
Joint Node-Link Algorithm for Embedding Virtual
Networks with Conciliation Strategy

Khoa Nguyen , Qiao Lu , and Changcheng Huang
Department of Systems and Computer Engineering
Carleton University, Ottawa, ON K1S 5B6, Canada

Email: {khoatnguyen, qiaolu, huang}@sce.carleton.ca

Abstract—Network virtualization (NV) has widely envisioned
as a crucial factor for the success of the future networks by
enabling a flexible, cost-effective and on-demand deployments
of multiple network service requests on a shared physical
infrastructure. The major challenge of NV is to efficiently
and effectively embed heterogeneous virtual network requests
(VNRs), consisting of a set of virtual nodes connected by
virtual links, onto a shared substrate network meeting various
stringent resource constraints. Most of the research papers in
this field have merely focused on separate virtual node mapping
(VNoM) or virtual link mapping (VLiM) with scalable heuristic
algorithms. The lack of a coordination between node and link
mapping stages results in low acceptance ratio as well as network
revenues. In this paper, we propose a new approach based on
Genetic Algorithm (GA) that jointly coordinates node and link
mappings where the link mapping is relied on a path ranking
method. A novel heuristic conciliation mechanism is introduced
to handle a possible set of infeasible link mappings during gener-
ating virtual embedding solutions in GA’s operations. Extensive
evaluation results show that our proposed GA-based algorithm
outperforms state-of-the-art virtual embedding algorithms in all
performance metrics we adopted.

Index Terms—Network virtualization, virtual network em-
bedding, joint node-link mapping, path ranking, conciliation
strategy, Genetic Algorithm.

I. INTRODUCTION

NV is emerged as a de facto paradigm for the foreseen
success of future networks such as virtualized fifth generation
[1], smart Internet of Things (IoT) networks [2]. The adoption
of NV enables to share physical resources amongst multiple
VNRs, providing an isolated coexistence of a number of
VNs on a shared underlying substrate network (SN). In
virtualization environment, a network service provider (SP)
commonly converts a service or application into a VN
which is then transferred to a corresponding infrastructure
provider (InP) as a form of a VNR. The InP attempts to
map such VN onto its substrate infrastructure meeting several
rigorous resource constraints by adopting an optimization
process. Mapping VNRs onto the shared underlying physical
infrastructure with varied topology and stringent resource
demands is known as a virtual network embedding (VNE)
problem. VNE is widely known as a generalization of second
stage of network function virtualization resource allocation
(NFV-RA), namely virtual network function forwarding graph
embedding (NFV-FGE) since VNE is in the same problem
domain with NFV-RA as the goal of both problems is to
efficiently allocate VNRs on the top of SN infrastructure
[3]. NFV-FGE is also the central problem of NFV-RA
accompanying with virtual network functions (VNFs) chain
composition (known as service function chaining) and VNFs
scheduling, where the chain composition stage has been
usually neglected [3]. Additionally, VNE is assumed to be

more complicated than NFV-FGE in some specific cases and
topology [4], [5]. VNE is proven to be NP-Hard either for
VNoM or VLiM [3], [6]. Optimization models (e.g. Integer
Linear Programming (ILP)) are formulated to achieve optimal
VNE solutions, but there are several challenges since these
models have to confront with scalability, complex deployment,
and high time complexity. Exact solutions are not indeed
tailored for online VNE problems. Hence, most of research
papers have concentrated on efficient designs of heuristics
or meta-heuristic algorithms to tackle the aforementioned
obstacles of the optimization models.

Similar to NFV-FGE, VNE process consists of two stages:
VNoM and VLiM. Up to now, most VNE approaches have
been proposed to uncoordinately solve VNoM phase following
VLiM phase. There are a large number of solutions for VNoM
problem whereas VLiM is usually relied on shortest path
methods (e.g., Dijkstra’s algorithm), multi-commodity flow
(MCF) and recently distributed parallel GA algorithms [7].
The decoupling can facilitate the complexity of algorithmic
deployment, but this common approach is most likely to
sacrifice some degrees of optimality. Lack of coordination
between VNoM and VLim stages would lead to low accep-
tance ratio and correspondingly low network revenue. For
instance, although VNoM stage can figure out promising
substrate nodes for mapping virtual nodes in a VNR, there
may not be any paths in the substrate network that have
enough resources to support the request for virtual links
connecting those virtual nodes. Then, the corresponding VNR
is obviously rejected. In practise, the most common failures
of mapping VNRs invariably emanate from the ineffective
link mapping algorithm [8]. In this paper, we propose a GA-
based algorithm to solve VNE problem by jointly mapping
virtual nodes and corresponding virtual links. GA attempts to
find potential solutions for all virtual nodes in a VNR. Then,
corresponding virtual links will be sequentially embedded
based on a novel path ranking method which allows to select
the best virtual link mappings subject to multiple objectives.
If no feasible paths are found for some link requests due to
network congestion, the current mapping solutions of virtual
nodes should be reconsidered with minimal node and link
mappings changed. As a result, we introduce an efficient
conciliation algorithm to deal with this problem. Furthermore,
we present a distributed parallel GA-based scheme that exploits
a set of distributed parallel machines to reduce the operation
time. A brief comparison towards execution time between
sequential and parallel manners is also provided. Splittable
mapping may achieve better resource utilization in theory, but
this solution can generate abundant overhead for maintaining
consistent network state and possibly results in out-of-order



delivery problem with extra latency that might be unacceptable
for sensitive-delay applications [9]. Thus, we only consider
unsplittable-enabled mapping solutions in this paper.

The remainder of this paper is organized as follows:
the network model is formulated in Section II. Genetic
Algorithm approach for jointly node-link VNE mapping is
described in Section III. Performance evaluation is introduced
in Section IV while related work is presented in Section V.
Finally, Section VI is a conclusion of this paper.

II. NETWORK MODEL AND PROBLEM DESCRIPTIONS

A. Virtual Network Assignment
SN is modelled as a weighted undirected graph Gs =

(Ns, Ls), where Ns is the set of substrate nodes and Ls is
the set of substrate links. A substrate node ns ∈ Ns with a
geographical location loc(ns) has the available CPU capacity
c (ns), whereas each physical link ls ∈ Ls between any two
physical nodes possesses a b (ls) bandwidth capacity. For
simplification, memory and storage resources are excluded
in this paper. Let model the ith arriving VNR as a weighted
undirected graph denoted as Gvi = (Nv

i , L
v
i ), in which Nv

i is
the set of virtual nodes while Lvi is the set of virtual links. Each
virtual node nvi ∈ Nv

i has a requested CPU capacity c(nvi ),
whereas a virtual edge lvi (s

v
i , d

v
i ) ∈ Lvi between a virtual

source node svi and a virtual destination node dvi possesses
a required bandwidth capacity b (lvi ). Each VNR normally
prefers a mapping radius D(nvi ) revealing how far virtual
node nvi can be allocated from loc(nvi ). In this paper, our
objectives are to maximize average acceptance ratio, average
revenue over cost ratio and to improve node and link mapping
and propagation delay, satisfying node and link constraints
imposed by VNRs.

Node constraints:
c(nvi ) ≤ RN (AN (nvi )) (1)

D(loc(nvi ), loc(AN (nvi ))) ≤ D(nvi ) (2)

AN (nvi ) ∈ Ns (3)

RN (ns) = c(ns)−
∑

nv→ns

c(nvi ) (4)

where AN (nvi ) is mapping solution of the virtual node.
D(is, jd) and RN (ns) denote the distance between is and
jd, and the remaining CPU capacity of a substrate node
respectively.

Link constraints:
RL(es) ≥ b(lvi ), ∀es ∈ Es(AL(lvi )) (5)

RL(es) = min
ls∈es

RL(ls) (6)

RL(ls) = b(ls)−
∑
lvi →ls

b(lvi ) (7)

where Es(AL(l
v
i )) denotes a set of all available paths from the

source AN (svi ) to destination node AN (dvi ). RL(e
s) is the

available bandwidth of a substrate path es ∈ Es, and RL(ls)
is the residual substrate link capacity. A mapping solution
is called “feasible” if it meets resource constraints (1)-(4)
for node mapping or (5)-(7) for link mapping. A path for a
mapped virtual link in the feasible solution is therefore called
a feasible path.
B. Performance metrics

Main objectives of a VNE problem are maximizing the rev-
enues of InP while minimizing the corresponding embedding

cost. The ratio of average revenue over cost can be used to
evaluate the efficiency of any VNE algorithm. In this paper,
InP’s revenue is calculated as the sum of total virtual resources
mapped on the SN over time whereas the embedding cost of
the ith VNE C(Gvi ) is the sum of total network resources
allocated to the ith VN.

Revenue to cost ratio of ith VNR Gvi can be formulated
as below:

Υ(Gvi ) =
R(Gvi )

C(Gvi )
=

wb ∗
∑
lvi ∈L

v
i

b(lvi ) + wn ∗
∑

nv
i ∈N

v
i

c(nvi )

∑
nv
i ∈N

v
i

c(nvi ) +
∑
lvi ∈L

v
i

∑
ls∈Ls

f
lvi
ls

(8)

where R and C are the generated revenue and network cost
respectively. b(lvi ) and c(nvi ) are the requested bandwidth of
the virtual link lvi and the requested CPU of the virtual node
nvi while wb and wn are the unit weights of the bandwidth
and CPU resources respectively. Besides, f l

v
i

ls defines the
bandwidth of substrate link ls that is allocated to the virtual
link lvi .

Acceptance ratio: is a ratio between the number of accepted
VNRs over the number of arrived VNRs during an interval
time τ is computed as following:

Aτc =

∣∣∣∣ξa(τ)

ξ(τ)

∣∣∣∣ (9)

where ξa(τ) and ξ(τ) is the number of the successfully
embedded VNRs and the number of VNRs respectively.

Node utilization reflects the distribution of network loads
on the corresponding SN. Node utilization is derived from
the amount of network resources occupied by virtual node
requests during a certain time, divided by the total amount of
node resources. Node utilization can be expressed as follows:

UN (Ns) =
∑

ns∈Ns

(

∑
nv
i →ns

c(nvi )

c(ns)
) ∗ Ti , (10)

where Ti represents the duration of the accepted ith VNR.
Link utilization: Similarly, link utilization can be presented

as follows:

UL(Ls) =
∑
ls∈Ls

(

∑
lvi →ls

b(lvi )

b(ls)
) ∗ Ti , (11)

Fitness Function (FF) assesses the quality of VNE solutions
that can be reproduced in next generations. Fitness values
serve as rewards to help guide the searching process for the
optimal solution. In this paper, FF takes the mapping cost, hop-
count and propagation delay into consideration and decides
which the best solution for a VNR is. Due to the coordinated
process of our proposed approach, these factors reflect total
network resources including both CPU and bandwidth as well
as network latency. Our multi-objective fitness function F(S)
can be expressed as below:

F(S) = (
1

C(Gvi )
) ∗ wc + (

1∑
lvi ∈L

v
i
hAL(lvi )

) ∗ wh

+(
1∑

lvi ∈L
v
i
dP(AL(lvi ))

) ∗ wp
(12)

where, S, h and dP are a feasible solution, hop-count
and propagation delay of the link mapping solution of lvi



respectively. wc, wh, and wp are weight parameters equivalent
to cost, hop-count and propagation delay factors.

III. JOINT NODE-LINK MAPPING

GA is an appealing AI approach for solving constrained
or unconstrained optimization problems. A conventional GA
usually includes four main operators: initialization, selection,
crossover and mutation. Our proposed parallel GA scheme
is presented in Fig 1. Each working machine independently

Fig. 1: Parallel operation scheme

runs GA algorithm with a pre-defined number of iterations
to explore feasible solutions for a VNR. The best-matching
outcome is selected among these parallel machines. When
node mappings are changed, the link mappings altered
accordingly.

A. Path Ranking Algorithm

We argue that substrate paths for each pair of source and
destination nodes in a SN can be determined in advance due to
the fact that topology of a SN is basically static. Consequently,
initial path database for VLiM can be constructed completely
prior to the arrival of online VNRs. The shortest path method
(e.g., Dijkstra’s algorithm) focusing on hop-count feature is
used to build this database, called initial path pool generation
in Fig. 1. When there is a virtual link request, the path ranking
algorithm sequentially finds a predefined number of feasible
paths in database for each source-destination pair (e.g., r = 10)
based on the node mapping information of such request given.
This number is large enough to guarantee a good mapping
for any link request and it can be adjusted to compromise a
trade-off between expected performance and execution time.
These paths can then be ranked by the multi-objective fitness
function (Eq. 12) to select the best mapping solution for the
virtual link request.

B. Conciliation Construction

In GA’s operations, population consisting of several chro-
mosomes is generated in random manner. A VNR includes
a set of virtual nodes connected with several virtual links.
Accordingly, there are two separate sets of solutions for virtual
nodes and virtual links. The later solutions are dependent on

the former ones, so if the node mappings are changed, the link
solutions are altered correspondingly. Hence, our proposed
GA algorithm defines a specific mapping of a virtual node as
a gene. A chromosome Cf is a specific mapping of all the
virtual nodes of a VNR. Each gene gjf is associated with a
mapping solution of a virtual node, where f and j indicate the
chromosome f and virtual node j in a VNR respectively. We
consider all virtual node mappings are similar. Therefore, their
order in a chromosome can be assigned in an arbitrary manner.
Once assigned, all the chromosomes will follow the same
order. To enhance the capability and reduce execution time,
we initially generate a feasible node pool where all eligible
substrate nodes meeting the least virtual node requirements
of the VNR are collected. Each virtual node in a VNR is
consecutively mapped by a substrate node which is randomly
selected in the initial node pool, meeting resource requirements
of the virtual node (Eq. (1)-(4)). We assume that mapping
virtual nodes is conducted in random to prevent the possible
premature convergence problem.

When mappings of all virtual nodes are determined, a path
ranking method as described in III-A is applied to explore
feasible mapping solutions of associated virtual link requests,
based on the already-found node mapping information. These
physical paths must meet virtual resource requirements to
become potential link mapping solutions (Eq. (5)-(7)). Since
a feasible solution for the whole VNR has been successfully
defined, a chromosome will be established. If a virtual
link request cannot find any feasible path (e.g., network
congestion), such pair of virtual nodes need to be remapped.
We would like to minimize the number of virtual nodes

Fig. 2: Examples of infeasible virtual link mappings

associated with the corresponding failed-mapping virtual links
that should be remapped. Let us take an example with a
specific VNR towards 7 virtual nodes and 6 virtual links
as shown in Fig. 2. Fig 2a is an ideal situation when all
virtual nodes and links have been successfully determined their
embedding solutions. Next figures illustrate some possible
failures of virtual link mappings. In Fig. 2b, we can see that
there are three infeasible link mappings of three virtual link
requests including {A - G, A - F and A - D}. With node
embedding solutions {A→ h,G→ n, F → m and D → k},
there are no feasible paths found between {h→ n, h→ m,
and h → k}. If these all already-mapped virtual nodes or
virtual nodes {D, F and G} are revisited, we need to remap
at least five virtual links. Otherwise, when the virtual node A,
is revisited, the remapped virtual links could be three only.



Similarly, virtual nodes C/D, E and G should be reconsidered
in Fig. 2 while virtual nodes C and E can be remapped
in the last figure due to least remapping. Inspired by this
idea, we present a heuristic conciliation algorithm to handle
this problem as detailed in Algorithm 1. In this paper, the
conciliation is now considered in GA algorithm to solve the
VNE problem.

Algorithm 1 Heuristic Conciliation Algorithm
1: Input:
2: Initial solutions of virtual node mapping
3: A set of failed virtual links after link mapping phase
4: Output:
5: Virtual nodes should be remapped
6: procedure HEURISTIC CONCILIATION STRATEGY
7: Step 1: Construct a map Mp of virtual nodes based on their

presence in a set of failed virtual links
8: Step 2: Create a map Mn of virtual nodes based on their

nearest neighbors . These steps can be done in advance prior
this algorithm

9: Initialize an array for remapped nodes
10: for each infeasible virtual link do
11: if svi or dvi NOT in the array then
12: if Mp[s

v
i ] > Mp[d

v
i ] then

13: add svi into array
14: else if Mp[s

v
i ] < Mp[d

v
i ] then

15: add dvi into array
16: else
17: if Mn[svi ] > Mn[dvi ] then
18: add dvi into array
19: else
20: add svi into array
21: end if
22: end if
23: end if
24: end for
25: return node array
26: end procedure

C. Working node

Population Initialization: Each working machine starts
with a population initialization step. Denote M as a set of
chromosomes. Each chromosome includes N = |Nv

i | genes
that represent potential mapping solutions of all virtual node
requests in a VNR. An initial population P (MxN size) at a
working machine is generated as described in Section III-B.

P =



C1
C2
...
Cf
...
CM


=



g11 · · · gj1 · · · gN1
g12 · · · gj2 · · · gN2
...

. . .
...

. . .
...

g1f · · · gjf · · · gNf
...

. . .
...

. . .
...

g1M · · · gjM · · · gNM


(13)

As such, each chromosome in population is initially formed
and then the path ranking mechanism is deployed for VLiM
based on node mapping solutions that have been already
achieved. A conciliation mechanism is used to handle possible
failures of virtual link mappings with a goal of minimal
virtual node/link mappings revisited. Since feasible solutions
of all virtual nodes and links are successfully obtained, the
chromosome for a VNR is properly established. It appears that
if any node mapping changes, the associated link mapping is
affected accordingly.

New generations In this paper, we randomly select chro-
mosomes to be parents for generating their children. Selected
parents produce new generations as a result of crossover
and mutation operations, which consequently makes the
mapping solutions evolved after the number of iterations.
After these operations causing new generated nodes, the path
ranking method in Section III-B is implemented to explore
link mapping solutions. If no feasible paths are found, new
generations are discarded; otherwise, they will be updated into
the population to enhance the population diversity, increasing
the possibility of approaching near-optimal solutions. Thus,
we set both crossover and mutation probabilities equal to 0.9
in this paper.

Crossover: This procedure combines parental chromosomes
to generate new offspring for next generations. Cs and Cr
denote two parental chromosomes with their indexes s and r
in initial population, whereas new descendant chromosomes
are described as C(M+1) and C(M+2) respectively. jc indicates
a random crossover point between any genes within N length.
In crossover operation, offspring is established by swapping
genes between parents starting from the crossover point jc+1
to the end of the chromosomes as illustrated in (14). At this
time, node mappings have been changed, link mappings are
revisited accordingly thanks to the path ranking method. If new
generations are feasible, they will be updated into population.

P =



C1
...
Cs
...
Cr
...
CM
CM+1

CM+2


=



g11 · · · gj
c

1 gj
c+1

1 · · · gN1
...

. . .
...

. . .
...

g1s · · · gj
c

s gj
c+1
s · · · gNs

...
. . .

...
. . .

...
g1r · · · gj

c

r gj
c+1
r · · · gNr

...
. . .

...
. . .

...
g1M · · · gj

c

M gj
c+1

M · · · gNM
g1s · · · gj

c

s gj
c+1
r · · · gNr

g1r · · · gj
c

r gj
c+1
s · · · gNs


(14)

Mutation: This operation typically adopts a modification
on an individual parent to produce new offspring. Mutation
samples the broad solution space and improves the searching
efficiency, preventing solutions from falling into the local
optima. A random gene of the selected parent is replaced
by a new gene to produce a new child. The new gene must
explicitly meet the resource constraints to be chosen. Similar
to crossover, path ranking mechanism is implemented to find
new link mappings due to node mappings changed. If feasible,
new generation is updated into population. Let denote jm

and gj
m

r′ as a random mutation point and new gene that
replaced the existing one in C(M+1), respectively. In mutation,
new embedding solution C′(M+1) after replacement can be
presented as C′(M+1) = [g1s · · · g

jm

r′ · · · gNs ].

D. Sorting and Terminations

Sorting process selects the best embedding solution among
the feasible ones based on their fitness values, and then it
is conveyed to synchronization step for a global ranking.
To reduce execution time, the master node terminates GA
algorithms in running worker nodes if no better mapping
solution is achieved within t times, where t denotes a
termination parameter.



E. Synchronization and VNR allocation

In this step, the best VNE solution of the corresponding
VNR is determined by globally ranking the VNE solutions
received from worker nodes, based on highest achieved FF
values. As a result, if accepted the VNR is then allocated
onto SN following the information of the virtual node and
link mapping solutions obtained. The last step is updating
residual network resources.

IV. PERFORMANCE EVALUATION

We compare our proposed algorithm with several state-of-
the-art VNE competitors: DPGA [7], NTANRC-S [10], D-
ViNE, R-ViNE, and G-SP [6] on various performance metrics
including average acceptance ratio, average revenue to cost
ratio, average node and link utilization and average delay.
Our simulation is conducted on a Ubuntu 20.04.2 LTS 64-bit
platform with 15.5 GiB memory and Intel Core i5-6200U
CPU@2.30GHz×4.

A. Simulation setup

We develop a discrete-event simulator to evaluate our
proposed VNE solution with parameters similar to those in
[6]. The popular GT-ITM topology generator [11] is used
to generate SNs and VNs. SNs are configured with average
50 nodes randomly placed on a 25 × 25 Cartesian plane.
They include average 140 edges adopting Waxman model
with α = 0.5 and β = 0.2, where α and β indicate the
maximal edge probability and edge length respectively. CPU
and bandwidth capacity of SNs are uniformly generated
between 50 and 100 units, whereas VNRs dynamically arrive
following the Poisson process with an average rate λ varying
from 4 to 8 VNs per 100 time units. Lifetime of VNRs follows
an exponential distribution with an average value of µ = 1000
time units. The miscellaneous loads of VNRs can be quantified
by λ

µ Erlangs. Additionally, the number of virtual nodes in
each VNR is uniformly distributed between 2 and 10. CPU
capacity and bandwidth requirements of VNRs are uniformly
distributed between 0 to 20 and 0 to 50 respectively. By
generating arbitrary SNs and VNs for evaluation, our proposed
algorithm can be adaptive to any topologies (e.g., datacenters)
with diverse traffic patterns. In this paper, we set wb = wn = 1
as similar to [12] and wp = 0.4, wc = 0.5 and wh = 0.1.
Due to ingenious strategy, we define population size and the
number of iterations merely equal to 10 and 15, respectively
for GA algorithm in each parallel machine shown in Fig.
1. Each simulation runs 50, 000 time units, 50 times longer
than the average lifetime of a VN to exceptionally generate a
large number of independent samples. All performance figures
were based upon average values with 95% confidence interval.
The error bars were very small due to a large number of
samples used, which proved that our simulation results were
obviously reliable. For better presentation, we plotted figures
with different colors and markers.

B. Evaluation Results

Simulation results are intensively illustrated in Figure 3
and 4. Our proposed GA-based algorithm, namely GAPK,
achieved highest acceptance ratio by accepting more VNRs
with considerably lower costs than all competitors, leading to
highest average revenue to cost ratio as illustrated in Fig 3b. In
fact, higher acceptance and revenue to cost ratios is desirable

for any VNE algorithm, so our proposed solution has proved
its efficiency. Specifically, GAPK improved the acceptance
ratios of DPGA for more than 17.81% and 13.59% at 40
and 80 Erlang respectively. GAPK significantly performed
better than NTANRC-S and R-ViNE (the best algorithm in
[6]) for more than 22% at the highest traffic load as shown in
Fig. 3a. Our proposed joint node-link VNE solution gained
24.8%, 34.4% and 36.1% better average revenue to cost ratios
than those of aforementioned algorithms at the same traffic
load as depicted in Fig 3b. By accordingly accepting more
VNRs, node utilization of GAPK is remarkably higher 10%
up to 20% than its all rivals at all traffic load (Fig. 3c).

Moreover, it is observed that GAPK and DPGA extremely
produced short average path length in a comparison with other
algorithms as illustrated in Fig. 4b, which indeed contributes to
low embedding cost and enhanced average link utilization (Fig.
4a). The reason behind these appealing outcomes is that we
take hop-count factor into account in a multi-constrained FF
for selecting the optimal VNE solution. Due to less bandwidth
consumed to map virtual link requests, abundant residual
bandwidth enables to accept incoming VNRs confirmed by Fig.
3a. In addition, we evaluate all compared algorithms in average
delay metric. As depicted in Fig. 4c, GAPK empowered by an
intelligent GA algorithm effectively explored physical paths
with very low delay, reducing network resource fragmentation
by preferring neighboring substrate nodes for mapping VNs.

Furthermore, we conducted the joint node-link VNE map-
ping on sequential and parallel schemes and then compared
execution time between them to quantify time reduction
with parallel operation. Distributed parallel paradigm with
maximum 16 parallel machines as shown in Fig.1 took 1.2s
to finish processing a VNR in average while the sequential
counter part needed more than 10.1s to accomplish the
same task. With regard to time complexity and convergence,
interested readers may refer to the paper [7] for further
theoretical analysis.

V. RELATED WORK

VNE problem is widely known asNP-hard in nature, that is
intractable to be solved with Integer Programming (LP). Hence,
a large number of research papers have focused on efficient
heuristic algorithms due to high time complexity of extract
methods. [6] proposed a coordinated node and link approach
for virtual node embedding by relaxing the intractable integer
constraints, and then using rounding techniques to choose
unique node mapping. Huang et al. in [13] was an extension
of [6] with a novel node splitting and node collocation
approaches. Authors in [14] presented a topology-aware
node mapping based on the Markov Random Walk model
to quantify network resources. The research in [15] studied
various topological attributes for enhancing a coordinate node-
link mapping and then introduced different node-ranking
algorithms. Zhang et al. [16] took the node degree and
clustering coefficient information to enhance the metric of
node importance which was adopted to rank the substrate
nodes, aiming to determine the nodes with the highest potential
for embedding VNRs. Nguyen et al. [7] presented a novel GA-
based algorithm for VLiM stage, which validated the important
role of VLiM in VNE problem. Recently, reinforcement
learning algorithms have been studied to deal with VNE
problems in [17]. However, the aforementioned VNE papers



40 50 60 70 80
Traffic load (Erlang)

0.5

0.6

0.7

0.8

0.9

1.0

Av
er

ag
e 

ac
ce

pt
an

ce
 ra

tio

GAPK
DPGA
NTANRC-S
G-SP
R-ViNE
D-ViNE

(a)

40 45 50 55 60 65 70 75 80
Traffic load (Erlang)

0.45

0.50

0.55

0.60

0.65

0.70

0.75

R/
C 
ra
tio

GAPK
DPGA
NTANRC-S
G-SP
R-ViNE
D-ViNE

(b)

40 45 50 55 60 65 70 75 80
Traffic load (Erlang)

0.20

0.25

0.30

0.35

0.40

0.45

0.50

0.55

Av
er

ag
e 

No
de

 U
til

iza
tio

n

GAPK
DPGA
NTANRC-S
G-SP
R-ViNE
D-ViNE

(c)

Fig. 3: (a) VNR Acceptance Ratio (b) Average revenue to cost ratio (c) Average node utilization

40 45 50 55 60 65 70 75 80
Traffic load (Erlang)

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

Av
er

ag
e 

lin
k 

ut
iliz

at
io

n

GAPK
DPGA
NTANRC-S
G-SP
R-ViNE
D-ViNE

(a)

40 45 50 55 60 65 70 75 80
Traffic load (Erlang)

1.50

1.75

2.00

2.25

2.50

2.75

3.00

3.25

3.50

Av
er
ag
e 
pa
th
 le
ng

th

GAPK
DPGA
NTANRC-S
G-SP
R-ViNE
D-ViNE

(b)

40 45 50 55 60 65 70 75 80
Traffic load (Erlang)

10

12

14

16

18

20

22

24

26

28

Av
er
ag
e 
De

la
y

GAPK
DPGA
NTANRC-S
G-SP
R-ViNE
D-ViNE

(c)

Fig. 4: (a) Average link utilization (b) Average path length (c) Average delay

only focus on mapping VNRs in separate stages, including
our previous work in [7] where virtual link mapping was
the core. This paper is aimed at combining node and link
mapping. A path ranking method and conciliation mechanism
for coordinated virtual link mapping are also proposed.

VI. CONCLUSION

There are very few papers dealing with online VNE
problem using heuristic or metaheuristic algorithms in a joint
manner. In this paper, we propose joint node-link embedding
approach based on GA algorithm for simultaneously solving
virtual node and link mappings in one stage. A heuristic
conciliation mechanism is deployed in GA operation to handle
several infeasible link mappings due to improper virtual
node embedding. Moreover, we present a distributed parallel
operation scheme to reduce time complexity of GA algorithm.
A comparison between sequential and parallel operation of the
proposed VNE solution is accordingly provided. Our extensive
evaluation shows that joint node-link combination in a single
VNE mapping stage based on GA algorithm outperforms
state-of-the-art heuristic VNE algorithms in all performance
metrics we adopted.

REFERENCES

[1] A. Hakiri and P. Berthou, “Leveraging sdn for the 5g networks: Trends,
prospects and challenges,” ArXiv, vol. abs/1506.02876, 2015.

[2] I. Ishaq, J. Hoebeke, I. Moerman, and P. Demeester, “Internet of things
virtual networks: Bringing network virtualization to resource-constrained
devices,” in 2012 IEEE International Conference on Green Computing
and Communications, Nov 2012, pp. 293–300.

[3] J. Gil Herrera and J. F. Botero, “Resource allocation in nfv: A
comprehensive survey,” IEEE Transactions on Network and Service
Management, vol. 13, no. 3, pp. 518–532, 2016.

[4] T. A. Q. Pham, J.-M. Sanner, C. Morin, and Y. Hadjadj-Aoul, “Virtual
network function–forwarding graph embedding: A genetic algorithm
approach,” International Journal of Communication Systems, vol. 33,
no. 10, p. e4098, 2020.

[5] B. Addis, G. Carello, and M. Gao, “On a virtual network functions
placement and routing problem: Some properties and a comparison of
two formulations,” Networks, vol. 75, no. 2, pp. 158–182, 2020.

[6] M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard: Virtual
network embedding algorithms with coordinated node and link mapping,”
IEEE/ACM Transactions on Networking, vol. 20, no. 1, pp. 206–219,
Feb 2012.

[7] K. T. Nguyen, Q. Lu, and C. Huang, “Rethinking virtual link mapping
in network virtualization,” in 2020 IEEE 92nd Vehicular Technology
Conference (VTC2020-Fall), 2020, pp. 1–5.

[8] Hong-Kun Zheng, J. Li, Y. Gong, W. Chen, Zhiwen Yu, Z. Zhan, and
Ying Lin, “Link mapping-oriented ant colony system for virtual network
embedding,” in 2017 IEEE Congress on Evolutionary Computation
(CEC), June 2017, pp. 1223–1230.

[9] G. S. Paschos, M. A. Abdullah, and S. Vassilaras, “Network slicing
with splittable flows is hard,” in 2018 IEEE 29th Annual International
Symposium on Personal, Indoor and Mobile Radio Communications
(PIMRC), Sep. 2018, pp. 1788–1793.

[10] H. Cao, L. Yang, and H. Zhu, “Novel node-ranking approach and
multiple topology attributes-based embedding algorithm for single-
domain virtual network embedding,” IEEE Internet of Things Journal,
vol. 5, no. 1, pp. 108–120, Feb 2018.

[11] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, “How to model an
internetwork,” in Proceedings of IEEE INFOCOM ’96. Conference on
Computer Communications, vol. 2, March 1996, pp. 594–602 vol.2.

[12] N. M. K. Chowdhury and R. Boutaba, “A survey of network virtualiza-
tion,” Computer Networks, vol. 54, no. 5, pp. 862 – 876, 2010.

[13] C. Huang and J. Zhu, “Modeling service applications for optimal parallel
embedding,” IEEE Transactions on Cloud Computing, vol. 6, no. 4, pp.
1067–1079, Oct 2018.

[14] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang,
“Virtual network embedding through topology-aware node ranking,”
SIGCOMM Comput. Commun. Rev., vol. 41, no. 2, p. 38–47, Apr. 2011.

[15] M. Feng, J. Liao, J. Wang, S. Qing, and Q. Qi, “Topology-aware
virtual network embedding based on multiple characteristics,” in 2014
IEEE International Conference on Communications (ICC), 2014, pp.
2956–2962.

[16] P. Zhang, H. Yao, and Y. Liu, “Virtual network embedding based on
the degree and clustering coefficient information,” IEEE Access, vol. 4,
pp. 8572–8580, 2016.

[17] H. Yao, S. Ma, J. Wang, P. Zhang, C. Jiang, and S. Guo, “A continuous-
decision virtual network embedding scheme relying on reinforcement
learning,” IEEE Transactions on Network and Service Management,
vol. 17, no. 2, pp. 864–875, 2020.


