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ABSTRACT The analytical research has recently indicated that the computational resources of Connected
Autonomous Vehicles (CAVs) have been wasted since almost all vehicles spend over 95% of their time
in parking lots. This paper presents a collaborative computing framework to efficiently offload online
computational tasks to parked vehicles (PVs) during peak business hours. To maintain the service continuity,
we advocate for integrating Kubernetes-based container orchestration to leverage its advanced features (e.g.,
auto-healing, load balancing, and security). We analytically formulate the task-offloading problem and then
propose an intelligent meta-heuristic algorithm to dynamically deal with online heterogeneous demands.
Additionally, we take a cumulative incentives model into account, where the PV owners are able to earn profit
by sharing their computation resources. We also compare our algorithm with several existent heuristics on
different sizes of the parking lot. Extensive simulation results show that our proposed computing framework
significantly increases the possibility of accepting the online tasks and improves average task offloading cost
by at least 40%. Besides, we quantify the PV availability by task acceptance ratios, which can be a critical
criterion for network planners to achieve desired network service goals.

INDEX TERMS Parked vehicles, cloud computing, edge computing, collaborative cloud-edge computing,
online task offloading, container orchestration, Kubernetes.

I. INTRODUCTION
In the last decade, we have experienced a rapid proliferation
of vehicles worldwide, which is estimated to reach two billion
by 2035 [1]. The majority of them would come equipped
with powerful on-board hardware (e.g., sensors, general-
purposed CPU, GPU) to offer advanced key features such as
autopilot, driver-assistance, smart radars, enhanced sensing-
safety systems. Especially, the on-board equipment enabling
future full self-driving capabilities could cost vehicle owners
thousands of dollars. However, the resource utilization of
these modern vehicles is extremely low: 70% of all vehicles
spend almost 95% of the time in parking lots, home garages,
and street parking as disclosed in [1], [2]. For example,
America’s average daily driving time was only 50.6 minutes
reported for Traffic Safety by AAA Foundation in 2016 [3].
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These facts obviously imply that the powerful on-board
vehicular facility is unused for most of the time, providing
an excellent opportunity for exploiting these neglected
computing resources for ordinary network services, and
potentially gaining profit by trading the idle computational
power [4].

The explosive growth of mobile data traffic, either
latency-insensitive (e.g., health monitoring, location-based
augmented reality games, vehicular sensing) or latency-
sensitive (e.g., video surveillance, mobile gaming, autopilot)
tasks with heterogeneous demands [5], will pose a formidable
obstacle to the existing architecture during peak hours indeed.
When most services are deployed at the cloud-side, service
vendors are barely in with an opportunity to negotiate
the costs for offloading services which are most likely
provisioned by Service Providers (SPs) with a fixed amount
of service charges. Moreover, the major impediment of the
core cloud is large propagation latency, so the advent of
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FIGURE 1. Kubernetes-enabled parked vehicle edge computing
architecture.

edge computing with proximity to end-users is indispensably
a sound solution for this problem. Indeed, the coexistence
of the cloud and edge computing paradigm is among the
most dominant task-offloading schemes in practice [6], and
incoming tasks, in reality, are not always latency-sensitive.
As such, tasks with sensitive-latency tolerance are most likely
to be processed at the edge, while those with insensitive
latency can be managed at both the cloud and edge network.
However, networks can quickly become congested when
tasks dramatically increase in peak hours. We need an
effective solution to solve this problem.

The idle computation resources of parked vehicles (PVs)
could be an ideal candidate for multi-access computing,
where the typical computational and storage services com-
monly handled by the core cloud can bemoved to the network
edge. Due to the emergence of PVs, the capacity at the
network edge can now be extended. Despite this obvious
advantage, a collaboration among cloud, edge, and PVs
would escalate the task offloading problems by efficiently
allocating proper network resources to arrived online tasks.
In addition to this, the parking duration of PVs is inconstant,
making the potential PVs unreliable to host applications or
services. Therefore, a novel network architecture is designed
to resolve those aforesaid problems.

In fact, deploying a generic container orchestration to
edge computing assisted by PVs has been hitherto in
infancy. The de facto industrial standard framework for
container orchestration such as Kubernetes allows PVs to
simultaneously and efficiently handle several task replicas,
enabling quick boot-up, autoscaling, self-healing features,
and rapid termination. The appealing features can be capable
of addressing the uncertain parking duration of PVs. It also

offers resource isolation, allowing a PV to run multiple tasks
independently. However, it is a non-trivial task to indicate
in which several replicas of a given task are offloaded to
be processed in the collaborative computing architecture,
satisfying rigorous resource constraints while achieving
minimized offloading costs. For instance, all replicas of a
task can be embedded into different nodes (e.g., PVs, cloud,
edge server) or a single node (e.g., a PV). In the latter,
if this node suffers an abrupt failure (e.g., battery outage,
accidental mobility of vehicles), the containerized network
services operating on this node will experience a service
disruption. It is different from our previous work in [7] that
did not fully take where the task replicas could be placed
into account, meaning that the whole task replicas could
be allocated in the same worker node. This paper solves
such limitation of [7]. To maintain service continuity and
reliability, we consider an upper boundary on the proportional
number of task replicas running on a network node. We set
out this proportion no greater than 50%, which can be easily
adjusted by SPs based on their service strategies. It means
that a single worker node can handle a maximum of 50%
proportion of task replicas. This setting is aimed at failover
negotiation and load balancing. In the first sense, it might
look simple, but the online task offloading problem at the
edge itself is challenging with several constraints, and now
its complexity is increased considerably with this constraint.

In our article, we propose EdgePV, a novel collaborative
framework where PVs increase the computing capacity
of the existing Cloud and Edge infrastructure to manage
the online containerized tasks during peak business hours
at the network edge. A containerized task is abstracted
as a set of replicas operating on several containers in a
containerization environment. Scheduling several replicas of
an online task in the collaborative framework efficiently
while meeting rigid resource constraints (e.g., latency-
sensitive) remains a critical challenge. We formulate the
task offloading problem on the collaborative paradigm as
Binary Integer Programming (BIP), focusing on minimizing
offloading cost while maximizing the cumulative rewards.
We then propose a meta-heuristic Genetic Algorithm (GA)
to deal with time complexity and scalability problems of
BIP regarding low offloading costs and guaranteed reliability.
In addition, PV owners who are willing to share their idle
resources can accumulate incentives, which can be converted
into membership, gift cards, promotion vouchers, parking
tickets, gas credits, and so on.

Our proposed solution studies the feasibility of integrating
the core cloud computing, the edge computing, and PVs in
a unified computing infrastructure. As illustrated in Fig. 1,
we suggest the Kubernetes master node be placed at the edge
server. In contrast, core cloud, available computing resources
of edge server, and all PVs can be considered asworker nodes.
In this paradigm, PVs are installed a lightweight version
of Kubernetes (e.g., K3S [8]), implemented as preamble
network nodes due to their uncertain parking duration. All
network components can automate the container deployment
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to handle online task requests. Thanks to the high availability
of cloud and edge nodes, when a task arrives at the edge
server, all the replicas of a task can be scheduled at the
same cloud or edge node or both. They can also be allocated
on distributed PVs to exploit the idle resources of PVs to
save the network cost, reducing heavy workloads in the core
networks during peak hours. All master nodes and their
worker nodes form a container orchestration cluster where the
control plane in the master node is responsible for managing
worker nodes and pods in the cluster, monitoring the state of
the cluster, and making global decisions towards the cluster
such as scheduling, scaling. The master node’s scheduler
carries out pod placements on a set of available worker
nodes. When an online task with rigid constraints (e.g., CPU,
BW, latency tolerance, replicas) arrives in the master node,
a kube-scheduler in the control plane of the master node
will create pods and then assign the worker nodes for them
to run on. Interested readers can find more details about
Kubernetes in [9]. Our proposed collaborative paradigm
strives for improve the elasticity and agility of the existing
computing infrastructure to minimize the service disruptions
caused by the unforeseen mobility of PVs. In fact, all PVs
would be completely electric-based, which could be enabled
the automatically-charging feature during their parking in
near future. Additionally, this paper considers a generic
scenario in which one base station covers all PVs within its
coverage of a parking lot. Thus, the control signalling (e.g.,
MCS, resource management, QoS, etc.) between BS and PVs
over radio interface is neglected for simplification.

Our contributions are summarized below:
• We propose a collaborative computation paradigm
integrating the core cloud, edge, and PVs into a
consolidated architecture to address the online task
offloading problem in peak hours.

• A container orchestration framework relied upon the
Kubernetes platform is leveraged to deal with the
uncertain parking duration of PVs. Kubernetes platform
provides non-disruptive services and minimizes the
possible service interruptions due to an advanced self-
healing feature. When a worker node is out-of-service,
Kubernetes reallocates the corresponding task replicas
into another active node automatically.

• We also formulate the online task offloading model as
a BIP problem to minimize the offloading cost whilst
optimizing cumulative rewards of PVs by selling their
idle resources considering the replicas as a constraint.

• A meta-heuristic algorithm that relied on a Genetic
Algorithm, namely EdgeGA, is proposed to deal with
the time complexity as well as scalability problems of
BIP. We simulate the task-offloading model in respect
to the randommobility behaviors of PVs under dynamic
and arbitrary task arrivals. EdgeGA is compared with
existing heuristics to prove its efficiency on different
generic parking lots in performance simulation. We also
propose a distributed parallel scheme for running the
EdgeGA algorithm to reduce the execution time.

The contents of our paper are divided into the following
sections. Section II presents the related work while the
formulated offloading problem is introduced in Section III.
Section IV proposes the GA algorithm based on the
problem formulation. Thereupon, the simulation evaluation
is demonstrated in Section VI. Finally, Section VII concludes
our work.

II. RELATED WORK
PVs as infrastructure has currently attracted a lot of research
attention as they enable the existing computation paradigm
for computation, communication, and storage (CCS) to be
expanded. Deploying PVs as vehicular cloud computing
on the Internet of Vehicles has been well investigated
in [10]–[16].

Arif et al. in [10] presented a basic model of a vehicular
cloud (VC) assisted by PVs in a specific international airport.
In contrast, He et al. in [11] proposed amultilayered vehicular
cloud infrastructure that was relied upon the cloud computing
and Internet of Thing (IoT) technologies. The paper was
based on the prediction of the parking occupancy in order
to schedule the network resources, and eventually allocated
the computational tasks. The smart parking and vehicular
data-mining services in IoT environment, were investigated.
Likewise, establishing a VC built-in PVs as spatial-temporal
network infrastructure for CCS in a parking lot was studied
in [12]–[14], [17]. Li et al. in [15] paid attention to
the PVs feasibility as a computing framework, and then
presented an incentive mechanism considering accumulated
rewards of PVs when they were trading their resources.
Furthermore, Hou et al. in [18] introduced a vehicular fog
computing (VFC) paradigm exploiting the connected PVs as
the infrastructure at the edge to process real time network
services. In a similar approach, the authors in [19] considered
a fog computing infrastructure implemented on the Internet
of Vehicle (IoV) systems to offer the computing resources
to end-users concerning latency constraint. This proposed
architecture allowed the network traffic to be offloaded in real
time to the fog-based IoV systems subject to optimizing the
average response time.

Moreover, Parked Vehicle Edge Computing (PVEC),
in which PVs were recognized as accessible edge computa-
tion nodes to address the task allocation problem, has been
researched in [1], [3], [20]. Huang et al. in [1] exploited
the possible opportunistic resources for allocating the com-
putational tasks in a collaborative architecture consisting of
vehicle edge computing (VEC) server and PVs. The authors
addressed the optimization problem of user payments by
relaxing budget or latency constraints, which resulted in
suboptimal solutions for the proposed scheme. In similarity,
the paper [3] suggested a dynamic pricing approach to reduce
the average cost whilst satisfying QoS constraints. This
strategy calibrate the price constantly following the current
system state. Besides, a containerized task scheduling scheme
assisted by PVEC was presented in [20] considering the
formulated social welfare optimization for users and PVs at

VOLUME 10, 2022 3



K. Nguyen et al.: Parked Vehicles Task Offloading in Edge Computing

the same time. Raza et al. in [16] studied a vehicle-assisted
MEC architecture combining the core cloud, MEC, and
mobile volunteering vehicles (e.g., buses) to deal with IoT
devices’ task requests. The paper [16], at the first look,
is analogous to the idea of our paper. Nevertheless, this
research mainly targets the online task offloading problems
in a container-based computation paradigm regarding the
allocation problem for the set of online task replicas of
a given VNR. Our solution takes both average network
cost and accumulating incentives gained by selling idle
computation resources of PVs into account. Moreover, PVs in
the EdgePV framework would be more common and reliable
than buses, thanks to their popularity and less mobility. Our
previous work in [7] addressed the online task offloading
problem in a collaborative architecture, but [7] allowed to
allocate all task replicas in to the same node, exposing to
another fatal problem that the vehicle that is hosting all
replicas of a task suddenly leaves from the parking lot, the
service provisioning will be interrupted. Additionally, [7]
proposed a simple heuristic algorithm, named M&M, which
ranked the worker nodes based on the offloading cost and
revenue. The transmission data rate was randomly assigned
instead of being dependent on the distance between PVs
and BS. [7] only considered a medium size of the parking
lot.

This paper is an extension of [21] where we expand the
related work by analyzing more relevant papers with their
specific strengths and limitations. To provide the illustration
of our solutions, we depict an example of a simple task
offloading scenario and then provide pseudocode for all algo-
rithms. Furthermore, we extend to double the size of a generic
parking lot in [21], compare the offloading performance
on different sizes and then quantify them accordingly. This
makes our proposed solution more comprehensive. We also
carry out a further analysis on the achieved simulation
results, and make an execution-time comparison of EgdePV
algorithm adopted in both sequential and parallel manners
to demonstrate the efficiency of the proposed distributed
parallel deployment.

III. PROBLEM FORMULATION
In this paper, we formulate the task offloading problem
considering multiple resource constraints at the network
edge, where the scheduler of the container orchestration is
located in the edge server deployed in a 5G base station (BS).

A. OFFLOADING MODEL
We investigate CPU, memory, and bandwidth resources in the
online task offloading problems. There are various types of
worker nodes, comprising the core cloud, edge server, and
PVs, where they are connected to a master node located in
the edge server through separate connections. For instance,
the link between the master node and the core cloud is optical,
whereas PVs connect to the edge server throughwireless links
in which the available bandwidth are primarily dependent
on the distances between PVs and BS. Therefore, the edge

TABLE 1. List of acronyms and notations.

network under a containerized cluster in this paper can be
quickly realized as a star topology in which the root and
its leaves are the master node and several worker nodes,
respectively. Fig. 1 illustrates a generic outdoor parking lot.
PVs need to register all vehicular information such as owner’s
ID, available parking time, license plate, available resources
(e.g., computing capacity, storage) with their corresponding
SPs. Then, they could keep their current vehicular status
updated by sending these information to their corresponding
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FIGURE 2. An example of task scheduling.

master node as well as the registered SPswhenever PVs either
arrive at a parking lot or accomplish processing the allocated
tasks.

As a result, the edge network can be modeled as a directed
graph G = (N ,L) in which N is the set of worker nodes
while L is the set of links. For instance, Fig. 2 depicts
different tasks with a set of required resources such as
CPU, memory, bandwidth, the number of replicas, task
duration, and eventually latency requirements. Accordingly,
task 1 associated with replicas could be allocated to any
types of network nodes (e.g., core cloud, edge server, or PVs)
due to the insensitive latency demand. However, task 2 with
sensitive latency demand cannot be offloaded to the core
cloud, even it acquires less computing resources. In case
PVs are selected for offloading, a PV is merely permitted
to process maximum three replicas to guarantee the service
reliability. In addition, the edge server and the core cloud are
connected through an optical connection, whereas PVs link
to their network edge through wireless connections, denoted
as lc and lv respectively. In fact, a single worker node is able
to initialize several pods to handle multiple containers of the
corresponding task replicas simultaneously. An online task k
in our model demands CPU c(k), Memory m(k), Bandwidth
b(k), tolerable latency tm(k) and a number of replicas ð(k)
requirements. kj represents the jth replica of the task k ∈ K ,
and

∑
kj = ð(k). Additionally, a worker node ni ∈ N

possesses a resource capacity to serve a limited number
of containers. An ith worker node has CPU and memory
capacity, denoted as C(ni) and M (ni), respectively. Besides,
Kc, Ke, Kp and K are sets of tasks that are successfully
offloaded to the cloud, edge, PVs and the whole network
respectively, so K = Kc + Ke + Kp. Consequently, the
residual CPU and memory capacity of each worker node can
be calculated as follows:

RuC (ni) = C(ni)−
∑
k∈K

∑
j∈ð(k)

c(kj), ∀ni ∈ N (1)

RuM (ni) = M (ni)−
∑
k∈K

∑
j∈ð(k)

m(kj), ∀ni ∈ N (2)

where u represents the worker nodes (Cloud: c, Edge: e, PVs:
p ∈ P), so |N | = 2+ |P|.

B. SYSTEM MODEL
In this paper, it is assumed that the latency is inversely
proportional to the remaining capacity as the consequence of
the M/M/1 queuing model.

1) CORE NETWORK OFFLOADING LATENCY
Network latency can be associated with data transmission
and task execution time. The formal is highly correlated
with the residual bandwidth of the link lc, whereas the latter
is based upon the availability of the core cloud to process
the offloaded tasks and/or other network services. Hence,
more tasks allocated to the remote cloud through lc with less
residual resources can dramatically raise the network latency,
intensely in peak hours. In practise, the latency involved
in accessing or writing on data volumes from/to memory
can be overlooked thanks to the advanced technologies in
datacenters. The offloading latency tc(lc) to the cloud is
consisted of the transmission, and the processing latency that
can be calculated as follows:

tc(k) = max
j≤|ð(k)|

{
χkj

ξc
+

χkj fkj
RcC (ni)

+
d
v
+ Th} ≤ tm(k) (3)

where ξc and fk respectively denote the transmission rate of
the server and CPU cycles utilizing for computing data per
bit.

Consequently, the total amount of CPUs required for
serving the task k are described as χk .fk . d , v, and Th denote
the cloud-to-edge distance, the light speed, and the constant
time of processing a given task, respectively. Online tasks
arrive at the edge through wired or wireless links (BS) in
which the master node and edge server are resided. The
management and control of the offloaded tasks at the edge
can be indeed concerned as a local process; thus, the latency
is primarily associated with the remaining computation
capacity to host the task. Latency produced by processing

a task is described as Th =
χk

Beν
, in which the discount

factor is ν that reflects the bandwidth fluctuations at the edge
(0 < ν < 1). Then, the offloading latency te(k) at the edge is
calculated as follows:

te(k) = max
j∈ð(k)
{
χkj fkj
ReC (ni)

+ Th} ≤ tm(k) (4)

2) PVs LATENCY
As opposed to the stable cloud or edge node, PVs can be
defined as preemptible worker nodes for the sake of the
erratic mobility. Thus, containerized task replicas would be
a potential solution to diminish any service disruptions. It is
assumed that the master node has enough time to reallocate
the currently affected task replicas to other available nodes
to maintain the QoS. In general, task replicas are allowed
to reliably operate under a load-balancing mode in a normal
state to enhance availability, performance efficiency, and
reliability.

In this research, we basically leverage the LTE-A wireless
connections between BS and PVs in respect to orthogonal
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frequency-division multiple access (OFDMA) scheme as
similar to [16]. dbs,p denotes the geographical distance
between the BS and the pth PV. The path loss between them is
defined by d−σbs,p and white Gaussian noise powerN0, in which
σ factor expresses the path loss exponent. Hence, the wireless
channel can be modeled as a frequency-flat block-fading
Rayleigh fading channel, denoted as h. As a result, the data
rate of pth PV is calculated as:

ξp = Bplog2(1+
PTX .d

−σ
bs,p.|h

2
|

N0 + I
) (5)

where Bp, PTX and I are the channel bandwidth, transmission
power of BS, and inter-cell interference, respectively. The
offloading latency of PVs tp(k) is then formulated as follows:

tp(k) = max
j∈ð(k)
{
χkj

E[ξp]
+

χkj fkj
RpC (ni)

+ Th} ≤ tm(k) (6)

We also investigate the offloading efficiency of two
types of online containerized tasks, comprising the
latency-sensitive and latency-insensitive akin to [5]. While
the latency-sensitive tasks are merely allocated to the edge
nodes (e.g., edge server, PVs) due to their closest proximity,
but the latency-insensitive tasks are processed at any worker
nodes such as the remote cloud, edge server, or PVs. Then,
we compute the cost for offloading an online task replica in
our proposed collaborative computing architecture, which is
associated with the sum of total CPUs, memory, bandwidth,
and energy consumption for processing task replicas at PVs.
In fact, the remote cloud and edge server achieve a high
energy efficiency, so we do not consider this attribute in their
costs. The offloading cost at the core cloud is defined as
follows:

4Cc (kj) =
WCcχkj fkj

Cc −
∑
k ′∈Kc

∑
j≤|ð(k ′)|

c(k ′j )+ δ
(7)

4Mc (kj) =
WMcm(kj)

Mc −
∑
k ′∈Kc

∑
j≤|ð(k ′)|

m(k ′j )+ δ
(8)

4Bc (kj) =
WBc

χ (kj)
tm(kj)

Bc −
∑
k ′∈Kc

∑
j≤|ð(k ′)|

χ (k ′j )

tm(k ′j )
+ δ

(9)

where δ is a small positive number to prevent dividing by
zero. The offloading cost for processing a task replica at the
core cloud is:

4c
kj = 4Cc (kj)+4Mc (kj)+4Bc (kj) (10)

As we discussed earlier, when a task is handled at the
edge server, this is widely recognized as a local processing.
Therefore, the offloading cost at the edge server is computed
as follows:

4Ce (kj) =
WCeχkj fkj

Ce −
∑
k ′∈Ke

∑
j≤|ð(k ′)|

c(k ′j )+ δ
(11)

4Me (kj) =
WMem(kj)

Me −
∑
k ′∈Ke

∑
j≤|ð(k ′)|

m(k ′j )+ δ
(12)

Total offloading cost of a task replica at the edge is:

4e
kj = 4Ce (kj)+4Me (kj) (13)

Similarly, the cost of offloading a task replica and the energy
consumption at a parked vehicle is formulated as follows:

4Cp (kj) =
WCpχkj fkj

Cp −
∑
k ′∈Kp

∑
j≤|ð(k ′)|

c(k ′j )+ δ
(14)

4Mp (kj) =
WMpm(kj)

Mp −
∑
k ′∈Kp

∑
j≤|ð(k ′)|

m(k ′j )+ δ
(15)

4Bp (kj) = WBp
χkj

tm(kj)ξp;
,∀k ∈ Kp (16)

Ep(kj) = χkj fkjep (17)

where ep is a coefficient, which is attained by:

ep = ε(R
p
C (ni))

2 (18)

where ε denotes an energy coefficient.
Hereafter, total offloading cost of each task replica kj at a

parked vehicle is:

4
p
kj = 4Cp (kj)+4Mp (kj)+4Bp (kj)+ ςEp(kj); (19)

where ς is an energy cost coefficient.

3) PVs’ UTILITY
Owners of PVs are encouraged to share the idle computa-
tional resources while parking in parking lots, so they can
gain accumulative rewards by hosting the task replicas in their
vehicles. ϕp is the rewards by processing a task replica at a
parked vehicle p. Thus, the corresponding utility is defined as
follows:

$ p
= ϕp − ρEp(kj) (20)

where ρ denotes a coefficient of energy price, and ϕp is
presented as:

ϕp = µrcpχkj fkj + r
m
p m(kj) (21)

where rcp and rmp are the unit prices of CPU and memory,
respectively. We can see that minimizing the offloading cost
can directly maximize the profits gained by hosting the
according task replicas at PVs.

Variables:

Ac
kj =

{
1, kj deployed on cloud, ∀j ≤ |ð(k)|.
0, otherwise.

Ae
kj =

{
1, kj deployed on edge, ∀j ≤ |ð(k)|.
0, otherwise.

Ap
kj =

{
1, kj deployed on a PV, ∀j ≤ |ð(k)|.
0, otherwise.
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Objective:

Minimize
∑
j≤|ðk|

4c
kjA

c
kj +4

e
kjA

e
kj + (η4p

kj

+ (1− η)
1
$ p )A

p
kj

w.r .t Ac
kj ,A

e
kj ,A

p
kj (22)

Constraints:

Ac
kj +Ae

kj +
∑
p∈N

Ap
kj = 1, j ≤ |ð(k)| (23)

1 ≤
∑

j≤|ð(k)|
Ap
kj ≤ α ∗ |ð(k)| (24)

∑
j≤|ð(k)|

Ac|e|p
kj ∗ c(kj) ≤ Cc|e|p (25)

∑
j≤|ð(k)|

Ac|e|p
kj ∗ m(kj) ≤ Mc|e|p (26)

∑
j≤|ð(k)|

Ac
kj ∗ b(kj) ≤ Bc (27)

b(kj) ≤ ξni ,∀ni ∈ N (28)∑
j≤|ð(k)|

Ac|e|p
kj ∗ tc|e|p ≤ tm(k) (29)

Remarks:
• Function (22) focuses on dual optimization objectives:
optimizing both the offloading cost as well as PVs’
rewards on which the task replicas are offloaded to PVs
where η denotes a damping factor within (0,1).

• Constraint (23) makes sure that each task replica is
merely processed at a single worker node.

• Constraint (24) determines that the proportion of task
replicas offloaded to a PV cannot exceed 50% due to
their uncertain mobility.

• Constraints (25),(26), (27), and (28) guarantee that the
remaining capacity of the worker nodes (e.g., Cloud,
Edge, PVs) must satisfy the rigid task demands.

• Constraint (29) eventually guarantees the chosen worker
nodes must meet the latency constraint.

IV. OUR PROPOSED GENETIC ALGORITHM
A. BACKGROUND OF METAHEURISTIC ALGORITHMS
An optimization process is technically a kind of process that
approaches better and better solutions by searching and com-
paring feasible ones until it cannot achieve a better result [22].
Nevertheless, the major optimization aim is to come up with
an optimal solution meeting a set of predefined objectives,
and is expected to conciliate multiple stringent constraints.
Meta-heuristics include a set of optimization techniques that
efficiently discover feasible solutions, aiming at achieving
the global optimum. Intrinsically, meta-heuristic algorithms
carry out diversified variation operations to explore new
potential solutions effectively, and their multi-objective fit-
ness function will drive such potentials to the optimum. Even
designing an efficient algorithm satisfying several desired

constraints is not an easy task, meta-heuristics have been
successfully employed in various applications from different
fields, including operation research, industrial engineering to
management science. Evolutionary Computation (EC) that
imitates the natural selection evolutionary concepts includes
meta-heuristic algorithms to search for globally optimal
solutions. EC techniques provide flexibility, adaptability, and
importantly an exceptional performance. They are effective
when the search space is hugewith a large number of involved
parameters.
In fact, a mature meta-heuristic GA algorithm is inspired

by the Darwin’s theory of evolution principle through the
natural selection, has been the most common population-
based meta-heuristic algorithms. GA is able to solve either
linear or non-linear programming optimization problems
with multiple objectives. Thanks to the simpleness and
straightforward deployments, GA is fast. It has been proved
to be more efficient than many conventional heuristic
algorithms by efficiently maintaining a balance between
exploration and exploitation through a proper set of param-
eters. GA is recently recognized as a scalable alternative
to reinforcement learning (RL) algorithm [23], [24] over
competitive performance outcomes. Although GA cannot
always perform better than RL as shown in [25] and [26],
GA algorithm is indeed faster than the counterpart since
GA exposes its greater scalability as well as parallelism.
Furthermore, GA is practically acknowledged as a parallel
search [27] with mutual independency amongst multiple
exclusively feasible solutions.
GA can produce a set of ‘‘good’’ solutions in lieu of a single

solution. Those are able to be evolved over several iterations,
driven by an efficient fitness function. A typical Genetic
Algorithm comprises four major operations: population
initialization, selection, crossover, and mutation [28]. At each
iteration, GA chooses two individuals randomly in the
generated population as parents to create their children (also
known as offspring) for the next generation. As the nature
of the selection process, if good parents are selected for
generating new generations, their offspring is most likely to
be good through good characteristics inherited from their
parents. This somehow guarantees good solutions produced.
Over generated generations, the population can eventually
get evolved, so that the chance of approaching an optimal
solution is remarkably increased. In detail, GA is first gen-
erating an initial population randomly. Each feasible solution
in the population, widely acknowledged as a chromosome,
will quantify its quality by the fitness function. Then, two
chromosomes are deterministically or randomly chosen as
parental individuals in the selection operator. Accordingly,
these chromosomes enable the production of their offspring
by interchanging the partial genes at a random point, widely
known as crossover operation. The next operation is called
mutation that applies a small random tweak to a chromosome,
deployed on a randomly selected chromosome with a random
position to produce a new solution. Moreover, the mutation
is expected to consider an exploration on the searching space
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FIGURE 3. Distributed and parallel GA-based implementation.

while retaining the population diversity. GA operations can
be rerun until the pre-defined stopping condition is met (e.g.,
several iterations). Lately, parallel computing is a promising
paradigm to efficiently deal with the complicated problems
with huge time-saving and lower cost guarantees by enabling
concurrency.

B. DISTRIBUTED PARALLEL GENETIC ALGORITHM
For solving the BIP problem, a distributed and paral-
lel GA-based algorithm running on multiple independent
machines, denoted as V is proposed to discover the search
space in this paper. The operational implementation of our
proposed algorithm is demonstrated in Fig 3 where |V | is
defined to be 16. The working scheme includes a master
node that primarily plays a synchronization role, and several
distributed slave nodes exploring as many feasible solutions
as they can. At each slave node, GA iteratively deploys its
few operators to seek for the feasible offloading solution.
The best outcomes based on the fitness values among the
distributed parallel nodes are then synchronized by themaster
node to identify the optimal offloading solution for the given
task. Our proposed algorithm in this research is permitted to
offload multiple task replicas at once rather than allocating
each replica sequentially.

1) GENETIC REPRESENTATION AND SELECTION
a: CHROMOSOME
GA’s a chromosome denoted as Cf in this paper indicates
a solution for the whole set of requested replicas of a
given task, which is randomly chosen from the available
worker nodes meeting task resource demands. Hence,
each gene within the chromosome represents an offloading
solution for a single task replica, which is described as

gjf = Ac,f
kj A

e,f
kj A

1,f
kj · · ·A

|P|,f
kj . If G is the number of genes,

so G = |ð(k)|. The evolutionary process is started with
M chromosomes, so that the initial population is created as
follows:

P =



C1
C2
...

Cf
...

CM


=



g11 · · · gj1 · · · gG1
g12 · · · gj2 · · · gG2
...

. . .
...

. . .
...

g1f · · · gjf · · · gGf
...

. . .
...

. . .
...

g1M · · · gjM · · · gGM


(30)

In fact, the chromosome, formed by G genes passing a
feasibility check, is established as a feasible offloading
solution for a given task with a set of requested replicas.

b: SELECTION
The selection operation essentially determines which chro-
mosomes to become parents for the crossover operator.
To enhance the parallelism, parents can be randomly selected
from the initial population with a replacement. Due to
the nature of randomness, the quality of children, that are
generated in the crossover operator, can be better or even
worse than their parents. In theory, there are several selection
strategies, but the fitness-based proportionate designation
relied upon the accumulative sum of fitness-relative weights
is usually preferable in this operator.

c: FITNESS FUNCTION
The major goals of our proposed algorithm include optimiz-
ing the cost of offloading online tasks and maximizing the
user rewards when the task is offloaded to PVs. To achieve
these dual objectives, fitness function is utilized to evaluate
the quality of an offloading solution, and a better solution
could produce higher fitness values in this paper.

F(k) =
∑
j∈ðk

1
4c
k
Ac
kj +

1
4e
k
Ae
kj + ((1− η)

1

4
p
k
+ ηϕ

p
k )A

p
kj

(31)

2) THE PROCESSES OF EVOLUTION
After initial population is generated in the initialization
operator, two chromosomes are selected in random to be
parents. Then, new generations are formed by an evolutionary
process including the crossover and mutation operators.
To maintain the population diversity, the newly generated
generations are updated into the existing population. This
strategy is able to improve the opportunity to obtain
near-optimal task offloading solutions.

a: CROSSOVER
This is considered as the most vital operator to create new
offspring by stitching up the parental chromosomes in GA.
Suppose Cs and Cr are two parental chromosomes that
have particular indexes s and r in the initial population.
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Denote jc as a random crossover point within N length,
their corresponding descendants are C(M+1) and C(M+2).
By exchanging genes beginning from the crossover point
jc + 1 to the last gene between the parents, new generations
are generated as below:

P =



C1
...

Cs
...

Cr
...

CM
CM+1
CM+2


=



g11 · · · g
jc

1 gj
c
+1

1 · · · gG1
...

. . .
...

. . .
...

g1s · · · g
jc
s gj

c
+1

s · · · gGs
...

. . .
...

. . .
...

g1r · · · g
jc
r gj

c
+1

r · · · gGr
...

. . .
...

. . .
...

g1M · · · gj
c

M gj
c
+1

M · · · gGM
g1s · · · g

jc
s gj

c
+1

r · · · gGr
g1r · · · g

jc
r gj

c
+1

s · · · gGs



(32)

b: MUTATION
This operator applies a small modification on the current
parent to form new offspring/chromosome. The mutation
stage allows to sample the large search space, improving
the searching efficiency. This operation is widely known
a primary component in the evolutionary process, which
prevents potential solutions from falling into the local optima.
Technically, a new gene selected randomly replaces an
existing one within one of children produced in Crossover
operator to create a new offspring. The gene must inevitably
satisfy the resource demands to survive through the feasibility
check. If both children are infeasible in Crossover, one
of parents chosen in random is then used for mutation.
Suppose jm is a random mutation point and gj

m

r ′ is a new
gene that substitutes the existing gene within C(M+1). Conse-
quently, new offspring generated from the mutation stage is
C′(M+1) = [g1s · · · g

jm

r ′ · · · g
G
s ].

To maintain a balance between exploitation and explo-
ration in GA algorithm, crossover rate pc is typically set
higher than mutation rate pm. Determining pm is never
an easy task since small mutation rate leads to premature
convergence while high mutation rate could improve the
exploration process in the search space, but this selection
might prevent GA algorithm from converging to optimal
solution. By preferring high efficiency of GA while keeping
a trade-off between exploitation and exploration, we set
pc = 0.9 and pm = 0.2 in this paper.

3) TERMINATIONS AND SYNCHRONIZATION
Parallel processing is associated with multiple concurrent
processes in which each process might accomplish its
assignment at a different time. Unfortunately, waiting for
all tasks to completely finish their assigned jobs is painful
due to the fact that one or more tasks might take too much
time for processing (e.g., deadlock). Thus, to reduce the
overall execution time, the master node will terminate GA
algorithms running at worker nodes if there is no better

Algorithm 1 EdgeGA - An Intelligent GA-Based Algorithm
1: Input:
2: An online task k with five tuples

{c(k),m(k), b(k), tm(k),ð(k)}
3: Output:
4: A list of worker nodes hosting task replicas.
5: procedure task offloading

F Step 1: Generate a list ζk of node candidates
including cloud, edge, PVs

6: function GET_CANDIDATES (k)
7: empty ζk
8: for all ni ∈ N do

if RuC (ni) ≥ c(k), RuM (ni) ≥ m(k),
RuB(ni) or ξp ≥ b(k) then

9: add ni to ζk
10: end for
11: return ζk

if ( none of worker nodes are available) then
12: reject the task k
13: end function

FStep 2: Deploy Genetic Algorithm in a distributed
parallel operation scheme

14: call Algorithm 2
FStep 3: Synchronize all incumbents obtained in

independent working machines
15: Choose the best solution relied upon the sum of

fitness values (E.q. 31)
16: return the list of worker nodes ni ∈ N

F Step 4: Update SN resources
17: end procedure

solutions obtained within t times. Eventually, the feasible
solutions found from several slave machines is finalized
through a synchronization in order to choose the optimal
offloading solution relied upon fitness values. If accepted,
task replicas of the given task are then allocated to the worker
nodes following the information of the achieved offloading
solution. SN eventually updates the rnetwork resources to
finish the offloading processes.

The technical details of the proposed GA-based algorithm
are provided in Algorithm 1 and 2. When an online task
including a number of required replicas arrives, the algorithm
creates a list of potential node candidates which must meet
resource requirements of the given task demands (e.g.,
CPU, memory, bandwidth, delay) as shown in lines [6-13].
GA is then implemented in a single working machine in a
distributed parallel operation scheme in order to seek the best
offloading solution for a given task by calling Algorithm 2
in line 14. Lines [15-16] are the synchronization process that
selects the optimal offloading solution among the outcomes
of the parallel machines, and eventually updating the network
information status in Step 4. In terms of Algorithm 2,
lines [4-13] are associated with population initialization
where each chromosome is randomly generated from the list
of node candidates. By selecting parents from the population
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Algorithm 2 GA Runs at Each Paralleled Machine
1: Input: ζk
2: Output: The best offloading solution for the task k
3: procedure Genetic Algorithm operations

FInitial Population Generation
4: r = 0
5: for m = 1 to M do

F Generate a chromosome with |ð(k)| genes. Each
gene is a task offloading solution for a replica gjf =

Ac,f
kj

Ae,f
kj

A1,f
kj
· · ·A|P|,fkj

6: for n = 1 to |ð(k)| do
F Try to map a task replica to a randomly selected
worker node in ζk with up to Q trials

7: for q = 1 to Q do
8: Map a replica to a randomly selected

worker node in ζk
9: if feasible goto 11
10: end for
11: end for
12: r = r + 1 and add the chromosome to population
13: end for

FEvolution process
14: if r > 1 then
15: for p = 1 to maxIterations do
16: if ranNum ∈ (0, 1) < pc then
17: Select two parents in random
18: Conduct crossover operation
19: if both parents are feasible then
20: One of children is randomly chosen

for mutation
21: r = r + 2 and add them to population
22: else
23: if only a child is feasible
24: r = r + 1 and add the one to

population
25: if ranNum ∈ (0, 1) < pm then
26: if both children in crossover are

infeasible then
27: One parent is randomly selected for

mutation
28: end if
29: Conduct Mutation operation
30: if new mutated child is feasible then
31: r = r + 1 and add the one to

population
32: end for
33: if r > M eliminate chromosomes produced lower

fitness values
34: else if r = 1 then the current offloading solution will

be final.
35: else
36: reject the task k
37: end if
38: end procedure

in random as shown in line 17, we try to balance the
exploration and exploitation. Lines [14-37] involve the GA’s
evolution operations by exploring the searching space. The
Crossover operator is conducted in lines [16-24], whereas
lines [25-31] are theMutation operator. Line 33 is to maintain
the elite population by eliminating the chromosomes produc-
ing the lowest fitness values to remain the population at most
M chromosomes. In case that we only achieve one feasible

chromosome (e.g., due to network congestion), this will
become the final offloading solution in line 34; otherwise,
the task will be rejected in line 36.

C. EXECUTION TIME ANALYSIS
Due to the lower cost of computing hardware recently,
parallel algorithms can be beneficially exploited to tackle
intricate computational tasks. As a result, we advise a
distributed parallel GA framework to deal with the online
task offloading problem. In this paper, the execution time
of the proposed task offloading solution is measured in two
manners: sequential and parallel modes. In sequential mode,
the time complexity follows a linear increase as we can see
that the execution time is the sum of the operation time
of all working machines. However, the total execution time
of the parallel mode is estimated at the latest machine that
finishes its offloading assignment. The time complexity of
GA algorithm at each machine is roughly O(G × M ×
maxIterations). In fact, the representation of GA algorithm
at each working machine is not static, which is depended
on the number of replicas of a given task. In addition,
we cannot always guarantee to achieveM chromosomeswhen
the SN becomes increasingly congested. In GA algorithm,
the iteration process is terminated earlier if the best fitness
value does not change for t consecutive iterations. It would
be better to measure the time complexity by measuring the
average runtime and to indicate how the parallel manner is
enhanced in a comparison with sequential one.

Similar to [29], we apply Cramer-Chernoff technique and
Jensen’s inequality to provide a reasonable approximation
to the total execution time of the parallel mode. Hence, our
distributed parallel offloading framework is able to indeed
enhance the time complexity from linear to logarithmic scale
subject to |V |. Interested readers may refer to [29] further
theoretical analysis.

V. COMPARED ALGORITHMS
We evaluate the efficiency of not only our proposed
collaborative framework compared with conventional com-
puting paradigms including cloud and edge computing, but
also our GA-based algorithm in a comparison with some
heuristic algorithms, comprising Baseline_1, Baseline_2, and
Baseline_3 towards the acceptance ratio, offloading cost,
and utility. Baseline_1 is considered as a Kubernetes default
scheduler applying the filtering and then scoring algorithms,
whereas Baseline_2 processes the task replicas by randomly
selecting the worker nodes. In contrast, Baseline_3 deploys a
branch and bound strategy to tackle the given task with a set
of replicas sequentially [30]. Different from these heuristics,
our proposed GA-based solution enables a set of all task
replicas to be processed at once. To remain the service
stability and reliability, a proportional number of replicas can
be solely offloaded to a single worker node, which cannot
exceed 50% (except cloud and edge nodes). Indeed, SPs is
able to easily adjust this parameter to meet their specific
goals (e.g., in network congestion). Several performance
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FIGURE 4. (a) Acceptance ratio (b) Average costs between architectures.

FIGURE 5. (a) Average offloading cost (b) Average utility.

evaluation metrics including average task acceptance ratios,
average offloading costs, and average accumulated utility
are conducted to assess the efficiency amongst the com-
pared algorithms. Besides, we extend our assessment by
comparing our proposed GA-based algorithm on different
parking-lot sizes: 50 and 100 parking spots according to
small and medium ones. The offloading results of them
are crucial to determine the possible network strategies
towards SPs in order to guarantee QoS or Key Performance
Indicators (KPIs).

VI. NUMERICAL RESULTS
A. SIMULATION SETUP
In this paper, we have evaluated the algorithms by developing
a discrete event simulator. Vehicles dynamically arrive at and
leave parking lots which have 50 or 100 free parking spots.
In practice the whole parking lot might be fully utilized, but
we set out the capacity of the parking lot merely ranging
from 50% up to 85% in peak hours. It can be argued that not
all PVs are ready to share the computation resources while
parking or meet the essential qualifications to provision the
network services (e.g., outdated vehicles, lacking computing
capability, running errands). In addition, [1] indicated
that the parking duration of PVs is analytically varying

FIGURE 6. Acceptance ratio towards PV availability.

[08-240] minutes. The service behaviours of PVs in [1] was
estimated from the real dataset provided by ACTGovernment
Open Data Portal dataACT. The SmartParking application
was installed to collect more than 180, 000 parking records
in the Manuka shopping precinct in Canberra, Australia.
Following these statistics, it is pointed out that more than
85% of PVs approximately spent maximum average 3 hours
in the parking lot, and the probability of serviceability of PVs
gains around 90% at 60 minutes [1]. In this research, the
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TABLE 2. Simulation parameter settings.

parking duration of PVs follows the Poisson distribution with
λ = 3600. The simulation runs for almost 8 hours following
the common pattern of business working time in peak hours,
and the simulator indeed updates the PV availability for every
20 minutes. As mentioned, the online tasks can be commonly
divided into latency-sensitive and latency-insensitive tasks;
thus, when the latency tolerance of a task exceeds 20 ms,
it is marked as a latency-sensitive request. In this paper, the
offloading task requests arrive in the network following the
Poisson process with an average rate varying from 10 to
120 requests per 100 time units. Each online task request
has an exponentially distributed lifetime with an average
of µ = 1200 time units. These workloads are extremely
extensive for evaluating the proposed framework as well
as the compared algorithms. Besides, energy coefficient ε,
coefficient for energy price ρ and unit price for each
CPU cycle σ are set to 10−24, 0.003 and 2 × 10−9 [17],
respectively. Other simulation parameters are detailed in
Table 2.

B. PERFORMANCE RESULTS
In terms of the small-size parking lot, evaluation results are
shown in Fig. 4, 5 and 6, whereas those of medium-size
parking lot are illustrated in Fig. 7 and 8. Finally, Fig. 9
depicts the execution time of the proposed GA-based
algorithm measured in different sizes of the parking lots.
Fig. 4a indicates that our collaborative paradigm remarkably
enhanced the average acceptance ratio for more than 40%

in comparison with Cloud-Edge and Cloud infrastructures
at the arrival rate of 120, respectively. Additionally, Cloud
or edge infrastructure performed worse due to their limited
computation capacity in peak hours. Moreover, our proposed
collaborative framework significantly saved the offloading
cost when being compared to other infrastructures as
demonstrated in Fig. 4b. These results in Fig. 4a and 4b come
from the facts that the collaborative framework exploited not
only typical cloud and edge computing capacities, but also
those of available PVs, allowing more online task requests
processed. It also deployed the GA-based algorithm for
optimizing the offloading cost, so the proposed infrastructure
produced less cost compared to others. Similarly, cloud-Edge
enabled the computing resources of both cloud and edge
computing, which helps cloud-edge paradigm perform better
than separate cloud or edge paradigmwhich could only utilize
their own capacity separately. However, due to its merged
computing capacities, cloud-edge framework generated more
offloading cost than others except cloud infrastructure. The
core cloud indeed processed more tasks than the edge
computing due to its larger computation capacity, but it also
bore more cost than the edge.

In Fig. 5a, Baseline_1 performed worst in terms of the
average offloading cost because of its offloading strategies
with a simple heuristic filtering and scoring algorithm.
Baseline_1 first carried out the filtering procedure to select
the feasible nodes that met the task requirements, then
cored them based on their current properties (e.g, computing
resources). The nodewith the highest scores that wasmatched
the task demands was selected. It did not take any offloading
cost or utility factor into account. In contrast, Baseline_2
was based upon the random mechanism for selecting the
worker nodes and, had a better performance than Baseline_1.
And, Baseline_2 tended to perform well when the network
was less congested; thus, it had more options for preference.
Baseline_3 was primarily aimed at optimizing the offloading
cost, so it performed best amongst the baseline algorithms;
and its performance was indeed very comparative to the
proposed GA-based algorithm.

Fig. 5a is revealed that EdgeGA’s performance was still
better than Baseline_3 prior to the arrival rate 80, and
performed slightly similar afterwards. It is because the online
tasks were most likely offloaded to PVs, producing lower
offloading cost. Towards utility as depiected in Fig. 5b,
EdgeGA defeated the heuristics following Baseline_2, Base-
line_3, and Baseline_1, respectively. In fact, EdgeGA took
the offloading cost as well as the utility into account, driven
by the efficient fitness function (31), while the baseline
algorithms did not consider utility in their node selection
strategies. In Fig. 5b, Baseline_2 performed better than
EdgeGA before the arrival rate of 40 because Baseline_2
had more node options for offloading the tasks when the
network was less congested; however, starting from the
arrival rate of 40 afterwards, EdgeGA outperformed all
compared algorithms since EdgeGA smartly searched for the
most appropriate worker nodes that were able to produce
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FIGURE 7. EdgePV performance on different sizes: (a) Acceptance ratio (b) Average cost (c) Average utility.

less cost while generating highest revenues, especially in
congested environments.

Furthermore, we figured out the PV availability of PVs
in relation to acceptance ratios subject to different arrival
rates of online tasks, where each arrival rate prefers different
PV availability as demonstrated in Figure 6. For precise
measurements, we fixed the availability of PVs instead of
letting the parking capacity randomly ranging from 50% up
to 85% as described in Section VI-A. There are several useful
information revealed from these results. For instance, arrival
rates (10, 20, 30, 40, 50) demands 60% availability of PVs to
reach 80% acceptance ratios, whereas the arrival rates 60 and
80 were required 80% and 100% to gain the same outcome,
respectively. These evaluations are critical to the network
planners for attaining the expected KPIs by conducting
proper strategies. For example, SPs could increase user
incentives to appeal PVs to join into the network (e.g.,
reaching full capacity), or to extend edge server capacity,
or to offload to another cluster. Depending on particular
situations, SPs can determine which strategy is the most
appropriate.

In addition, we assessed our proposed GA-based algorithm
on different sizes of the parking lot: a small size with 50 free
parking spots (denoted as EdgeGA-50) which has been done
in previous section, a medium one with 100 free parking
spots (denoted as EdgeGA-100). Both were run on the same
network loads ranging from 10 to 120 requests per 100 time
units as similar to previous section. The main reason for this
study are threefold: first we want to examine the scalability
of our proposed algorithm, and how well EdgeGA adapts
to the increase of the search space. Second, conducting this
evaluation can quantify how much gains exactly we can
achieve if the capacity of parking lot is doubled. Further,
this study can provide a flexible offloading strategy for SPs
who can statistically determine which proper parking lots
to host their services on them. For example, SPs can select
a medium size of parking lot at first since they anticipate
that the network can be quickly congested with large traffic
loads, and then switch to smaller size in off-peak times or
vice versa in order to balance between QoS and generated
revenues. Additionally, they might decide to choose one
medium parking lot instead of two small ones depending on
the workloads.

FIGURE 8. Acceptance ratio regarding PV availability with 100 PVs.

Fig. 7a and 7c depicted that both acceptance ratio and
average utility were improved up to 24% at the arrival rate
120 when the parking-lot size was increased to double.
Additionally, the offloading cost was also enhanced for more
than 16% at the same arrival rate as shown in Fig. 7b. It is
obvious to recognize that when increasing the parking lot
size, there were more options for node selections, leading
to the increasing possibility of accepting more arrived
tasks while maintaining lower offloading cost. Similarly,
the average utility was also enhanced when the workloads
were increasing. However, with smaller size of parking lot
during low network congestion, EdgeGA rapidly achieved
a good result for average utility, which was consistent
with the results in Fig. 7a since EdgeGA had to search a
smaller search space. When the network became more and
more congested with increasing workloads, specifically after
the arrival rate of 50, EdgeGA still proved its efficiency
in congested environments. Due to less worker nodes for
selections, EdgeGA-50 performed worse than EdgeGA-100
that had more available worker nodes for selections. Thanks
to those performance outcomes, IPs are able to determine
which size of parking lots to maintain a balance between the
generated revenues and the offloading cost.

Likewise, we investigated the relationship between the
acceptance ratios and the availability of PVs as shown
in Fig. 8. To produce 80% of the acceptance ratio for
all arrival rates, 60% availability of PVs were demanded
against 100% of a small-size parking lot. We also fixed the
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FIGURE 9. Average execution time on sequential and parallel modes.

availability of PVs for precise measurements as explained
in previous section. In fact, 10, 20 and 30 arrival rates
quickly achieved 80% acceptance ratio when the availability
of PVs was smaller than 20%, whereas the arrival rates
40, 50 and 60 demanded 40% to obtain the similar outcomes.
Hereafter, the arrival rate 80 required larger than 20% to
achieve the same result. Compared to the results in Fig. 6,
it is reasonable for these improvements as the size of
parking lot was expanded, which means that there were more
worker nodes hosting the arrived tasks so the acceptance
ratio was improved. As we mentioned in Section IV,
we propose a distributed parallel GA-based algorithm for
online task offloading problem in this paper. To measure
the improvement of the proposed parallel implementation
scheme towards reducing execution time, we compare the
execution time of our GA-based algorithm running on
sequential and parallel manners separately. Due to diverse
workloads with several arrival rates, similar to several related
papers, the execution time in this manuscript was measured
for a single offloading task. As a result, our proposed parallel
framework only required 1.217ms compared to 14.725ms in
sequential operation manner to successfully process a given
task in average as demonstrated in Fig. 9.
By increasing the size of the parking lot to double, the algo-

rithm finished processing a task in 2.756ms and 23.567ms
regarding parallel (_p) and sequential (_s) modes, respec-
tively. The exceptional performance on the execution-time
was due to the distributed parallel implementation of our
proposed GA-based algorithm as shown in Fig. 3. The
achieved execution time is indeed ambitious, which again
proves that our GA-based solution is fast, efficient and
practical.

VII. CONCLUSION
This paper has studied the collaborative computation archi-
tecture where PVs are promising to become an efficient
extension for the existing cloud-edge computation paradigm
to deal with the online task offloading in peak business
hours. We also advocate the Kubernetes orchestrator that
can be implemented at the edge server as the master node.
Accordingly, the core cloud, edge computing itself, and

PVs are able to manipulate as worker nodes. The exten-
sive evaluations shows that our collaborative infrastructure
remarkably increases the computational capability of the
existing computing architecture by efficiently making use
of the being-wasted powerful hardware of PVs. This novel
framework also gives a flexibility, agility, and reliability to
address the online task offloading problems. In addition,
we propose a GA-based algorithm to deal with the time
complexity of BIP problem and then compare our solution
with several baseline algorithms as well as on different
sizes of the parking lots. The proposed GA-based algorithm
outperformed all compared heuristics in terms of several
important performancemetrics such as task acceptance ratios,
offloading cost, and accumulative rewards. Furthermore,
PV owners are able to gain extra incentives by sharing
their computing resources while parking in parking lots.
Furthermore, we quantify the successfully task acceptance
ratios towards the availability of PVs on various arrival rates.
In fact, the evaluations are critical to SPs for making a
proper decision on which offloading strategies are selected
to optimize the generated revenues. The proposed GA-based
algorithm dramatically improved the average total execution
time thanks to the distributed parallel implementation when
being compared with the sequential operation.
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