
EdgePV: Collaborative Edge Computing
Framework for Task Offloading

Khoa Nguyen
Carleton University

Ottawa, ON, Canada
khoatnguyen@sce.carleton.ca

Steve Drew
BitQubic Corp.

Kanata, ON, Canada
steve@bitqubic.com

Changcheng Huang
Carleton University

Ottawa, ON, Canada
huang@sce.carleton.ca

Jiayu Zhou
Michigan State University
East Lansing, MI, USA

jiayuz@msu.edu

Abstract—Recent research has pointed out that almost
all vehicles spend over 95% of their times in parking lots
where their powerful computing resources are wasted. In
this paper, we propose a novel collaborative computing
paradigm that efficiently offloads online heterogeneous
computation tasks to parked vehicles during peak hours.
A container orchestration based on Kubernetes is
integrated into the infrastructure due to its cutting-edge
features such as auto-healing, load-balancing, and
security. We formulate the offloading problem
analytically and present an intelligent metaheuristic
algorithm to address dynamic online demands. Extensive
evaluation demonstrates that our proposed paradigm
improves task acceptance ratio and average offloading
cost for more than 40% with high task arrival rate
compared with a set of existing algorithms.

Index Terms—Parked Vehicles, Edge Computing,
Container Orchestration, Kubernetes.

I. INTRODUCTION

The number of vehicles has been dramatically increasing
in the last decade, that are predicted to attain two billions
by 2035 [1]. Many of which are generally equipped with
powerful on-board computing hardware (e.g. CPU, GPU)
to provide modern advanced features such as auto-pilot,
intelligent radar, sensing safety systems. These on-board
facility supporting level-four autonomous driving might
cost thousands of dollars but the resource utilization of
these vehicles is extremely low during parking time. Recent
studies have indicated that there are 70% of individual
vehicles spending almost 95% of their time for parking
in parking lots, street parking and home garages [1] [2].

Worker node

Worker nodeWorker nodeWorker node

Worker node Worker node

Task 4

Task 3

Edge Servers

Kubernetes

Master node

Base Station

Task 2

Core Network
Worker node

Task 1

wired link

wireless link

Parked vehicle Task

Fig. 1: Edge computing architecture integrated with
parked vehicles (PVs) enabled by Kubernetes.

In America, for instance, the average daily driving time
was merely 50.6 minutes according to the AAA Foundation
survey for Traffic Safety in 2016 [3]. These statistics reveal
that the powerful on-board hardware of vehicles is idle
for most of the time, giving a great chance to exploit
these omitted computation resources for additional services.
The neglected computational resources of PVs can be an
excellent candidate for Mobile Edge Computing (MEC)
where the conventional computation and storage services
usually offered by remote cloud are now migrated to the
network edge. With the advent of PVs, MEC capacity
can be enlarged. However, the collaborative framework
between cloud-edge and PVs complicates the task offloading
problems by determining appropriate network resources to
handle given tasks. Moreover, online heterogeneous tasks
can be classified into delay-sensitive (e.g. mobile gaming,
autopilot, video surveillance) and delay-insensitive with
stringent computing requirements (e.g. health monitoring,
vehicular sensing, location-based augmented reality games)
[4]. The explosive growth of data traffic with arbitrary
requirements, either computation intensive or sensitive-
delay tasks, will impose a heavy burden on the existing
infrastructure during peak hours. Incoming tasks that cannot

be processed at the cloud due to delay-sensitive requirements
can be offloaded to the edge network. Due to the limited
capacity at both remote cloud and edge during peak hours,
networks can rapidly become congested when a number
of tasks increase. On the other hand, parking time of
PVs is uncertainty, that makes PV nodes unreliable to run
applications/services on them. Thus, a new network design
is desired to solve these aforementioned problems.

Applying a generic container orchestration to edge
computing enhanced by PVs is still infancy. Container
orchestration (e.g. Kubernetes) enables PVs to efficiently
run several replicas of a task simultaneously since it allows
fast bootup, auto-scaling, self-healing and rapid termination
time. These agile features are critical to solve the uncertainty
problem of limited parking duration of PVs. Moreover,
containerization requires lower hardware requirements, and
offers less operation costs and resource isolation when each
container is independently running replicas of a given task.
However, where the replicas of a task are offloaded to
a collaborative infrastructure meeting rigid resources and
reliability constraints while minimizing network costs is not
an easy task. For example, if all task replicas are allocated to
a single node (e.g. PVs), but this node gets an unexpected
failure (e.g. outage, sudden vehicular leaving). Services
provided through running such containerized task will be
interrupted. To guarantee the reliability, a least proportion
of replicas should be running on different worker nodes and
in this paper we set this proportion less than 50%. This
proportion can be determined and adjusted easily by SPs
depending on their network service strategies.

In this paper, we propose EdgePV, a novel collaborative
architecture in which PVs expands the existing resource
capacity of Cloud-Edge infrastructure to handle online
containerized tasks during peak hours at edge. An incoming
task can be abstracted in a form of multiple replicas
running on independent containers in a containerization
framework. The online task offloading problem of the
proposed collaborative framework is formulated as Binary
Integer Programming (BIP) with respect to minimizing
offloading costs while maximizing accumulative rewards.
Efficiently scheduling the tasks, specifically the number of
task replicas throughout the collaborative paradigm with
respect to stringent constraints, has been still unsolved.
Hence, we propose Genetic Algorithm (GA), a mature
metaheuristic algorithm, to solve the task offloading problem
meeting rigid task requirements (e.g. delay-sensitive) with
low costs and high reliability. Furthermore, owners of PVs
who are selling their idle resources can obtain accumulating
reward points (user utility) that are able to be converted to
parking tickets, gift-card, shopping vouchers, gas, and so
on.

As illustrated in Fig. 1, we suggest edge server im-
plements Kubernetes as a master node whereas remote
cloud, available computing resources of edge server and
PVs can run as worker nodes. PVs are installed a light-
weight Kubernetes version (e.g. K3S), permitted as preamble
nodes in the network due to the uncertainty of their parking
time. The master node manage the state of the cluster,
schedule the containers, accept or reject the task requests.

A scheduler in the master node conducts pod placement
(running container) across the set of available nodes. This
proposed architecture improves the elasticity and agility of
the existing infrastructure to cope with any possible service
disruption caused by the mobility of PVs, which has not
been solved before. It is also envisaged that PVs could be
completely electric-based in near future, and they would
be automatically charging while parking. Moreover, D2D
technology can be possibly integrated into this collaborative
infrastructure, but it is beyond the scope of this research
since its main goal is to tackle the online task offloading
problem. We divide the contents of this paper into the
following sections. The related work will be presented in
Section II. Section III will formulate the problem. Section IV
describes the proposed GA algorithm based on the problem
formulation. Then the simulation results will be shown in
Section VI. Section VII will conclude the paper.

II. RELATED WORK

PVs as infrastructure have recently received significant
attentions since they expand the existing computing infras-
tructure for computation, communication and storage (CCS).
Enabling PVs for vehicular cloud computing in Internet of
Vehicle has studied in [5]–[11].

Arif et al. in [5] studied the simple model of a vehicular
cloud (VC) formed by PVs in an international airport. [6]
presented a multi-layered vehicular cloud architecture based
on cloud computing and Internet of Thing (IoT) technology.
Similarly, the recognition of a VC erected on PVs in a
parking lot as a spatial-temporal network architecture for
CCS was investigated in [7]–[9], [12]. Additionally, [10]
concerned the feasibility of PVs as a computation paradigm,
and introduced an incentive algorithm offering accumulating
rewards for PVs by selling their resources. Moreover, Hou
et al. [13] approached the vehicular fog computing (VFC)
that exploited connected PVs as the infrastructure to handle
realtime services at the edge. Similarly, [14] presented a
fog computing architecture deployed in Internet of Vehicle
(IoV) systems to provide computational resources to end
users with latency guarantee. Recently, Parked Vehicle
Edge Computing (PVEC) where PVs as accessible edge
computing nodes to deal with task allocation has been
proposed in [1], [3], [15]. The authors in [1] explored
possible opportunistic resources to handle computational
tasks in a combined infrastructure between vehicle edge
computing (VEC) servers and PVs. [3] introduced a dynamic-
pricing strategy in aim at minimizing average costs and
meeting the QoS constraints. Additionally, a containerized
task scheduling scheme enabled by PVEC was proposed
in [15] concerning the social welfare optimization for
both users and PVs. [11] proposed a scalable vehicle-
assisted MEC infrastructure that integrated the remote cloud,
MEC and mobile volunteer vehicles (buses) to process task
requests from IoT devices. It may look similar to the idea
of this paper but our paper is aimed at solving the online
task offloading problems in container-based computing
framework (EdgePV) concerning the allocation of several
task replicas. Our proposed algorithm not only take the
network costs, but also the accumulating rewards achieved
by selling computational resources of PVs into account.

EdgePv involves PVs in parking lot which are more popular
and reliable than buses due to their less mobility.

III. PROBLEM FORMULATION

In this section, we will formulate our model that considers
resource constraints of the network edge as the orchestration
scheduler placed in edge server aside in 5G base station
(BS).
A. System Model

In this paper, we concern are CPU, memory and band-
width resources. Network edge consists of various types of
worker nodes (cloud, edge and PVs) that are connected to
the master node located in edge server via different links.
For example, cloud node connects to the master node via
optical link while PVs integrate into the edge via wireless
links in which available bandwidth of a vehicle is dependent
on the distance to BS. Thus, it can consider the network
edge with a star topology in which root and leaves are
master node and worker nodes respectively. As illustrated
in Fig. 1, a typical outdoor parking lot is investigated where
PVs are initially required to register their information (e.g.
owner’s ID, license plate, preferable parking availability) and
vehicle resources (e.g. computational capacity, storage) with
a SP. When PVs arrive a parking lot or complete tasks, they
can send/update their state information to the SP or master
node. The edge network is modeled as a directed graph
G = (N,L) where N is the set of worker nodes whereas L
is the set of corresponding links. The edge server connects
to the remote cloud via an optical link and PVs connects
to the network edge via wireless links, denoted as lc and lv
respectively. Each worker node can initialize several pods
to run containers processing task replicas simultaneously
with QoS guarantee. A given task k has CPU c(k), Memory
m(k), Bandwidth b(k), tolerable maximum latency tm(k)
and the set of replicas ð(k) requirements. kj denotes a jth

replica of the task k ∈ K, then
∑
kj = ð(k). A worker

node ni ∈ N has its own resource capacity to operate a
limited number of containers. Denote C(ni) and M(ni)
as CPU and memory capacity that ith worker node can
provide respectively. Let denote Kc, Ke, and Kp as the set
of tasks offloaded to the cloud, edge and PVs respectively.
The residual CPU and Memory capacity of a worker node
can be computed as below:

RuC(ni) = C(ni)−
∑
k∈K

∑
j∈ð(k)

c(kj),∀ni ∈ N (1)

RuM (ni) = M(ni)−
∑
k∈K

∑
j∈ð(k)

m(kj),∀ni ∈ N (2)

where u denotes worker node type (Cloud: c, Edge: e, PVs:
p)

B. Channel Model
1) Core network offloading latency: Total network

latency comprises data transmission time and task execution
time. The formal is highly correlated to the remaining
bandwidth of the link lc, while the later depends on how
busy the cloud is to handle the offloaded tasks or to operate
other services. Large number of tasks offloaded to the cloud
via lc and less residual resources increase network latency,
especially in peak hours. Thanks to accelerating technologies

in data center, the delay caused by writing or accessing the
data volumes from memory can be neglected. The cloud
offloading latency tc(lc) including the transmission delay
and the processing delay can be computed as below:

tc(k) = max
j∈ð(k)

{
χkj
ξc

+
χkjfkj
RcC(ni)

+
d

v
+ Th} ≤ tm(k) (3)

where ξc and fk denote the transmission rate of server
and the number of CPU cycles utilized to calculate per bit
respectively. Thus, the total number of CPUs required to
calculate the task k can be expressed as χkfk. d, v and Th
are the distance between the core cloud and edge cloud,
the speed of light and the constant time of handling an
incoming task respectively. Edge devices transmit tasks to
the edge servers via wired or wireless links (base station) for
processing. For simplification, the delay caused by handling
a task can be described as Th =

χk
Beν

. where ν is a discount

factor that reflects fluctuations of bandwidth at the edge
(0 < ν < 1). Different from the remote cloud, when the task
is managed at the edge, the delay can be only caused by the
remaining computational capacity to process the task. The
edge offloading latency te(k) can be computed as below:

te(k) = max
j∈ð(k)

{
χkjfkj
ReC(ni)

+ Th} ≤ tm(k) (4)

2) PVs latency: Unlike the cloud/edge nodes that can
be considered as stable, PVs shall be considered as pre-
emptible nodes due to their uncertain mobility. Increasing
the number of replicas can be a possible approach to avoid
service disruption. By that solution, the master node might
have more time to migrate the current task to other nodes
for QoS guarantee.

Similar to [11], we leverage LTE-A for wireless commu-
nication between the base station and PVs, and consider
the system applying orthogonal frequency-division multiple
access (OFDMA) scheme. Denote the parameter dbs,p is the
distance between the base station and pth PV. The path loss
of the base station and parked vehicle can be characterized
as d−σbs,p and the white Gaussian noise power N0, where σ
factor is the path loss exponent. The corresponding wireless
channel is modeled as frequency-flat block-fading Rayleigh
fading channel that is denoted as h. Accordingly, the data
rate capacity of the pth PV can be expressed as:

ξp = Bplog2(1 +
PTX .d

−σ
bs,p.|h2|

N0 + I
) (5)

where the parameter Bp denotes the channel bandwidth.
PTX and I represents the transmission power of base station
and inter-cell interference respectively. The PVs offloading
latency tp(k) can be computed as below:

tp(k) = max
j∈ð(k)

{
χkj
E[ξp]

+
χkjfkj
RpC(ni)

+ Th} ≤ tm(k) (6)

In this paper, we define two types of online tasks including
delay-sensitive and delay-insensitive akin to [4]. The former
is merely handled at the edge node or PVs due to their closest
proximity, while the later can be placed on any network
nodes (Cloud, Edge and PVs). Next, we compute the costs
of mapping the task replicas into the worker nodes through
the collaborative computation platforms. The mapping costs
involve sum of total number of CPUs required to compute

task replicas, memory, bandwidth and energy consumption
(e.g. battery) for operating replicas at PVs since cloud
and edge computing platforms possess very high energy
efficiency. Offloading cost at the Cloud can be expressed as
below:

ΞCc
(k) =

∑
j∈ð(k)

WCc
χkjfkj

Cc −
∑
k′∈Kc

c(k′) + δ
(7)

ΞMc
(k) =

∑
j∈ð(k)

WMc
m(kj)

Mc −
∑
k′∈Kc

m(k′) + δ
(8)

ΞBc(k) =
∑
j∈ð(k)

WBc

χ(kj)
tm(kj)

Bc −
∑
k′∈Kc

χ(k′)
tm(k′) + δ

(9)

where δ is small positive number to prevent dividing by
zero. Total cost of offloading a task to the cloud:

Ξck = ΞCc
(k) + ΞMc

(k) + ΞBc
(k) (10)

When the given task is processed at the edge, it can be
considered as local processing, so the offloading cost at the
Edge is computed as below:

ΞCe
(k) =

∑
j∈ð(k)

WCe
χkjfkj

Ce −
∑
k′∈Ke

c(k′) + δ
(11)

ΞMe
(k) =

∑
j∈ð(k)

WMe
m(k)

Me −
∑
k′∈Ke

m(k′) + δ
(12)

Total cost of offloading a task to the edge:

Ξek = ΞCe
(k) + ΞMe

(k) (13)

Similarly, offloading cost of a task to PVs can be computed
with additional energy consumption attribute as below:

ΞCp(k) =
∑
j∈ð(k)

WCp
χkjfkj

Cp −
∑
k′∈Kp

c(k′) + δ
(14)

ΞMp(k) =
∑
j∈ð(k)

WMp
m(k)

Mp −
∑
k′∈Kp

m(k′) + δ
(15)

ΞBp
(k) = WBp

χkj
tm(k)ξp;

,∀k ∈ Kp (16)

Ep(k) =
∑
j∈ð(k)

χkjfkjep (17)

where ep is a coefficient, that can be achieved by:

ep = ε(RpC(ni))
2 (18)

where ε denotes the energy coefficient.
Total cost of offloading a task k to a PV:

Ξpk = ΞCp
(k) + ΞMp

(k) + ΞBp
(k) + ςEp(k); (19)

where ς is energy cost coefficient.
3) PVs’ Utility: To encourage PVs to sell their idle

resources while parking in the parking lots, owners of PVs
should receive the rewards when they accept to process
tasks on their vehicles. Let ϕp represent the revenues by
accepting the tasks and the utility of a PV can be calculated

as below:
$p = ϕp − ρEp(k) (20)

where ρ denotes a coefficient of energy price, and ϕp can
be expressed:

ϕp = σ
∑
j∈ðk

rcpχkjfkj + rmp m(kj) (21)

where rcp and rmp are the unit prices for offering CPU
and memory resources respectively. It is recognized that
minimizing the cost embedding tasks would increase the
economical benefits gained by accepting to process the
requested tasks in PVs. Variables:

Ackj =

{
1, kj deployed on cloud, ∀j ∈ ð(k).

0, otherwise.

Aekj =

{
1, kj deployed on edge, ∀j ∈ ð(k).

0, otherwise.

Apkj =

{
1, kj deployed on PVs, ∀j ∈ ð(k).

0, otherwise.

Objective:

Minimize
∑
k∈K

∑
j∈ðk

ΞckAckj+ΞekAekj+(ηΞpk+(1−η)
1

ϕpk
)Apkj

(22)

w.r.t Ackj ,A
e
kj ,A

p
kj

Constraints:
Ackj +Aekj +

∑
p∈N
Apkj = 1, j ∈ ð(k),∀k ∈ K (23)

1 ≤
∑
j∈ð(k)

Apkj ≤
ð(k)

2
,∀k ∈ K (24)

∑
kj = ð(k),∀k ∈ K (25)

RcC(ni), R
e
C(ni), R

p
C(ni) ≥ c(k), ni ∈ N (26)

RcM (ni), R
e
C(ni), R

p
M (ni) ≥ m(k), ni ∈ N (27)

RcB(ni), R
e
B(ni), ξni ≥ b(k), ni ∈ N (28)

tc, te, tp ≤ tm(k) (29)

Remarks:
• Function (22) includes dual objectives: minimizing the

cost of offloading computation tasks and maximizing
the PV rewards when the tasks are offloaded to PVs
where η is a damping factor within (0,1).

• Constraint (23) ensures that each task replica is only
deployed at one worker node.

• Constraint (24) guarantees that no more than 50% the
number of task replicas can be placed at the same PV
node.

• Constraint (31) makes sure that total number of replicas
scheduled are at least equal to the required replicas of
the corresponding task.

• Constraints (26),(27), and (28) assure that the residual
resources of the worker nodes (e.g. Cloud, Edge, PVs)
satisfies the capacity requirements of the task.

• Constraints (29) ensures the selected nodes satisfy the
latency constraints.

IV. OUR PROPOSED GENETIC ALGORITHM

A. Descriptions of Genetic Algorithm
GA algorithm is a mature metaheuristic that is motivated

by the Darwin evolution principle through natural selection,
including four major operations: initialization, selection,
crossover and mutation 1. To solve BIP problem, we present
a distributed parallel GA-based algorithm that operates on a
predefined number of independently machines, denoted as p,
to explore feasible solutions widely known as chromosomes.
The design of our proposed parallel algorithm is depicted in
Fig 2 in which p is set to 16. As illustrated, the offloading
procedures are successively working under a master node
(e.g. synchronization). Several working nodes run a GA
algorithm to discover as many feasible solutions as possible
for replica scheduling. The best solutions from the worker
nodes are synchronized to select the final solution for task
offloading. Our proposed algorithm in this study assumes to
schedule multiple task replicas at once instead of sequentially
mapping.

Start

A set of replicas of task k

Population
Initialization

Sorting

Mutation

Crossover

Termination

Selection

Population
Initialization

Sorting

Mutation

Crossover

Termination

Selection

Population
Initialization

Sorting

Mutation

Crossover

Termination

Selection

v

......

0 1

Synchronization

Termination

Finish

Scheduling

Fig. 2: Parallel operation scheme

Chromosome: A chromosome Cf represents a scheduling
solution of a set of replicas of a given task request that are
selected from the available nodes in random. Each gene
in a chromosome involves a mapping solution for a single
task replica. If there are G genes and M chromosomes,
the initial population P (MxG size) at the kth working
machine can be delineated as below:

P =



C1
C2
...
Cf
...
CM


=



g11 · · · gj1 · · · gG1
g12 · · · gj2 · · · gG2
...

. . .
...

. . .
...

g1f · · · gjf · · · gGf
...

. . .
...

. . .
...

g1M · · · gjM · · · gGM


(30)

1Due to page limitation, more details about GA algorithm can
be found in [16]

When a chromosome is established by N potential genes
that have qualified the feasibility process, such is defined
as a feasible solution for a task request.

Fitness Function: Our objective is to minimize the
scheduling costs and maximize the network utility when
replicas of a given task are offloaded to PVs. Fitness values
are utilized to evaluate the quality of a scheduling solution,
so higher fitness value represents a good solution.

F(k) =
∑
j∈ðk

1

Ξck
Ackj +

1

Ξek
Aekj + ((1− η)

1

Ξpk
+ ηϕpk)Apkj

(31)
New generations: In this paper, we randomly select

chromosomes to become parents to generate new population.
New chromosomes are intentionally generated to produce
new generation as a result of crossover and mutation
operations. Aimed at improving the diversity, the population
updates these new generated generations so it is consequently
evolved, increasing the possibility to achieve near-optimal
scheduling solution.
B. Terminations and Synchronization

A parallel operation is typically consisted of concurrent
processes, and each accomplishes its job at different time.
Waiting until all tasks finish their assignments is frustrated
as one or more tasks might take longer time to be done (e.g.
deadlock). Thus, if there is no better solution to be found in
t times; where t is denoted as a termination parameter, the
master procedure terminates worker nodes to reduce total
execution time. Moreover, the feasible solutions received
from the worker nodes are synchronized to determine the
best scheduling solution for the corresponding task request,
based on fitness function values. If accepted, the given task
replicas are consequently placed onto the corresponding
nodes in the network following the scheduling solution found.
Substrate network then updates its residual computational
resources to end the scheduling procedures.

V. COMPARED ALGORITHMS

We propose a metaheuristic algorithm that minimizes the
embedding cost while improves the PVs utility efficiently by
selecting proper worker nodes to run the task replicas. All
proposed algorithms allows to schedule multiple requested
task replicas into the same worker node, but the proportion
of the number of replicas placed in this node cannot exceed
50% (except Cloud/Edge nodes) in order to ensure the
service reliability. This setting can be flexibly changed
by SP. We investigate the scheduling efficiency of our
proposed GA-based algorithm by comparing with some
heuristic algorithms including: Baseline 1, Baseline 2, and
Baseline 3. Baseline 1 prefers Kubernetes default scheduler
with filtering and scoring procedures while Baseline 2
schedules online tasks by selecting worker nodes for task
offloading in random. Furthermore, Baseline 3 deploys
branch and bound selection policy to handle incoming tasks
[17]. There are basically three performance metrics for
performance evaluation including task acceptance ratios
(A/R), costs and accumulated utility.

20 40 60 80 100 120

Task arrival rate

0.0

0.2

0.4

0.6

0.8

1.0

A
c
c
e
p
ta

n
c
e
 r

a
ti

o

Cloud

Edge

Cloud-Edge

Cloud-Edge-PVs

Fig. 3: Acceptance ratio

20 40 60 80 100 120

Task arrival rate

25

50

75

100

125

150

175

200

A
v
e
ra

g
e
 c

o
s
t

Cloud

Edge

Cloud-Edge

Cloud-Edge-PVs

Fig. 4: Average costs between architectures

VI. NUMERICAL RESULTS

A. Simulation setup
We have developed a discrete event simulator to evaluate

the proposed algorithms. PVs dynamically arrive and depart
from a parking lot with 50 free parking spots. In fact, the
parking lot can fully be occupied, but we assume that the
parking capacity remains at least 50% up to 85% in peak
hours since not all of PVs are willing to sell their resources or
are qualified to join into the network to provide the services.
Furthermore, it is observed that parking duration of PVs is
ranging from 08 to 240 minutes [1] or 30 to 120 minutes
[12]. More than 85% of PVs spend maximum three hours in
a parking lot and serviceability probability of PVs achieves
around 90% at 60 minutes [1]. In this paper, the accumulative
parking duration of PVs is following Poisson distribution
with λ = 3600. As discussed in previous sections, the
online requested tasks can be classified into delay-sensitive
and delay-insensitive tasks. If the delay tolerance of a task
exceeds 20 ms, we considered it as a delay-sensitive demand.
Our simulation run approximately for 8 hours (peak business
working time) and the simulator will update the PVs every
20 minutes. Additionally, energy coefficient ε, coefficient
for energy price ρ and unit price for each CPU cycle σ are
set to 10−24, 0.003 and 2× 10−9 [12], respectively. Details
of simulation parameters can be found in Table I.
B. Performance Results

As illustrated in Fig. 3, Cloud-Edge-PVs paradigm
extends the resource availability of the network that increases
the possibility of accepting the incoming requests more than

TABLE I: Simulation Parameter Settings

Parameter Values
Maximum parking capacity 50
Total simulation time 30,000 seconds
Vehicle lifetime [480-14400] seconds
Cc / Mc / Bc 50GHz/1000MB/1Gbps
Ce / Me 20GHz / 500MB
W{Cc,Mc,Bc} 750
W{Ce,Me} 250
W{Cp,Mp,Bp} 10
Channel Bandwidth Bp 10 MHz
PTX / N0 / σ 1.3W / 3× 10−13 / 2
CPU Parked Vehicles Cp [1.5-2.0] GHz
Input data size χk [100 - 300] kb
CPU cycles per bit fk 1000 cycles
Memory requests m(k) [20-50] MB
Tolerable latency of tasks tm (0-100] ms
Arrival request rates A/R [10-120]
Request replications ð(k) [2 - 10]
rcp / rmp 10 / 100

40% compared to Cloud-Edge and Cloud architectures at the
task arrival rate of 120, respectively. Cloud or edge itself gets
lowest acceptance ratio due to their limited resource capacity
during peak hours. By preferring PVs for task offloading,
Cloud-Edge-PVs achieved the lowest average cost values
compared to all compared platforms as illustrated in Fig. 4.
In performance evaluation between proposed algorithms as
illustrated in Fig. 5, Baseline 1 performed worst in terms of
average costs due to its allocating strategies through filtering
and scoring procedures while Baseline 2 based on a random
strategy to select the worker nodes performed better than
Baseline 1. Amongst baseline algorithms, Baseline 3 was
originally designed to target reducing the offloading cost so
its performance was comparative to our proposed algorithm,
but EdgeGA was still better than Baseline 3 until arrival rate
of 80 and seemed to be lightly the same afterward as shown
in Fig. 5a. Online heterogeneous tasks were mostlikely
to be assigned to PVs which expectedly produce lower
offloading costs. In utility metric, EdgeGA outperformed all
compared algorithms following Baseline 2,Baseline 3 and
Baseline 1 respectively as depicted in Fig. 5b. The reason is
that EdgeGA simultaneously took both cost and utility into
account driven by an efficient fitness function (31). Besides,
we evaluated the availability of PVs regarding the acceptance
ratios on several arrival rates as depicted in Figure 5c. It has
been demonstrated that depending on the selected arrival
rates, each had different preferable PV availability. For
example, arrival rates (10, 20, 30, 40, 50) required 60%
availability of PVs to exceed 80% acceptance ratios while
arrival rates of 60 and 80 needed to reach 80% and 100%
to obtain the same result, respectively. These information
is vital for the network planners to achieve desired Key
Performance Indicators (KPIs) by adopting appropriate
strategies. For instance, SP may increase user incentives to
appeal more PVs join into the network, offload to another
cluster or expand edge server capacity. Furthermore, our
proposed GA-based algorithm successfully processed a
given task in average 1.217ms compared to 14.725ms

20 40 60 80 100 120

Task arrival rate

20

40

60

80

100

120

140

A
v
e
ra

g
e
 c

o
s
t

Baseline_1

Baseline_2

Baseline_3

EdgeGA

(a) Average offloading cost

20 40 60 80 100 120

Task arrival rate

40

60

80

100

120

140

160

180

200

A
v
e
ra

g
e
 u

ti
li
ty

Baseline_1

Baseline_2

Baseline_3

EdgeGA

(b) Average utility

0 20 40 60 80 100

Availability (%)

0.2

0.4

0.6

0.8

1.0

A
c
c
e
p
ta

n
c
e
 r

a
ti

o

ArrivalRate=10

ArrivalRate=20

ArrivalRate=30

ArrivalRate=40

ArrivalRate=50

ArrivalRate=60

ArrivalRate=80

(c) A/R towards PV availability

Fig. 5: Performance evaluation between compared algorithms

in sequential GA operation. This superior execution-time
performance attained by deploying the parallel scheme for
GA algorithm as proposed in Fig. 2. This execution time is
very competitive, and it somehow lifts the curse of possibly
high computation time when running GA algorithms.

ACKNOWLEDGEMENT

This research was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC) Engage
grant (EGP 543449-19).

VII. CONCLUSION
In this paper, we have studied the collaborative framework

where PVs are potentially considered as an extension for the
existing cloud-edge computing infrastructure to handle on-
line container-based task offloading in peak hours. We have
devised Kubernetes, a container orchestrator, deployed at
edge servers as master nodes, while remote cloud, edge itself
and PVs perform as worker nodes. Extensive experiments
demonstrated that our proposed collaborative paradigm
not only extends the computation resources of existing
network infrastructure by taking advantage of high on-board
computers of PVs efficiently, but also brings a flexible,
agile and reliable framework for task offloading problems.
In future work, we consider sophisticated algorithms (e.g.
machine learning techniques) for task offloading problem.

REFERENCES

[1] X. Huang, R. Yu, J. Liu, and L. Shu, “Parked vehicle edge
computing: Exploiting opportunistic resources for distributed
mobile applications,” IEEE Access, vol. 6, pp. 66 649–66 663,
2018.

[2] F. H. Rahman, A. Yura Muhammad Iqbal, S. H. S. Newaz,
A. Thien Wan, and M. S. Ahsan, “Street parked vehicles
based vehicular fog computing: Tcp throughput evaluation
and future research direction,” in 2019 21st International Con-
ference on Advanced Communication Technology (ICACT),
2019, pp. 26–31.

[3] D. Han, W. Chen, and Y. Fang, “A dynamic pricing strategy
for vehicle assisted mobile edge computing systems,” IEEE
Wireless Communications Letters, vol. 8, no. 2, pp. 420–423,
2019.

[4] O. Fadahunsi and M. Maheswaran, “Locality sensitive
request distribution for fog and cloud servers,” Service
Oriented Computing and Applications, vol. 13, no. 2,
pp. 127–140, Jun 2019. [Online]. Available: https:
//doi.org/10.1007/s11761-019-00260-2

[5] S. Arif, S. Olariu, J. Wang, G. Yan, W. Yang, and I. Khalil,
“Datacenter at the airport: Reasoning about time-dependent
parking lot occupancy,” IEEE Transactions on Parallel and
Distributed Systems, vol. 23, no. 11, pp. 2067–2080, 2012.

[6] W. He, G. Yan, and L. D. Xu, “Developing vehicular data
cloud services in the iot environment,” IEEE Transactions on
Industrial Informatics, vol. 10, no. 2, pp. 1587–1595, 2014.

[7] F. Dressler, P. Handle, and C. Sommer, “Towards a vehicular
cloud - using parked vehicles as a temporary network and
storage infrastructure,” in Proceedings of the 2014 ACM
International Workshop on Wireless and Mobile Technologies
for Smart Cities, ser. WiMobCity ’14. New York, NY,
USA: Association for Computing Machinery, 2014, p. 11–18.
[Online]. Available: https://doi.org/10.1145/2633661.2633671

[8] E. Al-Rashed, M. Al-Rousan, and N. Al-Ibrahim,
“Performance evaluation of wide-spread assignment schemes
in a vehicular cloud,” Vehicular Communications, vol. 9,
pp. 144 – 153, 2017. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S2214209616301863

[9] T. Kim, H. Min, and J. Jung, “Vehicular datacenter modeling
for cloud computing: Considering capacity and leave rate
of vehicles,” Future Generation Computer Systems, vol. 88,
pp. 363 – 372, 2018. [Online]. Available: http://www.
sciencedirect.com/science/article/pii/S0167739X18300487

[10] C. Li, S. Wang, X. Huang, X. Li, R. Yu, and F. Zhao, “Parked
vehicular computing for energy-efficient internet of vehicles:
A contract theoretic approach,” IEEE Internet of Things
Journal, vol. 6, no. 4, pp. 6079–6088, 2019.

[11] S. Raza, W. Liu, M. Ahmed, M. R. Anwar, M. A. Mirza,
Q. Sun, and S. Wang, “An efficient task offloading scheme
in vehicular edge computing,” Journal of Cloud Computing,
vol. 9, no. 1, p. 28, Jun 2020. [Online]. Available:
https://doi.org/10.1186/s13677-020-00175-w

[12] Y. Cao, Y. Teng, F. R. Yu, V. C. M. Leung, Z. Song,
and M. Song, “Delay sensitive large-scale parked vehicu-
lar computing via software defined blockchain,” in 2020
IEEE Wireless Communications and Networking Conference
(WCNC), May 2020, pp. 1–6.

[13] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen,
“Vehicular fog computing: A viewpoint of vehicles as the
infrastructures,” IEEE Transactions on Vehicular Technology,
vol. 65, no. 6, pp. 3860–3873, 2016.

[14] X. Wang, Z. Ning, and L. Wang, “Offloading in internet of
vehicles: A fog-enabled real-time traffic management system,”
IEEE Transactions on Industrial Informatics, vol. 14, no. 10,
pp. 4568–4578, 2018.

[15] X. Huang, P. Li, and R. Yu, “Social welfare maximization
in container-based task scheduling for parked vehicle edge
computing,” IEEE Communications Letters, vol. 23, no. 8,
pp. 1347–1351, 2019.

[16] M. Mitchell, An Introduction to Genetic Algorithms. Cam-
bridge, MA, USA: MIT Press, 1998.

[17] H. Zhu and C. Huang, “VNF-B&B: Enabling edge-based
NFV with CPE resource sharing,” in 2017 IEEE 28th Annual
International Symposium on Personal, Indoor, and Mobile
Radio Communications (PIMRC), 2017, pp. 1–5.

