
IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 1

Towards Adaptive Joint Node and Link Mapping
Algorithms for Embedding Virtual Networks:

A Conciliation Strategy
Khoa Nguyen , and Changcheng Huang , Senior Member, IEEE,

Abstract—Network virtualization (NV) has emerged as a
momentous facilitator for a notable triumph of future networks
by allowing a flexibility, cost-efficiency and on-demand services
through the deployment of heterogeneous network service requests
on a shared physical infrastructure. The most major challenge of
NV is to efficiently and effectively map diversified virtual network
requests (VNRs), comprising a set of virtual nodes connected by
virtual links, onto a shared substrate network meeting various
stringent resource constraints. Most of the research papers in
this field have merely focused on separate virtual node mapping
(VNoM) or virtual link mapping (VLiM) with scalable heuristic
algorithms for simple implementations. Unfortunately, the lack of
a coordination between node and link mapping stages might cause
low embedding results. In this paper, we present a new approach
relied upon Genetic Algorithm (GA), that jointly coordinates
virtual node and link mappings where the link mapping is
based on three different path searching methods. Moreover,
a novel heuristic conciliation mechanism is proposed to deal
with a set of possibly infeasible link mappings while exploring
embedding solutions within the operations of GA algorithm.
Extensive performance results indicate that our proposed GA-
based algorithms outperform state-of-the-art virtual mapping
algorithms in all evaluation metrics we adopt.

Index Terms—Network virtualization, joint node-link mapping,
conciliation strategy, Genetic Algorithm, virtual network embed-
ding.

I. INTRODUCTION

NETWORK virtualization (NV) has envisioned as a de
facto paradigm for the foreseen triumph of future net-

works such as virtualized fifth generation [1], and smart
Internet of Things (IoT) networks [2]. The adoption of NV
enables to share physical resources amongst multiple virtual
network requests (VNRs), providing an isolated coexistence
of a number of virtual network (VNs) on a shared underlying
substrate network (SN). Virtualization efficiently enhances
physical network utilization, and simplifies the development
and evaluation of new network protocols or architecture designs
without unexpected expansion.

The fundamental concept of NV is to decouple a typical role
of an Internet Service Provider (ISP) into two separate business
components as illustrated in Fig. 1: Infrastructure Providers
(InPs) and Service Providers (SPs). InPs will manage the
substrate resources, and control Quality of Service (QoS) at the

Khoa Nguyen and Changcheng Huang are with the Department of Systems
and Computer Engineering, Carleton Univeristy, Ottawa, ON, CA e-mail:
{khoatnguyen, huang}@sce.carleton.ca. Some primary results of GA-SEQ
algorithm in this paper are partly presented at the 2021 IEEE 94th Vehicular
Technology Conference (VTC2021-Fall), 2021, online. This research was
supported by the Natural Sciences and Engineering Research Council of
Canada (NSERC) Engage grant (RGPIN-2017-06331).

Corresponding author: Khoa Nguyen (e-mail: khoatnguyen@sce.carleton.ca)

network layer while SPs will aggregate network resources that
are leased from different InPs into VNs providing customised
services to end users. In a virtualization environment, a network
service provider (SP) typically converts an application or
service into a VN which is then transferred to a corresponding
infrastructure provider (InP) as a form of a VNR as illustrated
in Fig. 2. The InP attempts to map such VN onto its substrate
infrastructure meeting several rigorous resource constraints by
adopting an optimization process. In terms of InPs, they attempt
to approach an efficient resource allocation algorithm that is
capable to maximize their generated revenues by accepting
as many VNRs as possible while keeping the mapping costs
minimal.

A conventional VNR is consisted of a set of virtual nodes that
are connected by virtual links in order to establish an explicit
topology. In most of scenarios, it dynamically arrives and
resides in the corresponding network for an arbitrary duration.
Mapping VNRs onto the shared physical infrastructure with
varied topology and stringent resource demands is commonly
recognized as a virtual network embedding (VNE) problem.
VNE is widely known as a generalization of second stage of

Fig. 1: Towards the Future internet Model [3]

network function virtualization resource allocation (NFV-RA),
namely virtual network function forwarding graph embedding
(VNF-FGE) since VNE is in the same problem domain with
NFV-RA as the goal of both problems is to efficiently allocate
VNRs on the top of SN infrastructure [4]. VNF-FGE is also the
central problem of NFV-RA accompanying with virtual network
functions (VNFs) chain composition (known as service function
chaining) and VNFs scheduling, where the chain composition
stage has been usually neglected [4]. Additionally, VNE is
assumed to be more complicated than VNF-FGE in some
specific cases and topology [5], [6].

VNE is validated to be NP-Hard either towards VNoM or
VLiM [4], [7]. Integer Linear Programming (ILP) is usually

https://orcid.org/0000-0001-7871-2989
https://orcid.org/0000-0001-6300-8526

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 2

formulated to solve the VNE problem, but it encounters many
challenges since its model has to confront with scalability,
intricate deployment as well as time complexity. In fact, Exact
solutions are not apt to deal with the online VNE problem. The
majority of VNE studies have concentrated on efficient designs
of heuristics or metaheuristics to tackle the aforementioned
obstacles of the Exact optimization models. Similar to VNF-

Fig. 2: The concept of network virtualization [8]

FGE, VNE process consists of two stages: VNoM and VLiM.
Up to now, most VNE approaches have been proposed to
uncoordinately solve VNoM phase following VLiM phase.
There are a large number of solutions for VNoM problem
whereas VLiM is usually relied on shortest path methods
(e.g., Dijkstra’s algorithm), multi-commodity flow (MCF) and
recently distributed parallel GA algorithms [9]. The decoupling
can facilitate the complexity of algorithmic deployments, but
this common approach is most likely to sacrifice some degrees
of optimality. Lack of coordination between VNoM and VLim
stages would lead to low acceptance ratio and correspondingly
low network revenue as well as high cost. For instance, although
VNoM stage can figure out highly promising substrate nodes
for mapping virtual nodes in a VNR, we may fall into an
unexpected situation that there are no paths in the SN that
have sufficient remaining resources to connect one or more
pairs of those virtual nodes together with respect to node
mappings in previous phase. Then, the corresponding VNR is
obviously rejected. In practice, the most common failures of
embedding VNRs onto the shared underlying SN are usually
derived from the infeasible link mappings [10]. Indeed, those
rejected VNRs can be reassessed after the link mapping stage
or be put back into the queue and waiting until the network
is idle. These approaches are inefficient and unpractical since
they could violate delay constraints of VNRs, and obviously
waste the network resources for processing such failed VNRs
in the past. As a result, it is required VNE algorithms that
simultaneously consider node and link mappings, and allow
an efficient remapping approach if these node mappings are
inappropriate due to the failure of link mappings. Designing
VNE algorithms meeting these demands is still in its infancy.

In this paper, we propose metaheuristic-based algorithms

to solve VNE problem by jointly mapping virtual nodes and
corresponding virtual links. GA algorithm attempts to randomly
find potential solutions for all virtual nodes in a VNR. Then,
various path searching methods are conducted to seek for the
corresponding virtual links sequentially. If no feasible paths
for some possible link requests are achieved due to network
congestion for example, corresponding mappings should be
reassessed. Because the node mappings influence the link
mappings accordingly, we should figure out an intelligent
mechanism that considers the minimal number of virtual
nodes and virtual links for reassessments. Thus, we introduce
an efficient conciliation algorithm to address this problem.
Through iterative operations, GA algorithm, driven by an
effective fitness function that considers both network resources
and virtual resource demands, generates the population of
several promising VNE solutions including node and link
mappings. Furthermore, we present a distributed parallel GA-
based operation scheme employing a set of distributed parallel
machines to reduce the operation time. A brief comparison
towards execution time between sequential and parallel manners
is also provided. Splittable mapping may theoretically achieve
better resource utilization, but this solution could generate
abundant overhead in order to maintain consistent network
state and likely results in out-of-order delivery problem with
extra latency that could be unacceptable for sensitive-delay
applications [11]. Thus, we only consider unsplittable-enabled
mapping solutions in this paper.

Major contributions of this paper are summarized as below:

• We propose a new joint node and link mapping approach
based on GA algorithm to efficiently and effectively embed
heterogeneous VNRs, where the link mapping is relied on
three different virtual link mapping algorithms including
random path searching, sequential single path searching
and k-shortest path method. We manage node and link
mappings in a coordinated manner so when node mappings
are changed, the link mappings are altered accordingly.

• To deal with a possible set of infeasible link mappings
caused by improper node mappings, we introduce a
novel heuristic conciliation mechanism which is aimed at
keeping the number of both remapped nodes and links
minimal.

• An efficient fitness function with various network resource
factors including embedding cost, hop-count, and prop-
agation delay is introduced to drive GA algorithm to
near-optimal VNE solutions.

• We advise a distributed parallel operation scheme to
decrease time complexity of GA algorithm. We also
implement our proposed GA-based algorithms (according
with three different link mappings) on both sequential
and parallel manners, and then compare execution time
between them.

The rest of this paper is organized as follows. Section II presents
the related work while Section III formulates the network model.
Jointly node-link VNE embedding is described in Section V
with three variances. Performance evaluation is then introduced
in Section VI. Section VII finally presents our conclusions and
future work.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 3

II. RELATED WORK

[3], [12], [13] and [14] have contributed comprehensive
surveys in network virtualization field. The VNE problem,
widely known as NP-hard in nature, is intractably solved
by Integer Programming (IP). Thus, a large number of
research papers have focused on heuristic algorithms due to
time complexity of Exact methods. Chowdhury et al. in [7]
introduced a VNE coordination between node and link mapping
phases for embedding virtual nodes with respect to minimizing
the embedding cost. A Mixed Integer Programming (MIP)
was formulated to solve VNoM considering meta nodes on an
augmented graph created over a physical network. Integer
constraints of the MIP model were relaxed to reduce its
time complexity. Authors in [15] proposed VNE Node-Link
Formulation (VNE-NLF), an ILP model, for mapping each
VNR. Its objective was to minimize the VN embedding cost
while supporting load balancing. Huang et al. in [16] extended
[7] by taking both node splitting and node collocation into
account for solving VNE efficiently. The authors studied a
realistic VNE scenario in which virtual and substrate nodes
were managed as transit nodes or stub nodes that were
accountable for traffic reply or traffic originator/sinker. Authors
in [17] presented a topology-aware node mapping based on the
Markov Random Walk model to evaluate network resources.
A node-ranking approach relied on node degree and node
clustering coefficient information to construct the metric of
node importance for ranking the underlying physical nodes was
proposed in [18]. Moreover, the authors in [19] and [20] studied
the attributes of network topology and the global network
resources in order to rank substrate nodes for VNoM stage. To
improve the possibility of being selected of a substrate node,
its physical resources and the relationship with other nodes in
the network were considered. These node-ranking approaches
handled network resource fragmentation efficiently. Authors in
[8] tackled the coordination of VNE with the Mod-MaxMatch
algorithm for VNoM aimed at minimizing the substrate links
reused, and then the path-splitting enabled GA algorithm was
proposed for VLiM.

GA algorithm has been widely applied in many optimization
fields including VNE. Its applications on VNE were first
investigated in [21]. The authors proposed GA-based node
ranking methods relied on multiple topology attributes and
residual network resources. Zhou et al. in [22] advised GA
algorithm for embedding multiple VNRs simultaneously under
batched arrivals, and designed a resource-aware mechanism
for maximizing long-term revenue. Zhang et al. modified
a conventional GA algorithm by rearranging the mutation
operator before the selection to efficiently explore the search
space in [23]. Meanwhile, a hybrid solution, that combined
an adaptive GA algorithm with a new crossover operator to
enhance GA’s convergence and simulated annealing algorithm
replacing a traditional mutation operation of GA to avoid
premature VNE solutions, was introduced in [24]. The authors
in [25] and [26] applied GA algorithm to address VNE
problem in multiple InP domains. The solution allowed to
embed multiple VNRs on different InPs owning several SNs.
However, it faced the problems of scalability and complex

implementations. On the other hand, our previous work in [9],
[27] presented a novel GA-based approach for VLiM stage,
which validated the important role of VLiM in VNE problems.
Although these GA-based approaches performed better than
other metaheuristics and several heuristic algorithms, they
solved VNE problems uncoordinatedly, leading low embedding
efficiency [3].

Recently, several papers have studied the applicability of
Reinforcement Learning (RL) techniques on VNE problems.
Haeri and Trajkovic [28] modeled VNE problem as Markov De-
cision Process (MDP) for solving VNoM stage and determined
action policies using Monte Carlo Tree Search (MCTS) that
was driven by a reward function. Yao et al. [29] presented a RL-
based model utilizing a dynamic attribute matrix representation
(RDAM) to address VNE problem. As such, the attributes
of network topology as well as its specific structures under
a matrix representation were considered. Another extension
of [29] was presented in [30] that was inspired by the node
ranking method. To train agents, three network attributes were
extracted for each physical node to construct a feature matrix
that was utilized as the input of the policy network in a
Convolutional Neural Network (CNN). Simple BFS mechanism
was then deployed in VLiM stage. Extending [30] to five
network features with a security-aware focus was presented
in [31]. In addition, Recurrent Neural Networks (RNNs) were
used in [32] in order to model the continuity of VNoM
process in time series formulated as a classic seq2seq, aimed
at exploiting the historical states of SN. A continuous-decision
VNE scheme based on RL relied on policy-gradient mechanism
updated the RNN parameters with respect to average long-
term revenue-to-cost ratio. However, the aforementioned VNE
approaches merely carry on VNs mapping in separate stages,
including our previous work in [9], [27] where VLiM was the
focal center of interest. This paper is aimed at coordinately
joining node and link mappings in a single stage based on
GA algorithm. Different path searching methods including
random path searching, sequential path searching mechanisms
and shortest path method for mapping virtual links are proposed.
To handle failed virtual link mappings due to inappropriate node
mappings, a novel conciliation mechanism is also introduced.

Taxonomy of the VNE approaches is shown in Table I where
the category classifies each approach into four features Online
or oFfline, Centralized or Distributed, Static or Dynamic and
Concise or Redundant, whereas the coordination is involved
in COorDinated or UnCoorDinated approaches [3].

III. NETWORK MODEL AND PROBLEM DESCRIPTIONS

A. Virtual Network Assignment

We model the SN as a weighted undirected graph Gs =
(Ns, Ls), in which Ns and Ls are associated with the sets
of substrate nodes and substrate links, respectively. Each
physical node ms ∈ Ns has its geographical location loc(ms)
and available CPU capacity C (ms), whereas a substrate
link (ms, ns) ∈ Ls between two substrate nodes occupies a
B (msns) bandwidth capacity. Similarly, the ith VNR arriving
in the network is modelled as a weighted undirected graph
denoted as Gv

i = (Nv
i , L

v
i), in which Nv

i is the set of virtual
nodes and Lv

i is the set of virtual links. Each virtual node

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 4

TABLE I: Taxonomy of VNE approaches

Category Reference Optimization Coordination Contribution

O/C/S/R [17] Cheng et al. (2011) Heuristic COD, two-stage The topology-aware node ranking approach based on
Markov Random Walk model in VNE.

O/C/S/R [7] Chowdhury et al. (2012) Like-exact COD, two-stage Relaxed MIP model considering a coordinated node and
link approach for VNoM using k-shortest path method
or MCF for VLiM.

O/C/S/C [21] Mi et al. (2012) Metaheuristic UCD, two-stage One of the first GA-based VNE algorithms for VNoM.
O/C/S/R [15] Melo et al. (2013) Exact COD, one-stage VNE Node-Link Formulation (VNE-NLF) based on the

ILP model for mapping VNRs.
O/C/S/C [20] Feng et al. (2014) Heuristic COD, two-stage Seven topological SN characteristics complementary to

each other for node ranking in VNE.
O/C/S/C [18] Zhang et al. (2016) Heuristic UCD, two-stage A VNE node ranking approach based on the node degree

and clustering coefficient information.
O/C/S/R [22] Zhou et al. (2016) Metaheuristic COD, two-stage GA-based approach for embedding multiple VNRs under

batched arrivals in VNE.
O/C/S/C [25] Pathak et al. (2017) Metaheuristic UCD, two-stage GA-based algorithm for mapping multiple VNRs amongst

multiple InPs.
O/C/S/R [16] Huang et al. (2018) Exact COD, two-stage Node splitting and node collocation for VNoM.
O/C/S/C [19] Cao et al. (2018) Heuristic COD, two-stage Node-ranking approach considering five network topology

attributes and global network resources.
O/C/S/R [28] Haeri et al. (2018) RL UCD, two-stage MDP-based RL using the Monte Carlo tree search

algorithm for VNoM.
O/C/S/C [29] Yao et al. (2018) RL UCD, two-stage RL based dynamic attribute matrix representation algo-

rithm for VNoM.
O/C/S/C [23] Zhang et al. (2019) Metaheuristic UCD, two-stage A modified GA-based approach rearranging mutation

operator right after initial population to explore the
searching space efficiently.

O/C/S/C [24] Boyang et al. (2019) Metaheuristic UCD, two-stage A hybrid adaptive GA-based solution combining an
adaptive GA algorithm with new crossover and simulated
annealing to improve convergence, and avoid premature
phenomenon.

F/C/S/R [8] Huang et al. (2019) Heuristic COD, two-stage Mod-MaxMatch algorithm for VNoM and the path-
splitting enabled GA-based algorithm for VLiM.

O/C/S/C [9] Nguyen et al. (2020) Metaheuristic UCD, two-stage Distributed parallel GA-based algorithm for VLiM with
a novel elastic crossover operation and a multi-objective
fitness function.

O/C/S/C [27] Lu et al. (2020) Metaheuristic UCD, two-stage Two distributed parallel GA-based algorithms based on
two versions of crossover and mutation schemes for
VLiM.

O/C/S/C [30] Zhang et al. (2020) RL UCD, two-stage Constructing an agent learning environment based on the
extracted node features of the SN for training the RL
model in CNN.

O/C/S/C [31] Zhang et al. (2020) RL UCD, two-stage A security-aware VNE algorithm based on RL.
O/C/S/C [32] Yao et al. (2020) RL UCD, two-stage A continuous-decision RL-based VNE scheme updating

RNN’s parameters by the policy-gradient mechanism.
O/C/S/C [26] Zhang et al. (2021) Metaheuristic UCD, two-stage A genetic correlation multi-domain VNE algorithm with

a stochastic selection and a feasibility checking.
O/C/S/C This paper Metaheuristic COD, one-stage Joint GA-based node and link mapping approaches, where

VLiM is based on several link mapping algorithms. A
novel conciliation strategy cleverly handles a set of
infeasible link mappings.

uv ∈ Nv
i has a CPU demand C(uv), while a virtual link

(uv, kv) ∈ Lv
i from a virtual source node uv to a virtual

destination node kv possesses a required bandwidth demand
B (uvkv). Each VNR generally prefers an embedding radius
D(uv) revealing the farthest distance the virtual node uv is
allowed to map from its location loc(uv). D(uv) can be
expressed in reference to physical distance or concerning
permissible delay (e.g., propagation delay) from loc(uv) similar
to [7]. Without loss of generality, memory and storage are
ignored for simplification.

Our objectives are to maximize average acceptance ratio,

average revenue over cost ratio, and to improve node and
link utilization and propagation delay, meeting node and link
constraints imposed by VNRs.

Node constraints:

C(uv) ≤ RN (AN (uv)) (1)

D(loc(uv), loc(AN (uv))) ≤ D(uv) (2)

AN (uv) ∈ Ns (3)

RN (ms) = C(ms)−
∑

uv→ms

C(uv) (4)

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 5

where AN (uv) is the mapping solution of virtual node uv.
D(is, jd) and RN (ms) denote the distance between is and jd,
and the residual CPU capacity of a physical node respectively.
Eq. (1), (2) ensure that the residual CPU capacity and mapping
distance of the substrate node meet the requested CPU demand
and preferred embedding radius of the corresponding virtual
node, respectively. Eq. (3) guarantees that the mapped substrate
node belongs to the physical network, whereas Eq. (4) is the
measurement of available CPU capacity of the substrate node
ms.

Link constraints:

RL(e
s) ≥ B(uvkv),∀es ∈ Es(AL(u

vkv)) (5)

RL(e
s) = min

msns∈es
RL(m

sns) (6)

RL(m
sns) = B(msns)−

∑
uvkv→msns

B(uvkv) (7)

where Es(AL(u
vkv)) is a set of all possible substrate paths

from the source node AN (uv) to the destination node AN (kv).
RL(e

s) denotes the available bandwidth of a substrate path
es ∈ Es, while RL(m

sns) represents the remaining capacity
of a physical link. Similarly, Eq. (5) ensures the remaining
bandwidth capacity of the substrate path meeting the requested
bandwidth request of the virtual link, whereas Eq. (6) and (7)
are available bandwidth capacity of the substrate path es and
the measurement of residual capacity of the substrate link. A
mapping solution is called “feasible” if and only if it meets
resource constraints (1)-(4) of node mappings and (5)-(7) of
link mappings. A path for a mapped virtual link in the feasible
solution is therefore called a feasible path.B. Performance metrics

The main objectives of VNE problems are associated with
maximizing the generated revenues of InPs while minimizing
the corresponding mapping cost. In this work, an InP’s revenue
Γ(Gv

i) is defined as the sum of all virtual resources successfully
embedded on the underlying SN over time, whereas the
mapping cost of the ith VNR, denoted as Ξ(Gv

i), is the total
network resources required for allocating the ith virtual network
[7].

Revenue of ith VNR Gv
i is formulated as follows:

Γ(Gv
i) = wb ∗

∑
uvkv∈Lv

i

B(uvkv) + wn ∗
∑

uv∈Nv
i

C(uv) (8)

where B(uvkv) is the bandwidth demand of virtual link uvkv

and C(uv) is the CPU capacity request of virtual node uv.
Besides, wb and wn denote the unit weights preferable to
bandwidth or CPU resources, respectively.

Cost of ith VNR Gv
i can be formulated as below:

Ξ(Gv
i) =

∑
uv∈Nv

i

C(uv) +
∑

uvkv∈Lv
i

∑
msns∈Ls

fuvkv

msns (9)

where fuvkv

msns denotes bandwidth capacity of the physical link
(ms, ns) allocated to the virtual link (uv, kv).

The average revenue over cost ratio can be indeed utilized
to estimate how efficient a VNE algorithm is. High average
acceptance ratio as well as high average revenue to cost ratio
are highly desired because the results can disclose that substrate
resources are efficiently allocated.

Revenue to cost ratio (R/C) of ith VNR Gv
i is formulated

as follows:

Υ(Gv
i) =

Γ(Gv
i)

Ξ(Gv
i)

=

wb ∗
∑

uvkv∈Lv
i

B(uvkv) + wn ∗
∑

uv∈Nv
i

C(uv)

∑
uv∈Nv

i

C(uv) +
∑

uvkv∈Lv
i

∑
msns∈Ls

fuvkv

msns

(10)

Acceptance ratio: is the fraction between the number of
accepted VNRs over the total number of VNRs arrived in the
network during a time interval τ is computed as follows:

Aτ
c =

∣∣∣∣ξa(τ)ξ(τ)

∣∣∣∣ (11)

where ξa(τ) and ξ(τ) denote the total number of successfully
mapped VNRs and the total number of VNRs, respectively.

Node utilization indicates the distribution of network loads
on the corresponding physical network. It is equal to the total
network resources that are occupied by virtual node requests
during a certain time divided by total resources of substrate
nodes. Node utilization can be expressed as below:

UN (Gs) =
∑

ms∈Ns

(

∑
uv→ms

C(uv)

C(ms)
) ∗ Ti , (12)

where Ti is the time duration of the accepted ith VNR.
Link utilization: Similarly, link utilization can be presented

as follows:

UL(G
s) =

∑
msns∈Ls

(

∑
uvkv→msns

B(uvkv)

B(msns)
) ∗ Ti , (13)

Fitness Function (FF) assesses the quality of VNE solutions
that can be reproduced in next generations. Fitness values
serve as rewards to help guide the searching process for the
optimal solutions. In this paper, FF takes the mapping cost,
hop-count and propagation delay of the mapping solutions
into consideration and decides which is the best solution for a
VNR. Due to the coordinated process of our proposed approach,
these factors reflect total network resources including both
CPU and bandwidth as well as network latency. Additionally,
hop-count factor and propagation delay feature allow to
select neighboring substrate nodes, which possibly reduces the
resource fragmentation problem, and enhances the possibility
of accepting future VNRs. Our fitness function F(Sz) can be
expressed as follows:

F(S) = (
1

Ξ(Gv
i)
) ∗ wc + (

1∑
∀(uv,kv)∈Lv

i

HAL(uvkv)

) ∗ wh

+(
1∑

∀(uv,kv)∈Lv
i

DP(AL(u
vkv))

) ∗ wp

(14)

where, S is a feasible solution whereas H and DP define hop-
count factor and propagation delay of the link mapping of
(uv, kv) respectively. wc, wh, and wp denote the predefined

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 6

TABLE II: List of Notations

Gs(Ns, Ls) Substrate network
Gv

i (N
v
i , L

v
i) i-th Virtual network

ms Substrate node, ms ∈ Ns

msns Substrate link, (ms, ns) ∈ Ls

uv Virtual node, uv ∈ Nv
i

uvkv Virtual link, (uv, kv) ∈ Lv
i

loc(ms) Geographical location of ns

C(m′) CPU capacity of m′, m′ can be ms or uv

B(l′) Bandwidth capacity of l′, l′ can be uvkv or
msns

fuvkv

msns bandwidth capacity of msns allocated to uvkv

D(uv,ms) Distance between uv and ms

D(uv) Preferable mapping radius
D(uvkv) Propagation delay or physical distance demand
Γ(Gv

i) Generated revenue of Gv
i

Ξ(Gv
i) Mapping cost of Gv

i

Υ(Gv
i) Revenue to cost ratio of Gv

i

Aτ
c Acceptance ratio during an interval time τ

ξa(τ) Successfully embedded VNRs in time τ
ξ(τ) Number of VNRs arrived in time τ
UN Node utilization of Gs

UL Link utilization of Gs

AN (uv) Mapping of the virtual node uv

AL(u
vkv) Mapping of the virtual link uvkv

Es(AL(u
vkv)) The set of all available paths of AL(u

vkv)
es A substrate path, es ∈ Es

RN (ms) Residual CPU capacity of ms

RL(e
′) Residual bandwidth capacity of e′, e′ can be

es or (ms, ns)
F(S) Fitness function of a feasible solution S
H Hop-count
DP Propagation delay
xuv

ms Binary node variable
yuvkv

msns Binary link variable
N̄ s(ms) A set of neighbors of a physical node ms ∈ Ns

Fv
i A set of failed virtual links

Er
i Remapping list

Q,Q,R Trials in algorithms

weights of cost, hop-count and propagation delay factors,
respectively. List of notations is shown in Table II.

IV. MATHEMATICAL FORMULATION

This section describes the mathematical formulation to solve
the online VNE problem with several defined constraints. A
virtual node must be embedded on a physical node while a
virtual link must be mapped to a substrate path. The following
decision variables indicate node and link mappings.

A. Variables

xuv

ms =

1, virtual node uv ∈ Nv
i is allocated to

substrate node ms ∈ Ns

0, otherwise.
(15)

yu
vkv

msns =

1, virtual link (uv, kv) ∈ Lv

i is assigned
to a substrate link (ms, ns) ∈ Ls.

0, otherwise.
(16)

B. Objectives:

we propose an objective function as below:

Minimize αu

(∑
uv∈Nv

i

C(uv).
∑

ms∈Ns,uv∈Nv
i

xuv

ms

RN (ms) + δ

)
+

βmn

(∑
uvkv∈Lv

i

B(uvkv).
∑

uvkv∈Lv
i ,m

sns∈Ls

yu
vkv

msns

RL(msns) + δ

)
(17)

C. Constraints

∀uv ∈ Nv
i ,∀ms ∈ Ns,

∑
uv

xuv

ms .C(uv) ≤ RN (ms) (18)

∀(ms, ns) ∈ Ls,ms ∈ AN (uv), ns ∈ AN (kv),ms ̸= ns,∑
∀(uv,kv)∈Lv

i

yu
vkv

msns .B(uvkv) ≤ RL(m
sns)

(19)
∀(ms, ns) ∈ Ls,ms ∈ AN (uv), ns ∈ AN (kv),ms ̸= ns,∑

∀(uv,kv)∈Lv
i

yu
vkv

msns .DP(m
sns) ≤ D(uvkv)

(20)

∀uv ∈ Nv
i :

∑
∀ms∈Ns

xuv

ms = 1 (21)

∀ms ∈ Ns :
∑

uv∈Nv
i

xuv

ms ≤ 1 (22)

∀(uv, kv) ∈ Lv
i :

∑
∀(ms,ns)∈Ls

yu
vkv

msns ≥ 1 (23)

∀(uvkv) ∈ Lv
i ,∀(ms, ns) ∈ Ls,∀ms ∈ Ns :∑

∀ns∈N̄ s(ms)

yu
vkv

msns − yu
vkv

nsms = xuv

ms − xkv

ms
(24)

∀uv ∈ Nv,∀ms ∈ Ns, xuv

ms ∈ {0, 1} (25)

∀(uv, kv) ∈ Lv,∀(ms, ns) ∈ Es(AL(u
vkv)), yu

vkv

msns ∈ {0, 1}
(26)

Remarks:
• Function (17) is the objective function that tries to

minimize the total cost while balancing the loads. By
dividing the remaining resources, the network loads can
be normalized and balanced. It is also aimed at minimizing
the number of substrate links consumed to the minimum
possible. Since the requested demands of the VNR are
included in objective function, nodes and links with more
residual resources that tend to generate less embedding
costs are preferable. δ is a small positive number used to
avoid dividing by zero. αu and βmn are weight factors
to determine the significance of the corresponding loads
of either links or nodes, αu > 0 and βmn > 0.

• Constraints (18), (19) and (20) ensure that the available
CPU, bandwidth capacity and link delay are not violated
respectively.

• Constraints (21) and (22) guarantee that each virtual
node is only assigned to a substrate node and vice versa.
Constraint (23) ensures that each virtual link is assigned
to a subset of substrate links or a path.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 7

• Constraint (24) is considered as a flow-conservation,
guaranteeing that virtual links are mapped to physical
links, where N̄ s(ms) denotes a set of neighbors of a
physical node ms ∈ Ns.

• Finally, constraints (25) and (26) denote binary domain
constraints on variables xuv

ms and yu
vkv

msns , respectively.

V. JOINT NODE-LINK MAPPING

A. Background of metaheuristic algorithms

Metaheuristics comprise a set of optimization techniques
aimed at achieving the global optimum by discovering the
search space effectively. Intrinsically, metaheuristics exploit
diversified variation operations to explore new potentials sys-
tematically, and then their multi-objective fitness function will
drive such achieved potentials to the optimum. Approaching
an effective algorithm satisfying several stringent constraints
becomes challenging. In fact, metaheuristic methods have been
successfully employed in various applications from different
fields, including operation research, industrial engineering to
management science. Evolutionary Computation (EC) that
imitates the natural evolution process consists of a set of
metaheuristic algorithms for seeking the global optimization.
Genetic Algorithm, a mature metaheuristic motivated by the
Darwin evolution principle through natural selection, is one of
the most popular population-based metaheuristic methods in
EC. It is suitable for solving multi-objective linear or non-linear
programming optimization problems due to its simplicity and
ease of implementation. GA is fast and more efficient than
many heuristic methods by maintaining a balance between
exploration and exploitation [21]–[26].

Furthermore, GA-based approaches bear a resemblance to
reinforcement learning (RL) algorithms in the aspect that they
both interact with environments through an iterative action-
reward process. However, to our best knowledge, modern RL
algorithms are focused on integrating deep learning techniques.
The environments are typically modelled as a Markov Decision
Process with transition probabilities as parameters to be
learned through deep learning techniques. Those parameters
are assumed static so that the learning process can estimate
them and used the model with these parameters to decide future
actions. Our GA-based approach does not need to estimate
those parameters. Fundamentally, upon the arrival of a VNR,
it does a smart search to find the best result it can. The only
assumption it uses is that children are likely better than their
parents. This makes it adaptable to the dynamic situations where
loads keep changing. Due to similarities, GA is also advised as
a scalable alternative to the cutting-edge RL algorithms [33].
Even GA does not always outperform RL algorithms, but GA
is considerably faster than RL since it exposed great scalability
and parallel capabilities [33].

A typical GA algorithm comprises four operations: initializa-
tion, selection, crossover, and mutation [34]. In this paper, we
define a chromosome as a feasible mapping of a VNR. Each
chromosome includes a node chromosome and an associated
link chromosome. A population is an elite set of up to M
chromosomes. A node chromosome is a feasible mapping of
all virtual nodes of a VNR where a gene is a feasible mapping
of a single virtual node. A link chromosome is a feasible

mapping of all virtual links of a VNR where a gene is a
feasible mapping of a single virtual link. Towards the idea
of joint node and link mappings based on GA algorithm in
this paper, when an online VNR arrives, GA will search for
an optimal embedding solution including both node and link
mappings. Population initialization randomly generates node
chromosomes and then associated link chromosomes through
VNoM and VLiM. During this process, heuristic conciliation
strategy is deployed to remap virtual nodes that cause the
failures of VLiM. Then, selection selects two random node
chromosomes to become parents which are utilized in evolution
processes. These parents will swap their genes starting from a
random crossover point to generate new children. Eventually,
one of the children is selected for mutation process and one
random gene of this child is then replaced by a new random
one to produce a new child. The population will update those
children while maintaining elite chromosomes by substituting
worst existing chromosomes based on fitness values. Evolution
is continued with new selection and this procedure will run for
several iterations in aimed at obtaining the optimal mapping
solution.

Lately, parallel computing is a promising paradigm to
efficiently deal with the complicated issues with considerable
time saving and low cost guarantees thanks to concurrent-
enabled deployment. In practise, GA can be fundamentally
recognized as a parallel searching mechanism [35] with
non-mutual dependency amongst several exclusively feasible
solutions. To resolve the aforementioned problem of GA
algorithm, we propose a distributed parallel implementation
based on GA algorithm in next section.

Fig. 3: Parallel operation scheme

B. Distributed parallel GA-based algorithms

Distributed and parallel computing has been practically
proven as an efficient paradigm to deal with enormous
and complicated problems with guaranteed costs and less

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 8

operational time by concurrency support. Our proposed parallel
GA-based scheme in this paper is presented in Fig 3. Every
working machine in this scheme independently carries out a
GA algorithm to approach as many feasible solutions of a
VNR as it can with a specific number of iterations. The best-
matching result is determined amongst those distributed and
parallel machines. It is noted that when node mappings are
changed, the link mappings altered accordingly. Operational
details of our proposed scheme are described in Algorithm 1.
Lines [5-15] express initial path and node pool generations
respectively, while lines [16-20] are the VNE procedures. More
details about GA algorithm can be found in Algorithm 2 where
lines [7-22] are associated with the initial population generation
and lines [23-46] include the evolution processes.

Algorithm 1 Distributed parallel GA-based algorithm

1: Input:
2: + Online Gv

i

3: Output:
4: + Near-optimal mappings for Gv

i

5: function INITIAL PATH POOL GENERATION
6: Construct Os

p using k-shortest path algorithm based on
hop-count

7: end function
▷ Create an initial node pool Os

ni
for Gv

i

8: function INITIAL NODE POOL GENERATION
9: nvm

i = argmin c(nv
i)

10: for each ns ∈ Ns do
11: if RN (ns) ≥ c(nvm

i) add ns to Os
ni

.
12: end for
13: if |Os

ni
| ≥ |Nv

i | goto VIRTUAL NETWORK EMBED-
DING

14: else reject Gv
i

15: end function
16: procedure VIRTUAL NETWORK EMBEDDING

▷ Implement genetic algorithm in distributed parallel
machines

17: call Algorithm 2
▷ Synchronize the achieved incumbents among parallel

machines
18: Select the best feasible solution across all machines

based on fitness value
19: if none exist reject Gv

i

20: else accept Gv
i and update substrate network resources

21: end procedure

C. Node Mapping Algorithm

In our proposed joint node-link mapping algorithms where
the GA algorithm is the core, the node mapping of a given VNR
simply works in a heuristic way. Population in GA’s operations
consisting of several chromosomes is generated in random
manner. A VNR includes a set of virtual nodes connected
with several virtual links. Accordingly, there are separate node
mappings and link mappings. The later is dependent on the
former, so if the node mappings are changed, the link mappings
are altered correspondingly. We define a chromosome Cf as
a mapping solution for all virtual nodes in a given VNR.

Algorithm 2 Genetic Algorithm with Conciliation Strategy at
each parallel machine

1: Input:
2: + Online Gv

i

3: + Os
p and Os

ni

4: Output:
5: + The mapping solution for Gv

i

6: procedure GENETIC ALGORITHM OPERATIONS
▷ Generate initial population

7: p =0
8: for m = 1 to M do

▷ Generate a node chromosome with |Nv
i | genes

9: for n = 1 to |Nv
i | do

▷ Try to map virtual node n to a randomly selected
node in Os

ni
with up to Q trials

10: for q = 1 to Q do
11: Map virtual node n to a randomly selected node

in Os
ni

12: if feasible goto 15
13: end for
14: goto 22
15: end for

▷ Generate a link chromosome with |Lv
i | genes

16: for l = 1 to |Lv
i | do

17: Try to map virtual link l to a selected path in Os
p

▷ GA-RAN, GA-SEQ, GA-STP are different in path
selection

18: end for
19: if some link mappings are infeasible call Algorithm 3
20: if Algorithm 3 returns false goto 22
21: p = p+ 1 and add chromosome to population
22: end for

▷ Evolution process
23: if p > 1 then
24: for e = 1 to maxIterations do
25: if ranNum ∈ (0, 1) < pc then
26: Randomly select two parents
27: Conduct crossover operation
28: if both children are feasible then
29: One of children is randomly selected for

mutation
30: p = p + 1 and add the one produced better

fitness values to population
31: else
32: if only one child is feasible
33: p = p+ 1 and add the one to population
34: if ranNum ∈ (0, 1) < pm then
35: if none of children in crossover are feasible then
36: Randomly select one of parents for mutation
37: end if
38: Conduct mutation operation
39: if the mutated child is feasible then
40: p = p+ 1 and add the one to population
41: end for
42: if p > M eliminate the ones with lower fitness values
43: else if p = 1 then the current mapping will be the final
44: else
45: reject Gv

i for this machine
46: end if
47: end procedure

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 9

Algorithm 3 Heuristic Conciliation Algorithm
1: Input:
2: A set of failed virtual links after VLiM Fv

i

3: Output:
4: A feasible chromosome or false
5: procedure HEURISTIC CONCILIATION STRATEGY
6: Construct a map Mp with each element representing the

number of failed virtual links associated with one virtual
node.

7: Create a map Mn with each element representing the degree
of a virtual node.

▷ Select virtual nodes for remapping
8: Initialize a remapping list Er

i

9: for each failed virtual link (uv, kv) ∈ Fv
i do

10: if virtual node uv or kv not in Er
i then

11: if Mp[u
v] > Mp[k

v]
12: add uv into Er

i

13: else if Mp[u
v] < Mp[k

v] then
14: add kv into Er

i

15: else ▷ Mp[u
v] = Mp[k

v]
16: if Mn[u

v] > Mn[k
v] then

17: add kv into Er
i

18: else
19: add uv into Er

i

20: end for
21: return Er

i

▷ Create a new chromosome with at almost R attempts
22: for r = 0 to R do

▷ Generate a new chromosome with Er
i

23: for each virtual node nv
i ∈ Er

i do
▷ Try to map virtual node nv

i to a randomly selected
node in for up to Q trials

24: for q = 1 to Q do
25: Map virtual node nv

i to a randomly selected node
in Os

ni

26: if feasible break
27: end for
28: if none of the trials are feasible goto 36
29: end for

▷ Generate a link chromosome with associated virtual links
30: for lr in the set of affected virtual links do
31: Try to map virtual link lr to a selected path in Os

p

▷ GA-RAN, GA-SEQ, GA-STP are different in path
selection

32: if any link mapping is infeasible goto 35
33: end for
34: return new chromosome goto 37
35: end for
36: return false
37: end procedure

Each gene Φj
f is associated with a mapping of a virtual node,

where f and j indicate the f th chromosome and jth virtual
node in the VNR respectively. We equally consider all virtual
node mappings. Therefore, their order in a chromosome can
be assigned in an arbitrary manner. Once assigned, all the
chromosomes will follow the same order. To enhance the
capability and reduce execution time, we initially generate a
feasible node pool where all eligible substrate nodes meeting
the least resource demand of the VNR are collected. Each
virtual node in a VNR is consecutively mapped by a substrate
node which is randomly selected in the initial node pool, that
must meet resource requirements (Eq. (1)-(4)) to become a
feasible node mapping. We assume that mapping virtual nodes

randomly can prevent the premature convergence problem of
GA algorithm.

D. Link Mapping Algorithms

When node chromosome is successfully formed, we then
generate the according link chromosome using different link
mapping algorithms, in which each gene of the link chromo-
some is a link mapping of a virtual link in the VNR that
is embedded onto a substrate path through VLiM. VLiM
can be reduced to unsplittable flow problem which has been
widely recognized as NP-hard [3]. To solve VLiM, we build
a path database using the shortest path method (e.g., Dijkstra’s
algorithm) with respect to the hop-count factor, which can be
completely constructed prior to the arrival of online VNRs.
This database is called initial path pool generation in Fig. 3.
This process is possible since we argue that substrate paths
for each pair of physical nodes in a SN can be determined in
advance due to the fact that topology of a SN is most likely
static. In this paper, we propose three virtual link mappings
with different searching mechanisms for VLiM stage.

1) Random Path Searching Algorithm (GA-RAN): For a
virtual link request in a VNR, the path searching algorithm
randomly selects a substrate path from the path database based
on the information of node mappings. This path must pass a
validity check Eq. (5)-(7) to become a feasible path. If the
path fails to pass the resource checking process, the algorithm
attempts to find another one in the database until at least one
feasible path is achieved. If there is no feasible path found in
the path database, the algorithm returns failed to the virtual link
request. In that case, the previous node mappings should be
reconsidered. Each virtual link in the given VNR is sequentially
searching for a feasible substrate path in that way until all
virtual links are processed.

2) Sequential Single Path Searching Algorithm (GA-SEQ):
Instead of searching the path in random, the sequential path
searching mechanism searches a potential path for a virtual
link request from the first path in the database until the last
one sequentially. Whenever there is a substrate path passing
the validity check, it becomes feasible, and then the searching
algorithm will immediately stop there. In fact, the erected path
database is relied on the hop-count, so the first path in database
has the lowest hop-count feature. In contrast with GA-RAN,
GA-SEQ goes through the path database by a sequential path
searching. After the whole path database is inspected, if there
is no feasible path achieved, the algorithm returns failed similar
to GA-RAN. All virtual links in the VNR are handled in the
same way. All link mappings that are specified as “failed” will
be then reprocessed in the conciliation algorithm. Due to the
simple and straightforward features of the sequential single
path searching mechanism, we expect that its execution time of
this algorithm is better than those of other proposed algorithms.

3) Shortest Path Algorithm (GA-STP): Different from the
aforementioned path searching mechanisms, we deploy k-
shortest path algorithm as an approximation approach so
as to optimize link delay and bandwidth consumption of a
successfully mapped virtual network. Based on the information
of node mappings, GA-STP maps each virtual link of the VNR
to a single physical path. The shortest path algorithm searches

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 10

k-shortest paths by increasing the value of k until a feasible path
that has sufficient bandwidth to embed the corresponding virtual
link is found. The time complexity of the algorithm increases
with the value of k. For an efficiency of computation and
network resource usage as well as reducing link delay which
is associated with the distance, the value of k should be kept
minimal, so we choose k = 1 in this paper. In fact, we prune
all links that do not have sufficient bandwidth to support the
virtual link request, and then choose the shortest-distance path
in the remaining graph. In case there is no feasible path found,
the according virtual link is marked as failed. This link method
is able to efficiently balance the network load among the links
and effectively utilize the network resources. By applying the
conciliation strategy, infeasible link mappings can be revised by
revisiting the current node mappings smartly, which requires to
automatically explore new link mappings due to the dynamic
changes of node mappings. It is clearly not subject to the value
of k because the explored new link mappings are associated
with different node mappings rather than the k-shortest paths
associated with the same node mappings. In GA-STP, we set
k = 1 to highlight this effect.

We expect that our proposed joint node-link mapping
assisted by the shortest path mechanism is able to achieve
the best performance compared to its counterparts, especially
the average link delay metric. A desirable outcome towards
the delay metric is beneficial for the virtual network requests
that strictly require sensitive delay requirements (e.g., IoT
applications).

E. Conciliation Construction

When a node chromosome is determined, various path
searching methods as described in V-D are applied to form
the according link chromosome. If they successfully find out
link mappings for the link chromosome, a feasible solution
for the whole VNR has been achieved. However, this is an
ideal scenario. In reality, there might have a situation that link
mapping algorithms cannot find any feasible substrate path for
a virtual link request due to network congestion. Generally, the
pair of virtual nodes that form such virtual link needs to be
remapped. In worse cases, several virtual link requests fail to
be embedded, so it is desired to have an efficient mechanism
to intelligently remap these requests concerning the minimal
number of virtual nodes associated with the failed virtual links
that should be revisited.

Let’s take a real VNR with 7 virtual nodes and 6 virtual links
as demonstrated in Fig. 4 with several practical scenarios for an
example. Fig 4a is an accepted solution since all virtual nodes
and links have been successfully found their feasible mappings.
Next figure illustrates a simplest failure with a single failed
virtual link mapping from A−G. In this case, the substrate
nodes h and n, node mappings of virtual nodes A and G,
respectively, need to be remapped. If n is selected, we would
remap only one virtual link A − G; otherwise, we have to
remap three virtual links {A − G,A − F,A − D}. Fig. 4c
complicates the same problem a bit with two failed virtual
links {A−G and A−D }. We possibly have three options
for remapping including substrate nodes {h, k and n}. Each
selection would give the same number of remapped virtual

links, but h should be chosen instead of k and n because least
virtual nodes need to be reconsidered. Similarly, h should be
selected for remapping in Fig. 4d, even there are three failed
link mappings including {A - G, A - F and A - D}. If these
all already-mapped virtual nodes or virtual nodes {D, F and
G} are revisited, we need to remap at least five virtual links.
Otherwise, when the substrate node h, a node mapping solution
of virtual node A, is reconsidered, the remapped virtual links
could be only three. In Fig. 4e, substrate nodes k/j, l and n
should be remapped, whereas physical nodes j and i can be
re-embedded in Fig. 4f due to least remapping.

Inspired by this idea, the heuristic conciliation algorithm
is applied to handle a set of infeasible link mappings for
generating each chromosome. When we remap virtual nodes
associated with the failed virtual links, we will remap them
following an order based on the importance of each virtual
node. Mp and Mn are designed to evaluate the importance of
each virtual node based on the impacts of the virtual node.
Mp is a map with each element in the map representing the
number of failed virtual links associated with one virtual node.
Mn is the map with each element representing the degree of
a virtual node. Details of the heuristic conciliation algorithm
is described in Algorithm 3 where lines [08-21] attempt to
quantify potential nodes for re-mapping.

For better understanding, let us take an example in Fig. 4f
for our remapping strategy applied on the SN with the topology
that is demonstrated in Fig. 2. The VN is shown at right corner
of Fig. 5 while the SN can be abstracted on the left side. We
have three failed virtual links (F − E,D − C and C − B).
After applying the conciliation strategy, it is merely required
to remap virtual nodes C and E instead of all virtual nodes in
which old node mappings (C → j, E → l) are now remapped
to new mappings (C → s, E → p). As a result, all virtual links
are mapped successfully.

F. Working machine

As illustrated in Fig 3, each paralleled machine is indepen-
dently running a GA algorithm which is consisted of four
major operations: population initialization, selection, crossover
and mutation.

Population Initialization: A single machine starts with a
population initialization. Denote M as a set of chromosomes
forming a population. We have separate node population (27)
and link population (28). Each node chromosome includes
N = |Nv

i | genes that represent a potential mapping solution
for all virtual node requests in a VNR, where each gene is the
node mapping of a virtual node. An initial node population
Pn (MxN size) at each machine is generated as described in
Section V-C.

Pn =

Cn
1

Cn
2
...
Cn
f
...

Cn
M

=

Φ1
1 · · · Φj

1 · · · ΦN
1

Φ1
2 · · · Φj

2 · · · ΦN
2

...
. . .

...
. . .

...
Φ1

f · · · Φj
f · · · ΦN

f
...

. . .
...

. . .
...

Φ1
M · · · Φj

M · · · ΦN
M

(27)

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 11

A

G

D C

F E

B

h m

k j

l

i

n

A

G

D C

F E

B

h m

k j

l

n

i

x

A

G

D C

F E

B

h m

k j

l

i

n

x x

x

(a) (b)

(f)

A

G

D C

F E

B

h m

k j

l

i

n
x

x

x

(e)

A

G

D C

F E

B

h m

k j

l

n

i

x

x

(c)

A

G

D C

F E

B

h m

k j

l

i

n
x

x

x

(d)

substrate nodevirtual node

Fig. 4: Examples of infeasible virtual link mappings

virtual node

b

a

f

d

e

s

p

c

o

r

F
m l

B
i

C
jD

k

g

q

n G

A

h
A B

CD

EF

G
(5)

35

(6) (14)

15

40

(11)

42

39

(8)

(13)

24

(17)

Virtual
Network

substrate node

(66)

(34)

(38)
(37)

(33)(43)

(25)

E

(31)

(32)
Substrate
Network

(49)

(35)(39)

(30)

23

40

36

28

(55)

(62)

(42)

(37)

(45)

(39)

52

47

55

46

47

50

65

46

49

43

41

23

58

57

40
51

53

44

49

57

A G A F A D F E D C C B

Remapping

a

A B C D E F G

i j k l m n a

A B C D E F G

i s k p m n

h ma kh na a k m p s ik s

N
od

e
m

ap
pi

ng
s

Vi
rtu

al
no

de
s

Li
nk

m
ap

pi
ng

s
Vi

rtu
al

lin
ks

Fig. 5: Examples of Conciliation and remapping

h ma kh na a k m p s ik s

a dh ba ch h b d e q rb fh r q b e d c

A B C D E F G

a i s k p m n

A G A F A DA G A F A F E D C C B

q

Crossover point

Chromosome 2:

Chromosome 1:

Virtual linksVirtual nodes

Chromosome 1' s link mappings, F(S1)=7.33

Chromosome 2' s link mappings, F(S2)=6.41

Af
te

r c
ro

ss
ov

er

h r q b

A B C D E F G

a i s k e d c

p m n

Child 1:

Child 2:

s i

nh q rb f

A GA G A FA F

h m

a d a k

h b

A DA

Child 1' s link mappings

Child 2' s link mappings, F(S2)=9.03

F E C B

qm p

ca d e k s

D C

Virtual linksVirtual nodes

, F(S1)=9.82

Fig. 6: Crossover operation

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 12

nh b f

A G C B

m p

A B C D E F G

h r f b

A G A FA F

h b

A

p m n h m

DA

f r

Mutation point

After mutation

F E D C

Virtual nodes Virtual links

Link mappings, F(S)=11.65Node mappings

Fig. 7: Mutation operation

Pe =

Ce
1

Ce
2
...
Ce
f
...

Ce
M

=

Ψ1
1 · · · Ψj

1 · · · Ψ
|Ln

i |
1

Ψ1
2 · · · Ψj

2 · · · Ψ
|Ln

i |
2

...
. . .

...
. . .

...
Ψ1

f · · · Ψj
f · · · Ψ

|Ln
i |

f
...

. . .
...

. . .
...

Ψ1
M · · · Ψj

M · · · Ψ
|Ln

i |
M

(28)

For each node chromosome, we generate a corresponding link
chromosome representing a potential mapping for all virtual
links in a VNR, where each gene is the link mapping of a
virtual link request based on the information of node mappings.
The generation of link chromosomes can be found in Section
V-D, while infeasible link mappings produced by this process
are dealt with by the conciliation strategy as described in
Section V-E. When reached M chromosomes for both node
and link mappings, our population is “officially” established.

In fact, we cannot always generate M chromosomes when
the network becomes more and more congested. Therefore,
the search for M chromosomes will be stopped after a preset
number of iterations and the remaining GA operations will
be processed with the available chromosomes. We need at
least two parents to produce children. If there is only one
chromosome available after the iteration process, the GA
process will be finished with the chromosome returned as
the only feasible solution. As mentioned, we are focusing
on node mappings, whereas link mappings will be changed
according to any changes of node mappings. For simplification,
we therefore concentrate on generations of node mappings in
next GA operations.

New generations In this paper, we randomly select chro-
mosomes to be parents for generating their children. Selected
parents produce new generations as a result of crossover and
mutation operations, which consequently makes the mapping
solutions evolved after the number of iterations. After those
operations, the major problem is seeking feasible physical paths
regarding to changes of new nodes. Similar to Section V-E,
the path searching methods are implemented to explore link
mapping solutions for new generations towards new pairs of
substrate source-destination nodes. If no feasible paths found
on new generations, they will be discarded.

The chromosome population we maintain has up to M
chromosomes. Whenever new children are added to the
population, we eliminate the ones with lowest fitness values to
make sure that the population has at most M chromosomes.
Therefore, the population itself is an elite set. By randomly
selecting from the population, we attempt to maintain a balance

between exploration and exploitation. When the iteration of
generations is terminated, we select the best ones among all
generations as our final solution. This also guarantees the
best ones are selected. We have added Fig. 12 to show the
convergence process.

Pn =

Cn
1

...
Cn
s

...
Cn
r

...
Cn
M

Cn
M+1

Cn
M+2

=

Φ1
1 · · · Φjc

1 Φjc+1
1 · · · ΦN

1

...
. . .

...
. . .

...
Φ1

s · · · Φjc

s Φjc+1
s · · · ΦN

s

...
. . .

...
. . .

...
Φ1

r · · · Φjc

r Φjc+1
r · · · ΦN

r

...
. . .

...
. . .

...
Φ1

M · · · Φjc

M Φjc+1
M · · · ΦN

M
Φ1

s · · · Φjc

s Φjc+1
r · · · ΦN

r

Φ1
r · · · Φjc

r Φjc+1
s · · · ΦN

s

(29)

Crossover: In this operation, parental chromosomes are
combined in order to create new offspring for next generations.
Cs and Cr represent the selected chromosomes where their
indexes within the initial population are s and r respectively.
jc is the crossover point which is randomly chosen between any
positions within N length. We denote C(M+1) and C(M+2)

as new generated chromosomes. In crossover, offspring is
typically produced by exchanging genes between the selected
parents beginning from the random crossover point jc+1 to the
end of chromosomes as demonstrated in (29). At this stage,
node mappings have been changed, link mappings are revisited
by the path searching methods accordingly as described in
Section V-D. In this paper, a physical node cannot host two
virtual nodes with the same VNR. If the crossover or mutation
leads to nodes mapped to the same physical node, we will
treat the mapping as infeasible and discard it. Suppose we
select two chromosomes from the population as parents. As
depicted in Fig. 6, the random crossover point equals to 4, the
node mappings of virtual nodes E, F and G will be swapped
between two parents in order to generate new offspring. After
new node mappings are determined, we need to examine their
corresponding link mappings. We can recognize that new link
mappings are much better than the previous ones, which means
that our children get evolved.

Mutation: This operation typically adopts a modification
on a parent to generate a new offspring. Mutation samples the
broad solution space and improves the searching efficiency,
preventing solutions from falling into the local optima. In
this paper, one of the feasible children created in Crossover is
randomly selected for mutation, and a random gene of this child
is then replaced by a new gene to produce a new offspring. The

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 13

40 50 60 70 80
Traffic load (Erlang)

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e

ac
ce

pt
an

ce
 ra

tio

GA-STP
GA-SEQ
GA-RAN
MCTS
DPGA
NTANRC-S
D-ViNE

(a)

40 45 50 55 60 65 70 75 80
Traffic load (Erlang)

0.4

0.5

0.6

0.7

0.8

R/
C
ra
tio

GA-STP
GA-SEQ
GA-RAN
MCTS
DPGA
NTANRC-S
D-ViNE

(b)

Fig. 8: (a) Average acceptance Ratio (b) Average revenue to cost ratio

40 45 50 55 60 65 70 75 80
Traffic load (Erlang)

70

75

80

85

90

95

Av
er
ag
e
ge
ne
ra
te
d
re
ve
nu
e

GA-STP
GA-SEQ
GA-RAN
MCTS
DPGA
NTANRC-S
D-ViNE

(a)

40 45 50 55 60 65 70 75 80
Traffic load (Erlang)

120

140

160

180

200

220

240
Av

er
ag

e
co

st
GA-STP
GA-SEQ
GA-RAN
MCTS
DPGA
NTANRC-S
D-ViNE

(b)

Fig. 9: (a) Average generated revenue (b) Average embedding cost

gene used for replacement must explicitly meet the resource
constraints. However, if none of children in Crossover are
feasible, one of parents is selected for mutation in random as
illustrated in Algorithm 2. Similar to crossover, path searching
mechanisms are implemented to find new link mappings due to
node mappings changed. If feasible, new generation is updated
into population. Let denote jm as a random mutation point and
Φjm

r′ is new gene that replaces the existing one in C(M+1).
In this operation, new embedding solution C′

(M+1) after
replacement is presented as C′

(M+1) = [Φ1
s · · ·Φ

jm

r′ · · ·ΦN
s].

As illustrated in Crossover, we achieved new children which are
better than their parents. Suppose the second child is randomly
chosen for the mutation, where the mutation point is selected
in random, equal to 3 as depicted in Fig. 7. Old node mapping
(C → q) is randomly replaced by (C → f), which results
in new link mappings for virtual links ({D-C} and {C-B}).
Specifically, substrate paths (b → f → q) and (q → r) are

now substituted by (b → f) and (f → r) respectively. Both
new children are feasible and better than their parents based
upon improved fitness values shown on the top right of each
subfigures of Fig. 6 and Fig. 7, so they will be updated into
the population.

In fact, maintaining a proper balancing between exploitation
and exploration is essential in GA. Crossover rate pc is in a
range of [0-1] that is normally kept in high values to provide
a better exploitation on the current population. Mutation rate
pm is usually smaller than the crossover rate. Selecting an
appropriate value for the mutation rate is challenging since a
high mutation rate would increase the possibility of exploring
more areas in the searching space, but could prevent GA from
converging to any optimal solution. In contrast, small mutation
rate might cause a problem of premature convergence that traps
the population in local optima. By preferring high efficiency
of GA while keeping a trade-off between exploitation and

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 14

40 45 50 55 60 65 70 75 80
Traffic load (Erlang)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

Av
er
ag

e
No

de
 U
til
iza

tio
n

GA-STP
GA-SEQ
GA-RAN
MCTS
DPGA
NTANRC-S
D-ViNE

(a)

40 45 50 55 60 65 70 75 80
Traffic load (Erlang)

0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

Av
er
ag

e
lin

k
ut
iliz

at
io
n

GA-STP
GA-SEQ
GA-RAN
MCTS
DPGA
NTANRC-S
D-ViNE

(b)

Fig. 10: (a) Average node utilization (b) Average link utilization

40 45 50 55 60 65 70 75 80
Traffic load (Erlang)

10

12

14

16

18

20

22

24

Av
er

ag
e

De
la

y

GA-STP
GA-SEQ
GA-RAN
MCTS
DPGA
NTANRC-S
D-ViNE

(a) (b)

Fig. 11: (a) Average delay (b) Execution time between our algorithms

Fig. 12: Fitness Function Convergence

exploration, we set pc = 0.9 and pm = 0.2 in this paper. As
depicted in Fig. 12, our GA algorithms converged smoothly
and stably. Our numerical results have also shown better
performances than other algorithms.

G. Sorting and Terminations

Sorting process selects the best mapping amongst the
achieved feasible solutions determined by their fitness values.
Its outcome is then sent to the synchronization process for a
global ranking. In fact, parallelism is associated with several
concurrent processes where each may finish its assigned task
at different time. Waiting until the last process accomplishing
its job without guaranteeing an expected outcome is indeed
troublesome. A total of 16 working machines were used. For
each working machine, we set M = 10. For each generation
of each working machine, two chromosomes are selected as
parents. After the crossover process, two children will be
generated. One of the two will be randomly selected to do the
mutation process. Then the one which is not selected and the

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 15

one which is generated after mutation will be added to the pool
with up to M chromosomes. If more than M chromosomes
are available, the ones with least fitness values will be deleted
to maintain the pool as an elite set. The maximum number of
iterations (generations) was set to 10. To keep the trade-off
between operation time and performance, the iteration process
will be terminated earlier if the best fitness value does not
change for t = 4 consecutive iterations.

H. Synchronization and VN allocation

In this step, the best VNE solution of the corresponding
VNR is determined by globally ranking the VNE solutions
received from worker nodes, based on highest achieved FF
values. As a result, if accepted the given VNR is allocated
to the corresponding SN following the information of node
and link mappings. The last step is updating residual network
resources.

I. Execution time analysis
Due to the lower cost of computing hardware recently,

parallel algorithms can be beneficially exploited to tackle
intricate computational tasks. As a result, we propose a
distributed parallel GA framework to deal with the online
VNE problem in this paper. We measure the execution time of
the proposed framework on two different modes: sequential and
parallel. In the former, the time complexity increases linearly
since the total time equals the sum of the execution time of
each worker machine. In contrast, the latter’s total execution
time is counted by the worker machine that accomplishes
its assigned task at the latest. Cramer-Chernoff method and
Jensen’s inequality can approximate the total execution time
in parallel mode as detailed in [27]. Accordingly, the proposed
distributed parallel framework can rapidly improve the time
complexity from linear to logarithmic scale. Interested readers
may refer to [27] further theoretical analysis.

VI. PERFORMANCE EVALUATION

We compare our proposed GA-RAN, GA-SEQ and GA-
STP algorithms with several state-of-the-art VNE competitors:
DPGA [9], NTANRC-S [19], D-ViNE [7] and MCTS [28]
on several evaluation metrics comprising average acceptance
ratio, average revenue and cost, average R/C, average node and
link utilization and finally average delay. These are the most
popular and important evaluation criteria for evaluating the
efficiency of any VNE algorithm. We select D-ViNE since it is
the best performance algorithm in [7] which is widely known
as one of the most highly-cited papers in VNE. Moreover,
NTANRC-S, performed best in [19], is the latest representative
of the node ranking methods that exploits multiple topology
attributes and the global network resources for VNoM in VNE.
Recently, our work in [9] has confirmed that VLiM contributes
a critical role in approaching an efficient solution for VNE
problem. Finally, MCTS is the reinforcement learning-based
algorithm that deploys Monte Carlo Tree Search to explore
the action space [28]. The proposed GA-based algorithms in
this paper are expected to compete those VNE algorithms in
all performance metrics. Our simulation was performed on a
Ubuntu 20.04.2 LTS (Focal Fossa) 64-bit platform with 16 GB
memory and Intel®CoreTM i5-6200 CPU @2.30GHzx4.

TABLE III: Compared Algorithms

Notation Description
GA-STP Joint node-link GA-based algorithm assisted by

shortest path method
GA-SEQ Joint node-link GA-based algorithm assisted by

sequential single path searching
GA-RAN Joint node-link GA-based algorithm assisted by

random path searching
MCTS Monte Carlo Tree Search with BFS algorithm

for VLiM [28]
DPGA Greedy node mapping with distributed parallel

GA-based algorithm for link mapping [9]
NTANRC-S Network topology attributes and network

resource-considered algorithm for node map-
ping with the shortest path-based link mapping
[19]

D-ViNE Deterministic rounding-based approach obtain-
ing a LP relaxation of MIP for node mapping
with shortest path method for link mapping
[7]

A. Simulation setup
A discrete-event simulator is developed to evaluate the

proposed joint node-link mapping solutions with the evaluation
parameters following [7]. We extensively generate SNs and
VNs using the most common GT-ITM topology generator [36].
SNs, adopting Waxman model with α = 0.5 and β = 0.2
where α and β indicate the maximal edge probability and
edge length respectively, are consisted of 50 nodes randomly
placed on a 25× 25 Cartesian plane and 140 edges in average.
Their capacity including CPU and bandwidth is uniformly
distributed between 50 and 100 units. Similar to the previous
research [7], VNRs are configured to follow a Poisson process
dynamically arriving in the network with an average λ rate
ranging from 4 to 8 VNs per 100 time units. Each VNR has
an exponentially distributed lifetime with an average value
of µ = 1000 time units. The load of VNRs can be indeed
measured by λ

µ Erlangs [28]. In addition, each VNR’s node
size is uniformly distributed between 2 and 10. The resource
requirements of VNRs are uniformly distributed between 0
to 20 for virtual nodes and 0 to 50 for virtual link requests.
Following [12], we set wb = wn = 1 in this paper. For
simulation purposes, we deploy three different SNs and two
sets of heterogeneous VNRs, where each includes five subsets
of VNRs ranging from 2, 000 up to 4, 000 VNRs. In this paper,
we set out Q = 2×M,Q = R = 2× (|Fv

i |+ |Er
i |).

The evaluation results were generated by averaging over
three different SNs and two replications of VNRs with each
replication running 50, 000 time units under each traffic load
and each SN. This setting is the same as the parameters in
[12]. We have run all comparisons in the same setting. All
figures are plotted with mean values and 95% confidence
intervals (CIs). In fact, error bars are too tiny, confirming
that our evaluation outputs are extremely reliable. For better
visualization, we plot figures with various colours and different
markers. Because the 50, 000 time units are 50 times longer
than the average lifetime of a VN, it provided roughly 50
independent samples per replication per substrate network.
Considering the 2 replications and 3 different SNs, we have
about 300 independent samples under each load condition, that
is why we can get very good CIs.

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 16

B. Discussions on Performance Results
In this section, we discuss on the simulation results between

our proposed VNE algorithms and the compared algorithms.
Then, a comprehensive analysis in performance between the
joint node-link algorithms themselves is also presented. Fig.
8 presents the average VNR acceptance ratio and the average
R/C, while Fig. 9 shows the average generated revenue as
well as the average embedding cost. They are by some means
sufficient to confirm the efficiency and effectiveness of our
joint node-link VNE solutions. The solid performance of the
proposed algorithms is intensified in Fig. 10 where the average
network utilization including nodes and links is illustrated. Fig.
11 additionally highlights the advantage of our solutions on
average delay, and a comparison of execution time between the
proposed algorithms running on sequential and parallel modes
is also demonstrated.

1) Joint node-link algorithms vs State-of-the-art VNE al-
gorithms: Fig. 8a illustrates the average VNR acceptance
ratio which is one of the most important metrics to evaluate
the embedding capability of different VNE algorithms. It is
observed that the average VNR acceptance ratio of all algorithm
decays with the increasing of network loads due to infinite
substrate resources. Our joint node-link VNE algorithms,
including GA-STP, GA-SEQ and GA-RAN outperformed
all competitors in the average acceptance ratio performance.
Specifically, GA-STP, GA-SEQ and GA-RAN achieved better
average acceptance ratios than MCTS (the best algorithm
amongst compared algorithms in general) for more than
{13.35%, 14.63%, 7.5%} and {16.35%, 14.87%, 8.65%} at 40
and 80 Erlangs respectively. They significantly performed better
than DPGA, NTANRC-S and D-ViNE for more than 7.4% up
to 24.93% at the highest traffic load.

Furthermore, the proposed GA-based algorithms produced
higher average revenue and lower embedding cost, which leads
to higher R/C as illustrated in Fig. 9a, 9b and 8b respectively. In
details, our best joint node-link VNE solution (GA-STP) gained
30.23%, 34.98%, 63.23% and 61.56% better average R/Cs than
those of aforementioned algorithms at the lowest traffic load.
Its overwhelming dominance towards this performance metric
was retaining over various arrival rates as depicted in Fig 8b.
These results have again confirmed by better average revenue
and embedding cost of our approach in Fig. 9a and 9b.

In fact, higher average acceptance and R/Cs are the most
desired target for any VN mapping algorithm, and our proposed
approaches have successfully proven their great efficiency
and significantly reduced the resource fragmentation problem
caused by possibly inefficient embedding. With the increasing
network loads, node and link utilization was expected to
increase as depicted in Fig. 10a and 10b. Specifically, the node
utilization of our joint node-link algorithms was remarkably
higher at least 13.41% up to 77.83% than all rivals over various
traffic loads (Fig. 10a). Our algorithms were indeed capable of
accepting more VNRs compared to other heuristics, considering
multiple crucial embedding factors during mapping. When the
network loads were increasing, joint node-link heuristics still
successfully embedded given VNRs by exploiting physical
resource capacity more efficiently. In terms of link utilization,
GA-STP and GA-SEQ exceedingly leaded this performance

metric over the other algorithms thanks to effective path
searching approaches as described in Section V-D. Due to
the random searching strategy, GA-RAN could not guarantee
the link mapping solutions with short path lengths, so GA-RAN
did not have an advantage on the link utilization as shown in
Fig. 10b. In addition, GA-STP and GA-SEQ performed better
average delay than MCTS, the best delay performance among
the compared algorithms, for at least 15.33% up to 29.07% as
depicted in Fig. 11a.

These dramatic results of our GA-based approaches derive
from the fact that the proposed algorithms consider the
coordination between VNoM and VLiM at the same time. The
novel conciliation mechanism not only handles the remapping
strategy intelligently by minimizing the number of virtual
nodes and virtual links for remapping, but also reduces the
possibility of missing out optimal solutions due to remapping
all virtual nodes. Moreover, GA algorithm efficiently explored
the search space to approach optimal VNE solutions driven
by an efficient multi-objective fitness function. Due to less
bandwidth consumed to embed VNRs, abundant residual
bandwidth enables to accept more incoming VNRs verified by
Fig. 8a. The appealing results of our joint node-link GA-based
algorithms are indeed a real challenge for any VNE algorithm
we suppose.

2) Amongst Joint node-link algorithms: In this paper,
we proposed three joint node-link algorithms according to
different path searching methods. They were integrated into
GA algorithm for embedding VNRs using the same fitness
function to drive the algorithm to optimal VNE solutions.

GA-STP performed best following GA-SEQ and GA-RAN.
With low load, GA-SEQ was slightly better than GA-STP
for accepting more VNRs but when the load was increasing,
GA-STP became efficient in embedding. This could explain
why GA-SEQ was little better than GA-STP in node utilization
in Fig. 10a. Additionally, GA-STP demonstrated its better
VLiM performance through improved embedding cost, average
link utilization and average delay by leveraging the shortest
path method. Specifically, GA-STP was better than its direct
counterpart, GA-SEQ, in the same aforementioned performance
metrics for 5.42%, 3.16% and 9.41%, respectively at the arrival
rate of 40. Both tended to be asymptotic when the network
became more and more congested.

GA-STP, GA-SEQ and GA-RAN are all coordinated ap-
proaches. They are different in how the link mapping is done.
Comparing with GA-STP and GA-SEQ, GA-RAN is clearly
the worst. GA-RAN selects paths randomly, which likely leads
to paths with more hops. More hops mean more resource usage
at each link that leads to higher link utilization as illustrated in
Fig. 10b. This also makes links more congested. GA-RAN tries
only several randomly selected paths for each link mapping,
which lead to longer path and lower acceptance ratio. In our
model, the delay of a path is only dependent on the distance
of the path, which is the sum of distances of all the links in
the path. Because distances of links are random, in average,
longer paths (or paths with longer delay) also mean paths are
traversing more hops, they are positively correlated.

In contrast, GA-STP tries the first shortest path, if it fails,
we will go through the conciliation process, which also tries

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 17

the first shortest path for each new node mapping. Therefore,
it always leads to shortest paths and lowest utilization. In GA-
SEQ, we search feasible link mapping sequentially starting
with the shortest first. If a feasible mapping is found, we
do not need to go through conciliation process. This will
likely lead to longer path and higher utilization than GA-STP.
Because it provides more alternative mappings than GA-STP,
its acceptance ratio will be higher when load is lower as shown
in Fig. 8a. When load is higher, longer paths tend to make
congestion worse, which leads to lower acceptance ratio.

Furthermore, we conducted the joint node-link VNE mapping
algorithms on different sequential and parallel schemes, and
then compared execution time between them to quantify the
time reduction towards parallel operation. The distributed
parallel paradigm as shown in Fig.3 was deployed for the
parallel operation. Average execution time of the proposed
algorithms for processing a VNR is shown in Fig. 11b. As
such, GA-SEQ was fastest compared to the other algorithms
in both experiment schemes. Towards sequential operation,
GA-SEQ was faster than GA-STP and GA-RAN for more than
26% and 28% respectively. In this scheme, GA-RAN that is
based on random mechanism needed more time to seek for
feasible solutions while GA-SEQ due to its simplicity took
least time to finish processing a VNR. On the other hand,
parallel scheme reveals that shortest path method and random
mechanism most likely achieved the same execution time,
which means that GA-RAN exploited the distributed machines
approaching VNE solutions efficiently with the random manner.
GA-SEQ is still a winner since it was faster than the other
counterparts for more than 25%. Although, GA-STP performed
best within the set of proposed joint node-link VNE algorithms
in terms of performance, if we need a more rapid mechanism,
an alternative choice could be GA-SEQ. On the convergence
of GA, the tendency of fitness values of GA-based algorithms
in this paper is depicted in Figure 12 with 95% CIs. Due to an
appropriate approach driven by an efficient fitness function, our
proposed solutions are rapidly converged after few iterations.

VII. CONCLUSION

Network virtualization is a primary enabler for the antici-
pated success of future networks (e.g., virtualized 5G, smart
IoT networks); thus, efficient VNE algorithms are eminently
desirable. VNE has been well studied in last decade, but
there are very few papers dealing with online VNE problem
using heuristic or metaheuristic algorithms in a joint manner.
In this article, we propose joint node and link embedding
approaches relied on GA algorithm for simultaneously solving
virtual node and link mappings. When the node mappings are
changed, the link mappings are accordingly altered. A heuristic
conciliation mechanism is then used to tackle infeasible link
mappings due to inappropriate virtual node embedding in GA
operations. Furthermore, we deploy our proposed algorithms
on a distributed parallel operation scheme in order to reduce
time execution and then we make a time comparison of the
proposed VNE solutions running on sequential and parallel
operations. The extensive evaluation indicates that our joint
node-link combination in a single VNE mapping stage based
on GA-based approaches outperforms most of state-of-the-art

heuristic VNE algorithms in entirely indispensable evaluation
metrics we adopted. In fact, current conciliation strategy simply
approaches the random mapping instead of attempting all
possible combinations, and then selecting the best one among
them. Hence, there are some potential to further explore this
remapping strategy and we leave this idea for future work.

ACKNOWLEDGMENT

The authors would like to thank anonymous reviewers for
their careful reading of our manuscript and many insightful
comments and suggestions.

REFERENCES

[1] A. Hakiri and P. Berthou, “Leveraging SDN for the 5g networks: Trends,
prospects and challenges,” CoRR, vol. abs/1506.02876, 2015. [Online].
Available: http://arxiv.org/abs/1506.02876

[2] I. Ishaq, J. Hoebeke, I. Moerman, and P. Demeester, “Internet of things
virtual networks: Bringing network virtualization to resource-constrained
devices,” in 2012 IEEE International Conference on Green Computing
and Communications, Nov 2012, pp. 293–300.

[3] A. Fischer, J. F. Botero, M. T. Beck, H. de Meer, and X. Hesselbach,
“Virtual network embedding: A survey,” IEEE Communications Surveys
Tutorials, vol. 15, no. 4, pp. 1888–1906, 2013.

[4] J. Gil Herrera and J. F. Botero, “Resource allocation in nfv: A
comprehensive survey,” IEEE Transactions on Network and Service
Management, vol. 13, no. 3, pp. 518–532, 2016.

[5] T. A. Q. Pham, J.-M. Sanner, C. Morin, and Y. Hadjadj-Aoul, “Virtual
network function–forwarding graph embedding: A genetic algorithm
approach,” International Journal of Communication Systems, vol. 33,
no. 10, p. e4098, 2020, e4098 0.1002/dac.4098. [Online]. Available:
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.4098

[6] B. Addis, G. Carello, and M. Gao, “On a virtual network functions
placement and routing problem: Some properties and a comparison of
two formulations,” Networks, vol. 75, no. 2, pp. 158–182, 2020. [Online].
Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/net.21915

[7] M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard: Virtual
network embedding algorithms with coordinated node and link mapping,”
IEEE/ACM Transactions on Networking, vol. 20, no. 1, pp. 206–219,
Feb 2012.

[8] C.-W. Huang, C.-A. Shen, C.-Y. Huang, T.-L. Chin, and S.-H. Shen, “An
efficient joint node and link mapping approach based on genetic algorithm
for network virtualization,” in 2019 IEEE 90th Vehicular Technology
Conference (VTC2019-Fall), 2019, pp. 1–5.

[9] K. T. Nguyen, Q. Lu, and C. Huang, “Rethinking virtual link mapping
in network virtualization,” in 2020 IEEE 92nd Vehicular Technology
Conference (VTC2020-Fall), 2020, pp. 1–5.

[10] Hong-Kun Zheng, J. Li, Y. Gong, W. Chen, Zhiwen Yu, Z. Zhan, and
Ying Lin, “Link mapping-oriented ant colony system for virtual network
embedding,” in 2017 IEEE Congress on Evolutionary Computation
(CEC), June 2017, pp. 1223–1230.

[11] G. S. Paschos, M. A. Abdullah, and S. Vassilaras, “Network slicing
with splittable flows is hard,” in 2018 IEEE 29th Annual International
Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC), Sep. 2018, pp. 1788–1793.

[12] N. M. K. Chowdhury and R. Boutaba, “A survey of network
virtualization,” Computer Networks, vol. 54, no. 5, pp. 862 – 876,
2010. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1389128609003387

[13] H. Cao, H. Hu, Z. Qu, and L. Yang, “Heuristic solutions of virtual
network embedding: A survey,” China Communications, vol. 15, no. 3,
pp. 186–219, March 2018, doi: 10.1109/CC.2018.8332001.

[14] H. Cao, S. Wu, Y. Hu, Y. Liu, and L. Yang, “A survey of embedding
algorithm for virtual network embedding,” China Communications,
vol. 16, no. 12, pp. 1–33, Dec. 2019, doi: 10.23919/JCC.2019.12.001.

[15] M. Melo, S. Sargento, U. Killat, A. Timm-Giel, and J. Carapinha,
“Optimal virtual network embedding: Node-link formulation,” IEEE
Transactions on Network and Service Management, vol. 10, no. 4, pp.
356–368, 2013, doi: 10.1109/TNSM.2013.092813.130397.

[16] C. Huang and J. Zhu, “Modeling service applications for optimal parallel
embedding,” IEEE Transactions on Cloud Computing, vol. 6, no. 4, pp.
1067–1079, Oct 2018.

http://arxiv.org/abs/1506.02876
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.4098
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.21915
http://www.sciencedirect.com/science/article/pii/S1389128609003387
http://www.sciencedirect.com/science/article/pii/S1389128609003387

IEEE TRANSACTIONS ON NETWORK AND SERVICE MANAGEMENT 18

[17] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang,
“Virtual network embedding through topology-aware node ranking,”
SIGCOMM Comput. Commun. Rev., vol. 41, no. 2, p. 38–47, Apr. 2011.
[Online]. Available: https://doi.org/10.1145/1971162.1971168

[18] P. Zhang, H. Yao, and Y. Liu, “Virtual network embedding based on the
degree and clustering coefficient information,” IEEE Access, vol. 4, pp.
8572–8580, 2016.

[19] H. Cao, L. Yang, and H. Zhu, “Novel node-ranking approach and multiple
topology attributes-based embedding algorithm for single-domain virtual
network embedding,” IEEE Internet of Things Journal, vol. 5, no. 1, pp.
108–120, Feb 2018.

[20] M. Feng, J. Liao, J. Wang, S. Qing, and Q. Qi, “Topology-aware virtual
network embedding based on multiple characteristics,” in 2014 IEEE
International Conference on Communications (ICC), 2014, pp. 2956–
2962.

[21] X. Mi, X. Chang, J. Liu, L. Sun, and B. Xing, “Embedding virtual
infrastructure based on genetic algorithm,” in 2012 13th International
Conference on Parallel and Distributed Computing, Applications and
Technologies, Dec 2012, pp. 239–244.

[22] Z. Zhou, X. Chang, Y. Yang, and L. Li, “Resource-aware virtual
network parallel embedding based on genetic algorithm,” in 2016
17th International Conference on Parallel and Distributed Computing,
Applications and Technologies (PDCAT), 2016, pp. 81–86.

[23] P. Zhang, H. Yao, M. Li, and Y. Liu, “Virtual network embedding
based on modified genetic algorithm,” Peer-to-Peer Networking and
Applications, vol. 12, no. 2, pp. 481–492, Mar 2019. [Online]. Available:
https://doi.org/10.1007/s12083-017-0609-x

[24] L. Boyang, W. Muqing, and Z. Haosen, “Virtual network embedding
based on hybrid adaptive genetic algorithm,” in 2019 IEEE 5th Interna-
tional Conference on Computer and Communications (ICCC), 2019, pp.
1197–1202.

[25] I. Pathak and D. P. Vidyarthi, “A model for virtual network embedding
across multiple infrastructure providers using genetic algorithm,” Science
China Information Sciences, vol. 60, no. 4, p. 040308, Mar 2017.
[Online]. Available: https://doi.org/10.1007/s11432-016-9015-3

[26] P. Zhang, X. Pang, G. Kibalya, N. Kumar, S. He, and B. Zhao, “Gcmd:
Genetic correlation multi-domain virtual network embedding algorithm,”
IEEE Access, vol. 9, pp. 67 167–67 175, 2021.

[27] Q. Lu, K. Nguyen, and C. Huang, “Distributed parallel algorithms for
online virtual network embedding applications,” International Journal of
Communication Systems, vol. n/a, no. n/a, p. e4325, e4325 dac.4325.
[Online]. Available: https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.
4325

[28] S. Haeri and L. Trajković, “Virtual network embedding via monte carlo
tree search,” IEEE Transactions on Cybernetics, vol. 48, no. 2, pp.
510–521, 2018.

[29] H. Yao, B. Zhang, P. Zhang, S. Wu, C. Jiang, and S. Guo, “Rdam: A
reinforcement learning based dynamic attribute matrix representation for
virtual network embedding,” IEEE Transactions on Emerging Topics in
Computing, pp. 1–1, 2018, doi: 10.1109/TETC.2018.2871549.

[30] P. Zhang, C. Wang, G. S. Aujla, and X. Pang, “A node probability-
based reinforcement learning framework for virtual network embedding,”
in 2020 IEEE 21st International Symposium on ”A World of Wireless,
Mobile and Multimedia Networks” (WoWMoM), Cork, Ireland, 2020, pp.
421-426, doi: 10.1109/WoWMoM49955.2020.00077.

[31] P. Zhang, C. Wang, C. Jiang, and A. Benslimane, “Security-aware virtual
network embedding algorithm based on reinforcement learning,” IEEE
Transactions on Network Science and Engineering, pp. 1–1, 2020, doi:
10.1109/TNSE.2020.2995863.

[32] H. Yao, S. Ma, J. Wang, P. Zhang, C. Jiang, and S. Guo, “A continuous-
decision virtual network embedding scheme relying on reinforcement
learning,” IEEE Transactions on Network and Service Management,
vol. 17, no. 2, pp. 864–875, 2020.

[33] P. S. Felipe, M. Vashisht, C. Edoardo, L. Joel, O. S. Kenneth, and
C. Jeff, “Deep neuroevolution: Genetic algorithms are a competitive
alternative for training deep neural networks for reinforcement learning,”
in arXiv:1712.06567, 2018, pp. 1–16.

[34] M. Mitchell, An Introduction to Genetic Algorithms. Cambridge, MA,
USA: MIT Press, 1998.

[35] H. Mühlenbein, “Parallel genetic algorithms in combinatorial
optimization,” in Computer Science and Operations Research,
O. BALCI, R. SHARDA, and S. A. ZENIOS, Eds. Amsterdam:
Pergamon, 1992, pp. 441 – 453. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/B9780080408064500344

[36] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, “How to model an
internetwork,” in Proceedings of IEEE INFOCOM ’96. Conference on
Computer Communications, vol. 2, March 1996, pp. 594–602 vol.2.

Khoa Nguyen received his M.Sc. degree in Telecom-
munications Engineering from the University of
Sunderland, England, in 2013 and the Ph.D. de-
gree in Electrical and Computer Engineering at the
Department of Systems and Computer Engineering,
Carleton University, Canada, in 2021, respectively.
His main research interests include communication
networks, cloud/edge computing, parked vehicle
edge computing (PVEC), Internet of Vehicles (IoV),
software-defined networks (SDN), network function
virtualization (NFV), containerization technologies

and machine learning.

Changcheng Huang received his B. Eng. in 1985
and M.Eng. in 1988 both in Electronic Engineer-
ing from Tsinghua University, Beijing, China. He
received a Ph.D. degree in Electrical Engineering
from Carleton University, Ottawa, Canada in 1997.
From 1996 to 1998, he worked for Nortel Networks,
Ottawa, Canada where he was a systems engineering
specialist. He was a systems engineer and network
architect in the Optical Networking Group of Tellabs,
Illinois, USA during the period of 1998 to 2000.
Since July 2000, he has been with the Department

of Systems and Computer Engineering at Carleton University, Ottawa, Canada
where he is currently a full professor. Dr. Huang won the CFI new opportunity
award for building an optical network laboratory in 2001. He is an associate
editor of Springer Photonic Network Communications. Dr. Huang is a senior
member of IEEE.

https://doi.org/10.1145/1971162.1971168
https://doi.org/10.1007/s12083-017-0609-x
https://doi.org/10.1007/s11432-016-9015-3
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.4325
https://onlinelibrary.wiley.com/doi/abs/10.1002/dac.4325
http://www.sciencedirect.com/science/article/pii/B9780080408064500344
http://www.sciencedirect.com/science/article/pii/B9780080408064500344

	Introduction
	Related Work
	Network Model and Problem Descriptions
	Virtual Network Assignment
	Performance metrics

	Mathematical Formulation
	Variables
	Objectives:
	Constraints

	Joint node-link Mapping
	Background of metaheuristic algorithms
	Distributed parallel GA-based algorithms
	Node Mapping Algorithm
	Link Mapping Algorithms
	Random Path Searching Algorithm (GA-RAN)
	Sequential Single Path Searching Algorithm (GA-SEQ)
	Shortest Path Algorithm (GA-STP)

	Conciliation Construction
	Working machine
	Sorting and Terminations
	Synchronization and VN allocation
	Execution time analysis

	Performance Evaluation
	Simulation setup
	Discussions on Performance Results
	Joint node-link algorithms vs State-of-the-art VNE algorithms
	Amongst Joint node-link algorithms

	Conclusion
	References
	Biographies
	Khoa Nguyen
	Changcheng Huang

