
Joint Node-Link Embedding Algorithm based on
Genetic Algorithm in Virtualization Environment

Khoa Nguyen , Qiao Lu , and Changcheng Huang
Department of Systems and Computer Engineering
Carleton University, Ottawa, ON K1S 5B6, Canada

Email: {khoatnguyen, qiaolu, huang}@sce.carleton.ca

Abstract—Virtual network embedding (VNE), that efficiently
tackles the mapping problems of heterogeneous virtual networks
onto a shared physical infrastructure meeting rigid resource
constraints, is the major challenge in network virtualization
(NV). VNE is widely known as NP-hard due to its intractable
computation. The majority of VNE solutions have concentrated
upon virtual node mapping (VNoM) and virtual link mapping
(VLiM) separately. Uncoordinated approaches would facilitate
algorithmic implementation, but they lead to low acceptance
ratio, network revenues and high embedding cost. In this paper,
we propose a new approach relied on Genetic Algorithm (GA),
that coordinately joints node and link mappings where the link
embedding is based on a fast and efficient sequential path search-
ing method. A novel heuristic conciliation algorithm is presented
to deal with a set of infeasible link mappings during producing
VNE solutions in GA’s operations. Extensive evaluation results
indicate that our proposed approach outperforms state-of-the-
art VNE algorithms in all adopted performance metrics.

Index Terms—Network virtualization, virtual network embed-
ding, joint node-link mapping, conciliation strategy, Genetic
Algorithm.

I. INTRODUCTION

NV is widely envisioned as a promising paradigm for
the foreseen success of future networks such as virtualized
fifth generation [1], smart Internet of Things (IoT) networks
[2]. Virtualization efficiently enhances network utilization by
sharing physical resources among several VNRs and provides
an isolated coexistence between VNs on a shared substrate
network (SN). A service provider (SP) in virtualization
environment typically converts a service/application into a
VN, and then transfers it to the corresponding infrastructure
provider (InP) under a form of a VNR. The InP is responsible
for embedding the VN on SN, satisfying multiple stringent
resource constraints. VNE, that is one of the most challenging
tasks in NV, allows to embed multiple VNRs on the shared
SN with various topology and rigid resource demands. VNE is
commonly acknowledged as a generalization of second stage
of network function virtualization resource allocation (NFV-
RA), or virtual network function forwarding graph embedding
(NFV-FGE) due to a mutual problem domain. The main goal
of both NFV-RA and VNE is allocating VNRs on the top of
physical infrastructure efficiently [3]. In addition, NFV-FGE
is the most critical problem of NFV-RA following virtual
network functions (VNFs) chain composition (or service
function chaining) and VNFs scheduling, where the chain
composition is normally neglected in most research papers [3].
In some particular cases and topology, VNE is even revealed
to be more complicated than NFV-FGE [4], [5]. VNE is NP-
Hard either for VNoM or VLiM [3], [6]. Thus, the majority of
research papers in this filed have merely focused on designing
efficient heuristics or meta-heuristic algorithms to address the
hurdles of the exact optimization models.

In similarity to NFV-FGE, the VNE process includes two
different stages: VNoM and VLiM. Most of VNE approaches
have been solved these mapping stages separately. Specifically,
a large number of VNE algorithms are proposed to deal
with the VNoM problem, leaving the VLiM phase for the
popular shortest path methods (e.g., Dijkstra’s algorithm),
multi-commodity flow (MCF) or recently the distributed
parallel GA-based algorithm [7]. Decoupling can simplify the
complex implementation of VNE algorithms, but the common
solution has apparently to sacrifice some degrees of optimality.
Furthermore, a lack of coordination between VNoM and VLim
phases could result in low acceptance ratio and low network
revenue accordingly. For example, VNoM stage can determine
potential substrate nodes for embedding virtual nodes of a
given VNR, but there might have a situation that no feasible
path is found for virtual link that connects a pair of the
already-mapped virtual nodes. In that case, the corresponding
VNR is definitely rejected. It is also observed that the most
common failures of VNE problem invariably derive from
the VLiM stage [8]. In this paper, we propose an efficient
VNE algorithm relied on GA algorithm to address the VNE
problem by jointly embedding virtual nodes and corresponding
virtual links. GA tries to seek for potential solutions for
all virtual nodes of the VNR. After that, the corresponding
virtual links will be consecutively mapped by a sequential path
searching method. There might have no feasible paths found
for virtual link requests due to network congestion, the current
virtual nodes embedding should be reexamined with a goal of
minimizing node and link mappings revisited. Consequently,
we present a novel conciliation algorithm to handle this issue.
Additionally, we propose a distributed parallel GA-based
paradigm exploiting a set of distributed parallel machines
in order to reduce the operation time. An execution time
comparison between sequential and parallel manners is also
conducted. In this work, we only consider unsplittable-enabled
mapping solutions for VNE problem.

The remainder of this paper is organized as follows:
the network model is formulated in Section II. Genetic
Algorithm approach for jointly node-link VNE mapping is
described in Section III. Performance evaluation is introduced
in Section IV.Finally, Section V is a conclusion of this paper.

II. NETWORK MODEL AND PROBLEM DESCRIPTIONS

A. Virtual Network Assignment
Similar to [6], our SN is modelled as a weighted undirected

graph Gs = (Ns, Ls), in which Ns is a set of physical nodes
and Ls is a set of physical links. A substrate node ns ∈ Ns

has its geographical location loc(ns) and the available CPU
capacity c (ns), whereas a substrate link ls ∈ Ls between two

substrate nodes has a b (ls) bandwidth capacity. Memory and
storage resources are neglected in this paper for simplification.
Similarly, the ith VNR can be modelled as a weighted
undirected graph denoted as Gvi = (Nv

i , L
v
i), where Nv

i and
Lvi are the sets of virtual nodes and virtual links respectively.
Every virtual node nvi ∈ Nv

i requires a CPU capacity c(nvi),
whereas a virtual edge lvi (svi , d

v
i) ∈ Lvi between a virtual

source node svi and a virtual destination node dvi demands a
bandwidth capacity b (lvi). Each VNR prefers an embedding
radius D(nvi) that exposes how far nvi is allocated from
loc(nvi).

This paper is aimed at multiple objectives consisting
of maximizing average acceptance ratio, average revenue,
reducing lower cost and improving node and link utilization
meeting several node and link constraints:

c(nvi) ≤ RN (AN (nvi)) (1)

D(loc(nvi), loc(AN (nvi))) ≤ D(nvi) (2)

AN (nvi) ∈ Ns (3)

RN (ns) = c(ns)−
∑

nv→ns

c(nvi) (4)

RL(es) ≥ b(lvi), ∀es ∈ Es(AL(lvi)) (5)

RL(es) = min
ls∈es

RL(ls) (6)

RL(ls) = b(ls)−
∑
lvi →ls

b(lvi) (7)

where AN (nvi) denotes the mapping solution of the virtual
node. D(is, jd) represents the distance between is and jd, and
RN (ns) is the residual CPU capacity of the physical node.
Moreover, Es(AL(lvi)) is a set of all available physical paths
from the source AN (svi) to destination node AN (dvi). RL(es)
and RL(ls) denote available bandwidth of a substrate path
es ∈ Es and the remaining physical link capacity respectively.

An embedding solution is defined as “feasible” if and only
if it satisfies all resource constraints (1)-(4) for VNoM and
(5)-(7) for VLiM.

B. Performance metrics
The major objectives of a VNE problem are to maximize

the InP revenues by accepting as many VNRs as possible,
and to minimize the mapping cost. InP’s revenue can be
calculated as the sum of total virtual resources mapped on
the corresponding SN over time, whereas the embedding cost
of the ith VNE Ξ(Gvi) is defined as the sum of total physical
resources allocated to the ith VN [6].

Revenue of ith VNR Gvi can be formulated as below:
′Υ(Gvi) = wα ∗

∑
lvi ∈L

v
i

b(lvi) + wβ ∗
∑

nv
i ∈N

v
i

c(nvi) (8)

where b(lvi) and c(nvi) are the requested bandwidth of the
virtual link lvi and the requested CPU of the virtual node nvi
while wα and wβ are the unit weights of the bandwidth and
CPU resources respectively.

Cost of ith VNR Gvi can be formulated as below:

Ξ(Gvi) =
∑

nv
i ∈N

v
i

c(nvi) +
∑
lvi ∈L

v
i

∑
ls∈Ls

f
lvi
ls (9)

where f l
v
i

ls defines the bandwidth of substrate link ls that is
allocated to the virtual link lvi .

Acceptance ratio: is a ratio between the number of accepted
VNRs over the number of arrived VNRs during an interval
time τ is computed as following:

Πτ =

∣∣∣∣ξa(τ)

ξ(τ)

∣∣∣∣ (10)

where ξa(τ) and ξ(τ) is the number of the successfully
embedded VNRs and the number of VNRs respectively.

Node utilization indicates the distribution of workloads on
the corresponding SN. Node utilization defines the amount of
network resources occupied by virtual node requests during a
certain time, divided by the total amount of node resources.
Node utilization can be expressed as follows:

UN (Ns) =
∑

ns∈Ns

(

∑
nv
i →ns

c(nvi)

c(ns)
) ∗ Ti , (11)

where Ti represents the duration of the accepted ith VNR.
Link utilization: Similarly, link utilization can be presented

as follows:

UL(Ls) =
∑
ls∈Ls

(

∑
lvi →ls

b(lvi)

b(ls)
) ∗ Ti , (12)

Fitness Function (FF) is utilized to evaluate the quality
of VNE solutions. Fitness values can serve as rewards for
guiding the searching process to the optimal solutions. In this
paper, FF considers multiple factors including embedding cost,
hop-count and propagation delay, determining the optimal
mapping solution for a VNR. These factors reflect total
network resources comprising both CPU and bandwidth as
well as network latency. Our fitness function F(S) can be
expressed as below:

F(S) = (
1

Υ(Gvi)
) ∗ wc + (

1∑
lvi ∈L

v
i
hAL(lvi)

) ∗ wh

+(
1∑

lvi ∈L
v
i
dP(AL(lvi))

) ∗ wp
(13)

where, S, h and dP are a feasible solution, hop-count
and propagation delay of the link mapping solution of lvi
respectively. wc, wh, and wp are weight parameters equivalent
to cost, hop-count and propagation delay.

III. JOINT NODE-LINK EMBEDDING ALGORITHM

GA is a AI algorithm that is able to solve constrained or un-
constrained optimization problems. A GA algorithm typically
comprises four primary operations: population initialization,
selection, crossover and mutation. Our proposed parallel GA
scheme is presented in Fig 1.

A. Sequential Path Searching Algorithm

Indeed, SN topology is almost static, which means that it
is able to determine a number of physical paths for each
pair of source and destination nodes in advance. In this
paper, a path database for link mappings are extensively
established before VNR arrivals. The shortest path mechanism
(e.g., Dijkstra’s algorithm) based on the hop-count factor is
deployed to construct the path database which is recognized
as the initial path pool generation in Fig. 1. Minimizing
hop-count can improve the embedding cost and physical
link utilization reflected by path length metric, leaving
more resources to future VNRs to be accepted. The first

Fig. 1: Parallel operation scheme

path of each pair of source-destination nodes has minimum
hop count. Additionally, by forwarding data to less nodes,
overheads imposed by sending repetitive data and energy
consumption can be improved. When a virtual link request
arrives for mapping, our sequential path searching algorithm
consecutively seeks for a feasible path in database based on
the node mapping information. If the first path does not meet
the resource requirements of the VNR (e.g., bandwidth), the
algorithm will approach the consecutive one until at least
one feasible path is achieved. As such, the feasible path
possesses minimal hop-count feature. Otherwise, if there is
not any feasible found, the mapping returns failed. Since the
path database can be generated prior to the arrival of VNRs,
time counted for this process can be neglected. In fact, this
searching mechanism is simple, fast and efficient.

B. Conciliation Strategy

Population in GA contains multiple chromosomes that are
generated in random manner. A given VNR typically consists
of a set of virtual nodes connected by multiple virtual links.
Consequently, there are two sets of mapping solutions for
virtual nodes and virtual links. The node mappings apparently
influence the later ones; consequently, if the node mappings
are altered, the link solutions are correspondingly changed.
As a result, our proposed GA algorithm defines the mapping
solution of a virtual node as a gene. In this paper, virtual

Fig. 2: Examples of infeasible virtual link mappings

nodes in a given VNR are embedded in order as similar to
NFV-FGE, so their order in all chromosome is also the same.
Towards improving the capability and reducing the execution
time, a feasible node pool, in which all feasible substrate
nodes satisfying the least CPU capacity requirement of the
VNR are collected, is advised to be first created. Then, virtual

nodes in a given VNR are assigned one by one to feasible
substrate nodes that are selected from the initial node pool in
random. In fact, the random VNoM can avoid the possible
premature convergence problem of GA algorithm.

After the mappings of all virtual nodes in a VNR are
identified, a sequential path searching method described in
III-A is deployed to discover feasible link mappings for the
virtual link requests thanks to the information of already-found
node mappings. These substrate paths must meet all virtual
resource demands (Eq. (5)-(7)) to become the potential link
mapping solutions. When a feasible solution for the whole
VNR has been successfully recognized, the chromosome can
be established. Otherwise, if there is no feasible path (e.g.,
network congestion) found for a virtual link request, the pair
of corresponding virtual nodes need to be remapped. The
more virtual links are failed to map, the more complicated
problem is. Instead of finding appropriate virtual nodes to
remap, VNoM process can be started over again, but this
approach is obviously inefficient and might overlook optimal
solutions.

Algorithm 1 Heuristic Conciliation Algorithm
1: Input:
2: Initial solutions of virtual node mapping
3: A set of failed virtual links after link mapping phase
4: Output:
5: Virtual nodes to be remapped
6: procedure HEURISTIC CONCILIATION STRATEGY
7: Step 1: Construct a map Mp of virtual nodes based on their

presence in a set of failed virtual links
8: Step 2: Create a map Mn of virtual nodes based on their

nearest neighbors . These steps can be done in advance prior
this algorithm

9: Initialize an array for remapped nodes
10: for each infeasible virtual link do
11: if svi or dvi NOT in the array then
12: if Mp[s

v
i] > Mp[d

v
i] then

13: add svi into array
14: else if Mp[s

v
i] < Mp[d

v
i] then

15: add dvi into array
16: else
17: if Mn[svi] > Mn[dvi] then
18: add dvi into array
19: else
20: add svi into array
21: end if
22: end if
23: end if
24: end for
25: return node array
26: end procedure

We aim at minimizing the number of virtual nodes asso-
ciated with the failed-mapping virtual links that should be
re-embedded. Let’s take an example with a specific VNR with
7 virtual nodes and 6 virtual links as illustrated in Fig. 2.
Fig 2a in the top-left is a complete situation as all virtual
nodes and links are explored their mappings successfully.
However, next figures demonstrate some “real” problems of
link mapping failures. For example, there are three failed
virtual link requests {A - G, A - F and A - D} according to
the node mappings {A→ h,G→ n, F → m and D → k} as
shown in Fig. 2b. Unfortunately, no feasible paths are found
between {h → n, h → m, and h → k}. The problem is
that if we revisit all already-mapped virtual nodes (definitely

ineffective) or virtual nodes {D, F and G}, remapping at least
five virtual links is required. Otherwise, if the virtual node
A, is only re-embedded, the virtual links that need to be
remapped are merely three. In similarity, virtual nodes C/D,
E and G can be revisited in Fig. 2 and virtual nodes C and
E should be reconsidered in the last figure by cause of least
remapping. Motivated by this idea, we propose a heuristic
conciliation algorithm to deal with this issue as described in
Algorithm 1.
C. Working machines

Population Initialization: As shown in Fig. 1, every work-
ing machine running GA algorithm begins with a population
initialization operation. M is the set of chromosomes where
each chromosome consists of N = |Nv

i | genes considered
as the potential mappings of all virtual nodes of the VNR.
The initial population P (MxN) at a working machine is
established as elucidated in Section III-B. As soon as a
chromosome is constructed, the sequential path searching
mechanism (Section III-A) based on the already-achieved
node mappings is implemented for VLiM stage.

P =



C1
C2
...
Cf
...
CM


=



g11 · · · gj1 · · · gN1
g12 · · · gj2 · · · gN2
...

. . .
...

. . .
...

g1f · · · gjf · · · gNf
...

. . .
...

. . .
...

g1M · · · gjM · · · gNM


(14)

Thereupon, a conciliation algorithm addresses possible failures
of virtual link mappings, minimizing remapping virtual
node/link mappings. When feasible solutions of all virtual
nodes and links are achieved, the chromosome of a given
VNR is eventually formed. It is noted that any change on
the node mappings leads to the associated changes of link
mappings.

Evolved generations: Random chromosomes in population
are selected to become parents for producing their children
or next generations as the results of crossover and mutation
operators. The fast and efficient path searching method is
deployed to approach link mappings for new generated
offspring. The population will update these new generations
to strengthen the population diversity.

Crossover combines parental chromosomes to generate new
offspring.

P =



C1
...
Cs
...
Cr
...
CM
CM+1

CM+2


=



g11 · · · gj
c

1 gj
c+1

1 · · · gN1
...

. . .
...

. . .
...

g1s · · · gj
c

s gj
c+1
s · · · gNs

...
. . .

...
. . .

...
g1r · · · gj

c

r gj
c+1
r · · · gNr

...
. . .

...
. . .

...
g1M · · · gj

c

M gj
c+1

M · · · gNM
g1s · · · gj

c

s gj
c+1
r · · · gNr

g1r · · · gj
c

r gj
c+1
s · · · gNs


(15)

Denote Cs and Cr as parental chromosomes indexed s and r in
the initial population. Their new descendants are represented
as C(M+1) and C(M+2) respectively, where jc is the random
crossover point between any genes within |N |. In crossover,
offspring is produced by swapping genes between parents

from the starting point jc + 1 to |N | as depicted in (15).
Mutation usually applies a modification on an individual

parent for delivering new offspring. This operation is aimed
at sampling the broad solution space as well as enhancing the
efficiency of solution exploration. Mutation also avoids poten-
tial solutions falling into the local optima. Denote jm and gj

m

r′

as the random mutation point and new gene substituting the
existing one in C(M+1), respectively. New solution C′(M+1)

after substitution is defined as C′(M+1) = [g1s · · · g
jm

r′ · · · gNs].

D. Sorting and Terminations
The mapping solutions are sorted to select the best one

relied on their higher fitness values. It is then delivered to
synchronization for the global ranking. Waiting for every
worker machine accomplishing its assigned task is trouble-
some, without guaranteeing an expected outcome. Hence,
the master node aborts GA algorithms running in working
machines if no better mapping is obtained within t times,
where t denotes a termination parameter.
E. Synchronization and VNR allocation

In this process, the best mappings of the given VNR is
recognized by globally ranking the solutions received from
working machines, based on highest fitness values. Finally,
network updates allocated resources.

IV. PERFORMANCE EVALUATION

Our proposed GA-based algorithm, namely GASQ, is com-
pared with several state-of-the-art VNE competitors including
DPGA [7], NTANRC-S [9], R-ViNE and D-ViNE [6] on
various performance metrics.

A. Simulation setup

We have developed a discrete-event simulator to evaluate
the GASQ algorithm with similar parameters set out in [6].
The popular GT-ITM topology generator [10] is deployed
to generate SNs and VNs, where SNs are configured with
average 50 nodes and 140 edges adopting Waxman model
(α = 0.5 and β = 0.2). CPU and bandwidth capacity of SNs
are uniformly generated between 50 and 100 units, whereas
VNRs arrive dynamically following the Poisson process with
an average rate λ varying from 4 to 8 VNs per 100 time units.
Lifetime of VNRs follows an exponential distribution with
average µ = 1000 time units, so the workload of VNRs can
be quantified by λ

µ Erlangs. Towards VNs, the number of
virtual nodes in each VNR is uniformly distributed between 2
and 10, where CPU and bandwidth requirements of VNRs are
uniformly generated between 0 to 20 and 0 to 50 respectively.
Each simulation runs 50, 000 time units, 50 times longer than
the average lifetime of a VN, exceptionally generating a large
number of independent samples. All performance figures are
plotted with average values with 95% confidence interval.

B. Evaluation Results

As illustrated in Fig 3a, GASQ algorithm outperformed all
compared algorithms in terms of acceptance ratio, resulting to
highest average revenue which is the most desired objective
for any embedding approach. Our proposed algorithm also
proved its efficiency by achieving the lowest cost (Fig. 3c).
Particularly, GASQ performed better acceptance ratios than
DPGA for more than 19.02% and 13.62% at 40 and 80
Erlang respectively. GASQ also outperformed NTANRC-S,

40 50 60 70 80
Traffic load (Erlang)

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e

ac
ce

pt
an

ce
 ra

tio

GASQ
DPGA
NTANRC-S
R-ViNE
D-ViNE

(a)

40 45 50 55 60 65 70 75 80
Traffic load (Erlang)

70

75

80

85

90

95

100

Av
er
ag
e
ge
ne
ra
te
d
re
ve
nu
e

GASQ
DPGA
NTANRC-S
R-ViNE
D-ViNE

(b)

40 45 50 55 60 65 70 75 80
Traffic load (Erlang)

140

160

180

200

220

Av
er
ag
e
co
st

GASQ
DPGA
NTANRC-S
R-ViNE
D-ViNE

(c)
Fig. 3: (a) Average Acceptance Ratio (b) Average generated revenue (c) Average mapping cost

40 45 50 55 60 65 70 75 80
Traffic load (Erlang)

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Av
er
ag
e
No

de
 U
til
iza

tio
n

GASQ
DPGA
NTANRC-S
R-ViNE
D-ViNE

(a)

40 45 50 55 60 65 70 75 80
Traffic load (Erlang)

0.42

0.44

0.46

0.48

0.50

0.52

0.54

0.56

0.58

0.60

Av
er

ag
e

lin
k

ut
iliz

at
io

n

GASQ
DPGA
NTANRC-S
R-ViNE
D-ViNE

(b)

40 45 50 55 60 65 70 75 80
Traffic load (Erlang)

1.8

2.0

2.2

2.4

2.6

2.8

3.0

3.2

3.4

Av
er
ag
e
pa
th
 le
ng

th

GASQ
DPGA
NTANRC-S
R-ViNE
D-ViNE

(c)
Fig. 4: (a) Average node utilization (b) Average link utilization (c) Average path length

R-ViNE and D-ViNE for more than 20% at the highest
traffic load. Our joint node and link approach improved
average revenue and cost up to 11.77% and 27.78% compared
to the aforementioned algorithms at the same traffic load
respectively. Furthermore, the node utilization of the proposed
algorithm was much better than all competitors ranging from
10.15% up to 18.93% at various traffic loads as shown in
Fig. 4a. Fig. 4b and 4c indicated that GASQ and DPGA
had average path lengths shorter than the other algorithms,
contributing to lower embedding cost and improved average
link utilization. Thanks to less bandwidth consumption, a
plethora of remaining bandwidth allowed to accept more
arriving VNRs. The remarkable results were of the efficient
sequential path searching based on hop-count factor in a novel
joint node-link approach and the multiple constrained FF
driving the GA algorithm to approach the optimal mapping
solutions. Our proposed algorithm successfully solved the
lack of coordination between node and link mappings, which
leads to an ultimate embedding outcome that could be a
tough challenge for any future VNE algorithm. Additionally,
we compared execution time of our VNE approach on both
sequential and parallel schemes in order to quantify time
reduction of parallel operation. Due to the distributed parallel
paradigm, GASQ needed 1.19s to allocate a VNR whereas
the sequential counter part finished the same task in 9.73s.
Regarding time complexity, interested readers may refer to
the paper [7] for further theoretical analysis.

V. CONCLUSION

This paper proposes a joint node and link GA-based
embedding algorithm for dealing with the VNE problem
in one stage. A novel heuristic conciliation algorithm is
utilized to handle multiple infeasible link mappings due to
the inappropriate node embedding in GA operations. We
also advise a distributed parallel operation scheme to reduce
execution time of GA algorithm. A comparison between

sequential and parallel operations of our proposed solution is
consequently provisioned. The extensive evaluation indicates
that the joint node and link approach based on GA algorithm in
a single embedding stage outperforms state-of-the-art heuristic
VNE algorithms in all indispensable performance metrics we
adopted.

REFERENCES

[1] A. Hakiri and P. Berthou, “Leveraging SDN for the 5g networks:
Trends, prospects and challenges,” CoRR, vol. abs/1506.02876, 2015.
[Online]. Available: http://arxiv.org/abs/1506.02876

[2] I. Ishaq, J. Hoebeke, I. Moerman, and P. Demeester, “Internet of things
virtual networks: Bringing network virtualization to resource-constrained
devices,” in 2012 IEEE International Conference on Green Computing
and Communications, Nov 2012, pp. 293–300.

[3] J. Gil Herrera and J. F. Botero, “Resource allocation in nfv: A
comprehensive survey,” IEEE Transactions on Network and Service
Management, vol. 13, no. 3, pp. 518–532, 2016.

[4] T. A. Q. Pham, J.-M. Sanner, C. Morin, and Y. Hadjadj-Aoul, “Virtual
network function–forwarding graph embedding: A genetic algorithm
approach,” International Journal of Communication Systems, vol. 33,
no. 10, p. e4098, 2020, e4098 0.1002/dac.4098. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.4098

[5] B. Addis, G. Carello, and M. Gao, “On a virtual network functions
placement and routing problem: Some properties and a comparison of
two formulations,” Networks, vol. 75, no. 2, pp. 158–182, 2020. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/net.21915

[6] M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard: Virtual
network embedding algorithms with coordinated node and link mapping,”
IEEE/ACM Transactions on Networking, vol. 20, no. 1, pp. 206–219,
Feb 2012.

[7] K. T. Nguyen, Q. Lu, and C. Huang, “Rethinking virtual link mapping
in network virtualization,” in 2020 IEEE 92nd Vehicular Technology
Conference (VTC2020-Fall), 2020, pp. 1–5.

[8] Hong-Kun Zheng, J. Li, Y. Gong, W. Chen, Zhiwen Yu, Z. Zhan, and
Ying Lin, “Link mapping-oriented ant colony system for virtual network
embedding,” in 2017 IEEE Congress on Evolutionary Computation
(CEC), June 2017, pp. 1223–1230.

[9] H. Cao, L. Yang, and H. Zhu, “Novel node-ranking approach and
multiple topology attributes-based embedding algorithm for single-
domain virtual network embedding,” IEEE Internet of Things Journal,
vol. 5, no. 1, pp. 108–120, Feb 2018.

[10] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, “How to model an
internetwork,” in Proceedings of IEEE INFOCOM ’96. Conference on
Computer Communications, vol. 2, March 1996, pp. 594–602 vol.2.

