Trends in Information

and Service Science, 2009, pp. 1408-1413.

13 Xu L, Huang C, Yan J and Drwiega T. De-Registration Based S-CSCF

Load Balancing in IMS Core Network. In: Proceedings of IEEE ICC,

Dresden, Germany, 2009.

14. Geng F, Wang J, Zhao L and Wang G. A SIP Message Overload

Transfer Scheme. In: Proceedings of ChinaCom, October 2006.

15. Kitatsuji Y, Noishiki Y, Itou M and Yokota H. Service Initiation

Procedure with On-demand UE Registration for Scalable IMS Services.

In: Proceedings of The Fifth International Conference on Mobile

Computing and Ubiquitous Networking, Seattle, WA, April 2010.

16. Ohta M. Overload protection in a SIP signaling network. in Proceedings

of International Conference on Internet Surveillance and Protection,

2006.

17. Garroppo RG, Giordano S, Spagna S and Niccolini S. Queueing

Strategies for Local Overload Control in SIP Server. In: Proceedings of

IEEE Globecom, Honolulu, Hawaii, 2009.

18. Amooee AM and Falahati A. Overcoming Overload in IMS by

Employment of Multiserver Nodes and Priority Queues. In: Proceedings

of International Conference on Signal Processing Systems, May 2009,

pp. 348-352.

19. Dacosta I and Traynor P. Proxychain: Developing a Robust and Efficient

Authentication Infrastructure for Carrier-Scale VoIP Networks. In:

Proceedings of the USENIX Annual Technical Conference, Boston, MA,

June 2010.

20 Noel E and Johnson CR. Novel Overload Controls for SIP Networks. In:

Proceedings of 21st International Teletraffic Congress, 2009.

21. Shen C, Schulzrinne H and Nahum E. SIP Server Overload Control:

Design and Evaluation. In: Proceedings of IPTComm, Heidelberg,

Germany, July 2008.

22 Abdelal A and Matragi W. Signal-Based Overload Control for SIP

Servers. In: Proceedings of IEEE CCNC, Las Vegas, NV, January 2010.

23. Ohta M. Overload Control in a SIP Signaling Network. In: Proceeding

of World Academy of Science, Engineering and Technology, Vienna,

Austria, March 2006, pp. 205-210.

24. Montagna S and Pignolo M. Comparison between two approaches to

overload control in a Real Server: “local” or “hybrid” solutions? In:

Proceedings of IEEE MELECON, April 2010, pp. 845-849.

25. Wang YG. SIP Overload Control: A Backpressure-based Approach.

ACM SIGCOMM Computer Communications Review 2010, 40(4): 399-

400.

26. Homayouni M, Jahanbakhsh M, Azhari V and Akbari A. Overload

control in SIP servers: Evaluation and improvement. In: Proceedings of

IEEE ICT, Doha, Qatar, April 2010, pp. 666-672.

27. Yang J, Huang F and Gou SZ. An Optimized Algorithm for Overload

Control of SIP Signaling Network. In: Proceedings of 5th International

Conference on Wireless Communications, Networking and Mobile

Computing, September 2009.

28. Sun J, Tian R, Hu J and Yang B. Rate-based SIP Flow Management for

SLA Satisfaction. In: Proceedings of IEEE/IFIP IM, New York, USA,

June 2009, pp. 125-128.

29. Hong Y, Huang C and Yan J. Analysis of SIP Retransmission

Probability Using a Markov-Modulated Poisson Process Model. In:

Proceedings of IEEE/IFIP Network Operations and Management

Symposium, Osaka, Japan, April 2010, pp. 179–186.

30. Gurbani VK, Hilt V and Schulzrinne H. Session Initiation Protocol (SIP)

Overload Control. IETF Internet-Draft, draft-ietf-soc-overload-control-

07, January 2012.

31. Hilt V, Noel E, Shen C and Abdelal A. Design Considerations for

Session Initiation Protocol (SIP) Overload Control. IETF Internet-Draft,

draft-hilt-soc-overload-design-00, May 2010.

32. Fras M, Mohorko J and Cucej Z. Modeling of captured network traffic

by the mimic defragmentation process. SIMULATION: Transactions of

the Society for Modeling and Simulation 2011, 87(5): 437-448.

33. Klampfer S, Kotnik B, Svecko J, Mezgec Z, Mohorko J and Chowdhury

A. MIMO simulator of call server input lines occupancy. SIMULATION:

Transactions of the Society for Modeling and Simulation 2011, 87(5):

423-436.

34. Nahm EM, Tracey J and Wright CP. Evaluating SIP server performance.

In: Proceedings of ACM SIGMETRICS, San Diego, CA, US, 2007, pp.

349–350.

35. Yang JP. Stateless Fair Admission Control. SIMULATION: Transactions

of the Society for Modeling and Simulation 2011, 87(3): 253-261.

36. Hong Y, Huang C and Yan J. Mitigating SIP Overload Using a Control-

Theoretic Approach. In: Proceedings of IEEE Globecom, Miami, FL,

U.S.A, December 2010.

37. Hong Y, Huang C and Yan J. Controlling Retransmission Rate For

Mitigating SIP Overload. In: Proceedings of IEEE ICC, Kyoto, Japan,

June 2011.

38. Hong Y, Huang C and Yan J. Design Of A PI Rate Controller For

Mitigating SIP Overload. In: Proceedings of IEEE ICC, Kyoto, Japan,

June 2011.

39. Hong Y, Huang C and Yan J. Applying Control Theoretic Approach To

Mitigate SIP Overload. Telecommunication Systems, 2012, in press.

40. Liu Y, Presti FL, Misra V, Towsley DF and Gu Y. Scalable fluid models

and simulations for large-scale IP networks. In: Proceedings of ACM

SIGMETRICS, June 2003, pp. 91-101.

41. Hong Y, Huang C and Yan J. Stability Condition for SIP Retransmission

Mechanism: Analysis and Performance Evaluation. In: Proceedings of

IEEE SPECTS, Ottawa, Canada, July 2010, pp. 387-394.

42. Hong Y, Huang C and Yan J. Modeling Chaotic Behaviour of SIP

Retransmission Mechanism. International Journal of Parallel, Emergent

and Distributed Systems, iFirst, 2012.

http://www.3gpp.org/
http://www.iptel.org/ser/

17

43. Govind M, Sundaragopalan S, Binu KS and Saha S. Retransmission in

SIP over UDP  Traffic Engineering Issues. In: Proceedings of

International Conference on Communication and Broadband

Networking, Bangalore, India, May 2003.

Yang Hong received B.S. degree in electronic engineering

from Shanghai Jiao Tong University, China, M.E. degree in

electrical engineering from National University of Singapore,

Singapore, and Ph.D. degree in electrical engineering from

University of Ottawa, Canada. His research interests include

SIP overload control, Internet traffic classification, Internet

congestion control, modeling and performance evaluation of

computer networks, and industrial process control.

Changcheng Huang received his B. Eng. in 1985 and M. Eng.

in 1988 both in Electronic Engineering from Tsinghua

University, Beijing, China. He received a Ph.D. degree in

Electrical Engineering from Carleton University, Ottawa,

Canada in 1997. From 1996 to 1998, he worked for Nortel

Networks, Ottawa, Canada where he was a systems

engineering specialist. He was a systems engineer and network

architect in the Optical Networking Group of Tellabs, Illinois,

USA during the period of 1998 to 2000. Since July 2000, he

has been with the Department of Systems and Computer

Engineering at Carleton University, Ottawa, Canada where he

is currently an associate professor. Dr. Huang won the CFI

new opportunity award for building an optical network

laboratory in 2001. He was an associate editor of IEEE

Communications Letters from 2004 to 2006. Dr. Huang is a

senior member of IEEE.

James Yan is currently an adjunct research professor with the

Department of Systems and Computer Engineering, Carleton

University, Ottawa, Canada. Dr. Yan received his B.A.Sc.,

M.A.Sc., and Ph.D. degrees in electrical engineering from the

University of British Columbia, Vancouver, Canada. He was

a telecommunications systems engineering senior manager in

Bell-Northern Research (1982-1996) and in Nortel (1996 to

2004). In those positions, he was responsible for projects in

performance analysis of networks and products, advanced

technology research, planning new network services and

architectures, development of network design methods and

tools, and new product definition. From 1988 to 1990, he

participated in an exchange program with the Canadian

Federal Government, where he was project prime for the

planning of the evolution of the nationwide federal

government telecommunications network. Dr. Yan is a

member of IEEE and Professional Engineers Ontario.

