
1

Modeling chaotic behaviour of SIP retransmission mechanism

Yang Hong, Changcheng Huang, James Yan

Dept. of Systems and Computer Engineering, Carleton University, Ottawa, Canada

E-mail: {yanghong, huang}@sce.carleton.ca, jim.yan@sympatico.ca

(Received 3 December 2011; final version received 5 December 2011)

The SIP retransmission mechanism can cause SIP network collapse with short term overload. In this

paper, we investigate with a fluid modeling approach the chaotic behaviour of the SIP

retransmission mechanism in SIP networks. We capture the complex correlation structure in SIP

systems through a detailed and novel queuing analysis. To dimension a buffer size which can avoid

unnecessary message drop in a SIP server, we develop a sufficient condition for a stable SIP system

analytically based on our fluid model. We also apply our fluid model to the simulation of a complex

SIP system. We compare the simulation results achieved through our fluid models with those based

on OPNET event-driven approach to demonstrate the validity of our approach.

Keywords: SIP; network protocol; queuing model; performance evaluation

1. Introduction

Session Initiation Protocol (SIP) [1] has been widely deployed for significantly growing session-oriented

applications in the Internet, such as Internet telephony (or Voice over IP (VoIP)), instant messaging and video

conference. As a signaling protocol, SIP is responsible for creating, modifying and terminating session in a

mutual real-time communication [2]. With WiMAX and the 3rd Generation wireless technology being adopted

by more and more carriers, most cellular phones and other mobile devices are starting to use or are in the

process of supporting SIP [3-5].

Request for Comments (RFC) 5390 [6] identified the various reasons that may cause server overload in a SIP

network. These include but not limited to poor capacity planning, dependency failures, component failures,

avalanche restart, flash crowds, etc. In general, anything that may trigger a demand burst or a server slowdown

can cause server overload and lead to server crash. There are many published works [7-23] discussing how to

control SIP overload through call rejection or load balancing. However these mechanisms can either increase

call rejection rate or cause SIP server underutilized. Carriers do not want to see either of these to happen. We

believe that both problems can be avoided in most situations by understanding the root cause of server

overloading and widespread SIP network failures.

The goal of this paper is to develop a new analytical fluid modeling approach that allows us to investigate

how server overloading and widespread SIP network failure may happen under short term demand bursts or

server slowdowns. We want to demonstrate that the SIP hop-by-hop retransmission mechanism, originally

designed for reliability purpose, can cause such server failures in a SIP network.

The contributions of this paper are: (1) Proposing an innovative approach for modeling SIP networks with

SIP retransmission mechanisms. The arrival and service processes of each SIP server can be arbitrary, which

makes our modeling approach quite general. We have successfully analyzed and formulated the complex

retransmission and departure processes, i.e., our two major breakthroughs, as will be explained in later sections.

(2) Demonstrating the impact of the initial overload condition on a SIP system by both analytical and simulation

approaches. Our results indicate that different initial queue sizes may generate totally different behaviour

patterns for an overload SIP server (as shown in Section 5.1), which indicates the chaotic nature of SIP

retransmission mechanism. This chaotic behaviour is caused by redundant retransmissions triggered by short

traffic burst or temporary server slow down. The overload may migrate from a downstream server to its

2

upstream server due to retransmission mechanism (as shown in Section 5.2). A sufficient condition is provided

for maintaining system stability; (3) Making performance comparison between fluid-based Matlab simulation

and event-driven OPNET simulation in a SIP network to show our fluid model to be quite accurate. Fluid-based

simulation can reduce simulation time dramatically, when a large amount of signaling traffic has to be

processed in a SIP network.

This study will help network planners, operators, and researchers to understand the root cause of an

important network failure scenario triggered by short term traffic surges such as flash crowds and database

maintenance. Network planners can therefore plan their SIP networks better by engineering their SIP networks

below the triggering condition. Operators can schedule their maintenance periods to avoid server overload

conditions. Researchers can develop more efficient overload control algorithms that aim at reducing redundant

retransmissions instead of rejecting calls.

The remainder of this paper is organized as follows. Section 2 describes related work. Section 3 briefly

reviews SIP protocol. In Section 4 we apply our modeling approach to a single overloaded server and present

the condition for a stable system. We then demonstrate how to extend our modeling approach to a tandem server

and an arbitrary network. In Section 5 we demonstrate the chaotic nature of a SIP system under Poisson-

distributed demands through simulation. We also make performance comparison between fluid-based

simulation and event-driven simulation to claim the accuracy of our fluid model. Conclusions are given in

Section 6.

2. Related work

Recent collapses of SIP servers in the real carrier networks (e.g., VoIP outages in British Telecom, Vonage and

Wanadoo [24]) started attracting research interests on SIP overload problem. Experimental evaluation of SIP

server showed the overload collapse behaviour in [25]. Some attempts have been made to address the SIP

overload [22, 26]. For example, three window-based feedback algorithms were proposed to adjust the message

sending rate of the upstream SIP servers based on the queue length [11]. Both centralised and distributed SIP

overload control mechanisms were studied in [10]. Retry-after control, processor occupancy control, queue

delay control and window based control were proposed to improve goodput and prevent overload collapse in [7].

SIP Express Router (SER) developed advanced tuning and routing modules to mitigate overload caused by large

subscriber populations or abnormal operational conditions [13]. Request batching was combined with parallel

execution to improve call throughput and reduce call failure rate significantly in [15]. A novel authentication

protocol was developed to reduce the load on the centralized authentication database dramatically and enhance

the overall security of a carrier-scale VoIP network in [16]. The experiments in these works revealed that the

retransmission mechanism can exacerbate the overload. However, the impact of the retransmission on the CPU

load of a SIP server has never been well studied.

A demand burst or routine server maintenance may create a temporary long queue. Such long initial queue

size may continue to stimulate retransmissions and crash the server, even after the server resumes its normal

service, and the effective CPU utilization is low. We consider the SIP system exhibiting some chaotic behaviour

[27] in the sense that: (1) the system is sensitive to initial conditions, i.e., a small difference in the initial

conditions can lead to dramatic differences in system states as time evolves; (2) the dynamics of the system can

be described by a set of nonlinear differential equations as shown in Section 4.

To the best of our knowledge, no existing works have investigated the impact of initial overload condition on

the SIP system performance. Modeling the retransmission mechanism of SIP can help the researchers fully

understand the chaotic behaviour of SIP systems before any effective overload control mechanism can be

developed and studied.

In addition, event-driven simulation has been widely used for evaluating network performance. Its

computation cost grows linearly with network sizes and message volumes [28]. When event-driven simulation

is used to evaluate a SIP network, each outstanding SIP message requires a timer being maintained. When

overloads happen, outstanding messages are built up, and simulators need to increase the number of timers

3

dramatically to track message retransmissions. Tracking and manipulating these timers consume large amount

of memory and CPU time which make the simulation process extremely slow, thus in some cases, cause

simulators to crash and terminate simulations unexpectedly. In order to avoid this kind of simulator crash, the

experiments (e.g., [10]) have to take the following actions: (1) reduce original message generation rate and their

retransmission timers in a SIP network; (2) limit the buffer size and drop a large portion of demand bursts; (3)

limit the processing capacities of SIP servers. These actions have limited the scalability of the simulation

approach significantly. Furthermore, most of the interesting events in SIP, e.g., server crash, are considered as

highly correlated rare events. For the study of these correlated rare events, extremely long simulated time and

large number of replications are typically required to get any meaningful statistical result.

Therefore, it is necessary to develop some other approaches to simplify the CPU-consuming timer-tracking

process. Fluid-based models have been successfully used to achieve scalability by aggregating events into time

slots [29, 30]. By running a fluid-based simulation on a desktop PC, Liu et al. evaluated Transmission Control

Protocol (TCP) performance of a large scale IP network consisting of hundreds of routers and thousands of high

bandwidth links supporting millions of flows, which is unachievable by current event-driven simulators [29]. In

addition, Liu et al. performed both fluid-based simulation and event-driven simulation on a small-size network

in [29]. Their simulation results demonstrated that fluid-based simulation can achieve comparable performance

with event-driven simulation if the sampling interval is small enough. With acceptably small errors, fluid-based

simulation has attained significant speedups when compared with event-driven simulation [29, 30].

Fluid models for Asynchronous Transfer Mode (ATM) and data networks have been created and analyzed

widely. The book [31] provides a comprehensive review on these models. An analytical model was proposed to

evaluate a finite-buffered multistage interconnection network (MIN) whose communication structure can be

Ethernet switch or ATM switch [32]. However, these models all deal with bandwidth-constrained networks,

while SIP networks are server (CPU) constrained. None of the existing models have considered retransmissions.

Even the TCP models in [29, 31] do not consider retransmissions. It is difficult to capture retransmissions with

fluid model because retransmissions generate duplicate messages and create a complex correlation structure due

to various timers.

We introduced the fluid model for SIP systems with finite buffer in [33] where our focus was to study the

impacts of message loss. A major conclusion in [33] was that small buffers can mitigate overload with a cost of

rejecting a large number of calls. Our purpose here is to investigate the chaotic behaviour of SIP systems and

find the condition to maintain a stable system. Therefore in this paper we let buffer sizes be infinite. The stable

condition was briefly introduced in [34] initially. Both papers [33] and [34] assumed that the processing time for

response messages was negligible when compared with the processing time for the request messages. However,

in some cases, this assumption can cause major errors. For example, a large number of response messages were

generated when the downstream Server 2 just resumed its normal service, as indicated by Fig. 15 in Section 5.2

later on. The total workload generated by this response message burst is not negligible even though the

workload generated by each response message is much smaller than the processing time of the request message.

Other than the treatment of the response messages, the paper [34] also has some technical errors in its

mathematical proof. This paper will significantly improve those results through new analysis and simulation on

tandem server with infinite buffer, accurate treatment of response messages, robust mathematical proof, a new

lemma on buffer dimensioning, OPNET simulation results, and vigorous illustration of chaotic behaviour.

We will show how we solve the problem of modeling the retransmission mechanism in SIP with infinite

buffer by using a fluid model in Section 4. This is the major enabler of the contributions we make in this paper.

3. SIP protocol overview

A SIP network mainly consists of the two basic entities: user agent (UA) and proxy server. A user agent can act

as a client (UAC) or as a server (UAS). Fig. 1 depicts a typical procedure of a session establishment. To set up a

call, a UAC sends an “Invite” request to a UAS via the two proxy servers. The proxy server or the UAS returns

a provisional “100Trying” response to confirm the receipt of the “Invite” request. The UAS returns an

4

“180Ring” response after confirming that the parameters are appropriate. It also evicts a “200OK” message to

answer the call. The UAC sends an “ACK” response to the UAS after receiving the “200OK” message. Finally

the call session is established and the media communication is created between the UAC and the UAS through

the SIP session. The “Bye” request is generated to finish the session thus terminating the communication. When

a SIP proxy server is overloaded, it will send a “503 Service Unavailable” message in response to an “Invite”

message. The call will then be rejected.

As the Invite message is the most complex message to be processed by a SIP server and thus the major CPU

load contributor [1], we will focus on the Invite-100Trying transaction and ignore other non-Invite transactions

in this paper. Given the proportionate nature and the general similarity of the retransmission mechanisms

between the “Invite” and “non-Invite” messages in a typical session [1], our modeling approach can be naturally

extended to include non-Invite transactions.

Invite

100Trying
Invite

Invite
100Trying

180Ringing
180Ringing

180Ringing

200OK
200OK

200OK

ACK
ACK

ACK

Session Data

Bye
Bye

Bye

UAC UAS
SIP

Proxy-2

200OK
200OK

200OK

SIP

Proxy-1

Figure 1. A typical procedure of session establishment.

To provide reliability for SIP Invite messages, SIP protocol incorporates a hop-by-hop retransmission

mechanism [1, 35]. For each hop, the sender starts the first retransmission of an original message at T1 seconds

and the time interval doubles after every retransmission (exponential back-off), if the corresponding 100Trying

response message is not received. The last retransmission is sent out at the maximum time interval 64T1

seconds. Thus there is a maximum of 6 retransmissions. The default value of T1 is 0.5s [1]. However, each SIP

sender cannot detect whether retransmissions are stimulated by actual message loss or excessive time delay due

to the overload, and it always retransmits the messages after corresponding timers expire.

SIP RFC 3261 [1] suggests that the SIP retransmission mechanism should be disabled for hop-by-hop

transaction when running SIP over TCP to avoid redundant retransmissions at both SIP and TCP layer [1].

However, it has been demonstrated that TCP cannot prevent SIP overload collapse [10, 17]. Therefore nearly all

vendors choose to run SIP over User Datagram Protocol (UDP) instead of TCP.

In a typical SIP system, numerous SIP servers are connected into a network. It would be necessary to

investigate the interaction between the neighbouring servers and know how an overloaded server can cause a

whole SIP network to break down. The topology of a real SIP network can be quite complex, it is hard to select

a specific large network to represent an arbitrary network. However there are in general two types of SIP nodes

as shown in Fig. 1: user agents vs. proxy servers. In some cases, application servers can take the place of user

agents. In this paper, we start with a single server which represents the most overloaded proxy server in a SIP

network. We then demonstrate how to extend the results for single server to tandem server scenario where one

represents a proxy server and the other represents a UA. In Section 4.3, we discuss how to generalize our results

to an arbitrary SIP network.

5

Our approach to be developed in this paper can be applied to any queuing and scheduling policy. SIP RFC [1]

does not specify any specific queuing and scheduling policy, which is left to vendors to choose for their

competitive advantage. Without loss of generality, we choose a First-In-First-Out (FIFO) based queuing policy

as suggested by a vendor. This policy has the benefit of easy to implement in real system and is therefore the

first choice for many vendors. The queuing policy and its associated SIP system are defined below:

(a) Delay Consideration: We investigate the retransmissions which are mainly caused by long queuing delay

of the overloaded server. Therefore, for the round trip response time between an overloaded server and its

neighbouring server, the queuing and processing delays are dominant, while transmission and propagation delay

are negligible [11]. This consideration is valid because signaling messages are typically CPU capacity

constrained rather than bandwidth constrained;

(b) Discrete-time Formulation: Time is divided into discrete time slots. This allows us to develop discrete

time models which are much easier to understand and simulate. A smaller time slot corresponds to more

accurate simulation result, but a longer simulation time. However it becomes meaningless to reduce time slot to

the level of a message processing time. The default interval of a time slot is chosen as 50ms in this paper,

because it can provide a desirable accuracy for the simulation scenarios we select. According to the SIP RFC [1],

the corresponding first retransmission time T1 would be 0.5s and 10 timeslots equivalently. We use t and n to

denote time and timeslot respectively;

(c) Queuing-priority Mechanism: The SIP RFC [1] does not specify the queuing and scheduling discipline

to be deployed by a SIP server. We let a SIP server maintain a First-In-First-Out (FIFO) queue for messages

arriving at different time-slots. All request messages enter the tail of a server queue. The FIFO queue model

reflects the common practice by most vendors today [10, 13]. For messages which arrive within the same time

slot, we choose the order of the enqueuing priority to be: the original request messages > the retransmitted

request messages from the upstream servers > the retransmitted request messages for the downstream servers

(as shown in Figures 2 and 4). It is easy to see that this special priority mechanism has negligible impact on

average total arrival rate if the interval of the time slot is very small. There is no enqueuing difference for the

messages arriving at different time slots;

(d) Response Treatment: Enqueuing response messages at the tail of the message queue will delay the

processing of response messages, thus trigger more redundant retransmissions and make the overload worse.

We let response messages be handled as interrupts and enter the head of message queue if cannot be processed

immediately. It should be noted that the time to process a response message is typically much smaller than a

request message, but cannot be neglected for some overload scenarios;

(e) Overload Assumption: When overload happens in the network, at any time, one of the servers will be the

most overloaded one among all the overloaded servers. It becomes the bottleneck server. In our single

overloaded server scenario, we will focus on this bottleneck server by assuming all its upstream and

downstream servers have infinite capacities and therefore are not overloaded;

(f) Tandem Choice: Our tandem server model consists of Server 1 and Server 2, where Server 1 represents

an arbitrary proxy server, while Server 2 represents an arbitrary user agent server (as shown in Fig. 4). Server 1

may have multiple upstream servers; The generic nature of the tandem server allows us to generalize our

conclusions to an arbitrary SIP network;

(g) Tandem Capacity Setting: To study the interactions among multiple servers, we consider a tandem

server scenario where the upstream servers connecting with a tandem server have large capacity enough to

process all requests, retransmissions, and response messages immediately without any delay. However，the

capacities of the two servers in the tandem server are limited;

(h) Buffer Size Selection: The buffer sizes for both single overloaded server scenario and tandem server

scenario are selected to be infinite. This allows us to show the chaotic behaviour that queue size increases

forever under certain initial conditions. This will also lead to the conclusion that increasing buffer size will not

mitigate overload. Practical buffer sizes vary with the actual service rates and system configuration plans. With

the memory becoming cheaper and CPU becoming faster, typical buffer sizes are likely to become larger.

6

4. Model and analysis

To provide a better understanding of our modeling approach, we create a fluid model for a single overloaded

server first. Then we discuss how to extend our modeling approach to a tandem server and an arbitrary network

with minor modifications.

4.1. Modeling single overloaded SIP server

In a real SIP network, a single overloaded server may represent the most overloaded one among a group of SIP

servers at a specific time. To start with, we assume all the SIP servers other than the overloaded one have

infinite capacities (i.e., Overload Assumption (e)). Fig. 2 depicts the queuing dynamics of a single overloaded

server. The key challenge to analyzing SIP servers is the various types of messages a SIP server has to process.

Different types of messages have different processing requirements and are typically treated differently by SIP

servers. Our approach tries to differentiate different types of messages into three categories and formulate their

processing and departure differently. The three types of messages are: original Invite message arrival process

1(n) from upstream servers, retransmitted Invite request arrival process r1(n) from upstream server, and

response arrival process 1(n) from downstream server. Response arrival rate 1(n) is determined by message

departure process 2(n). Given that both original message arrival process 1(n) and server service process 1(n)

can be arbitrarily distributed, how to obtain retransmission process r1(n) and departure process 2(n) is a great

challenge for the SIP modeling.

1
)(1 n

100Trying Response

)(1 nr

)(1 nq

Invite Request

)(1 n

)(2 n

Figure 2. Queuing dynamics of an overloaded SIP server (1(n) denotes original message arrivals, r1(n) denotes

retransmitted message arrivals, 1(n) denotes response message arrivals, q1(n) denotes queue size, 1(n) denotes

service rate, and 2(n) denotes original message departures).

It is clear both r1(n) and 2(n) depend on the queuing process. Let q1(n) denote the queue size at time n. We

can obtain the queue size q1(n+1) at next time slot n+1 based on the information at current time slot n, i.e.,

q1(n+1)=[q1(n)+1(n)+r1(n)+1(n)1(n)]
+
, (1)

where 1(n)+r1(n)+1(n) give the total arrival messages at current time slot n. Adding q1(n) and deducting the

service rate 1(n) would generate a new queue size q1(n+1) at next time slot n+1, as described by Eq. (1).

Eq. (1) is useful only when we can obtain the arrival retransmitted messages r1(n) and the response messages

1(n), both depend on the queuing and departure processes. Therefore they are all intertwined. Our approach is

to calculate all quantities in a recursive way and use a divide-and-conquer strategy to solve the complex queuing

and departure process as demonstrated in the following subsections.

4.1.1. Obtaining retransmitted messages r1(n)

In order to calculate r1(n), we first have to look at r'1(n), the total retransmitted messages generated by all

upstream servers at current time slot n. Following the divide-and-conquer strategy, we divide r'1(n) into 6

components where each component can be calculated easier. The original request messages which arrived at

Server 1 at time nT1 will be retransmitted the first time by upstream server at time n if they have not been

processed by Server 1 by time n. These retransmitted messages constitute the first component. Similarly a

message arrived at time nTj, Tj=(2
j
1)T1, will be retransmitted the j

th
 time at time n if the original request

messages have not been processed by time n. Let r'1j(n) denote all the j
th

 retransmissions generated by all

upstream servers at time n for the original request messages arriving at time nTj, and 1≤j≤6, because there are

7

maximum 6 retransmissions for every original request message [1]. We can obtain the total retransmitted

messages r'1(n) generated by all the upstream servers at current time slot n as

 6

1 11)()(
j j nrnr . (2)

Since the upstream servers have infinite capacity and can process the retransmitted messages without any delay

(i.e., Overload Assumption (e)), we have

r1(n)=r'1(n). (3)

So our focus now is how to find r'1j(n). In order to determine whether an original message needs to be

retransmitted by an upstream server, we need to know whether the message is still in queue at the overloaded

server at current time. Since the message arrival process and the server service process are arbitrary, the queuing

delay for every original message becomes variable. This makes it a complex task.

We now describe our novel method to calculate r'1j(n) by characterizing the original messages that have been

serviced for the time-out period Tj and the remaining messages that are still in queue at current time.

At time nTj, the original message arrivals were 1(nTj) and the queue size was q1(nTj). To decide how

many of these messages will be retransmitted again at time n, we need to know how many of them are still in

queue at time n. Since the response messages enter the queue head and are processed without any delay, we

define the total processed request messages from time m to n as)]()([),(111 llnms
n

ml

. The overloaded SIP

server can process s1(nTj,n) request messages during the past Tj time slots.

After Tj time slots, the remaining request messages of those queued prior to the time slot nTj become

[q1(nTj)s1(nTj,n)]
+
.

According to Queuing-priority Mechanism (c) and Response Treatment (d), the new arrival original

messages 1(nTj) entered the queue tail prior to the retransmitted messages r1(nTj). Therefore the

retransmission of a request message also depends on the arrival rate 1(nTj), but not on r1(nTj).

Without counting r1(nTj), the remaining request messages in the queue at current time n become

[1(nTj)+q1(nTj)s1(nTj, n)]
+
.

This includes the original messages and the response messages which arrived at time nTj, and the queued

messages right before the time slot nTj. However, only the remaining original arrival messages 1(nTj) need

to be retransmitted at time n, so we use minimum function to obtain the j
th

 retransmissions r'1j(n) as

r'1j(n)=min{[1(nTj)+q1(nTj)s1(nTj, n)]
+
, 1(nTj)}. (4)

4.1.2. Obtaining response messages 1(n)

Any downstream server of the overloaded server is required to reply a response message to acknowledge the

receipt of a request message sent from the overloaded server. Since the downstream servers can process the

incoming messages without any delay (i.e., Overload Assumption (e)) and the propagation delay is negligible

(i.e., Delay Consideration (a)), the arrival response messages 1(n+1) at next time slot n+1 should be equal to

the departure original messages 2(n) at current time n, i.e.,

1(n+1)=2(n). (5)

Therefore the key to calculate the 1(n) is to calculate the departure process 2(n).

Let the whole SIP network start running at time n=0. Since varying queuing delays exist between the arrival

and departure times for the original messages, the relationship between the departure original messages 2(n) at

current time slot n and all the arrival original messages 1(nd) at previous time slot nd (d=0,1,2,…,n) is very

complex and difficult to determine. The original messages 1(nd), which arrived time slot nd (d=0,1,2,…,n),

may or may not contribute to 2(n) depending on whether they are still in queue at time n. For a causal system,

due to queuing and processing delay, only the original messages which arrive at time n or earlier may contribute

to 2(n).

We propose an innovative approach to obtain 2(n) based on divide-and-conquer strategy by dividing 2(n)

into individual components so that each of them can be calculated easier.

8

We denote the amount of original messages which arrived at time nd and happens to leave at time n as

2d(n). We solve the challenge posed by the uncertainty that all original messages arriving prior to and at time n

may or may not contribute to 2(n) by examining 2d(n) individually. It is easy to see

n
d d nn

0 22)()(. (6)

Clearly some of these 2d(n) will be null.

)1,(1 ndns

1)(2 nd

)(1 dnq)(1 dn

)(1 dn

(a)

)1,(1 ndns

1)(2 nd

)(1 dnq)(1 dn

)(1 dn

(b)

)1,(1 ndns

1)(2 nd

)(1 dnq)(1 dn

)(1 dn

),(1 ndns

(c)

)(1 dn

)1,(1 ndns

1)(2 nd

)(1 dnq)(1 dn

),(1 ndns

(d)

)(1 dn

)1,(1 ndns

1)(2 nd

)(1 dnq)(1 dn

),(1 ndns

(e)

Figure 3. Departure original messages 2d(n) under five different scenarios: 1(nd) denotes original message

arrivals at time slot nd, 1(nd) denotes response message arrivals at time slot nd, q1(nd) denotes queue size

at time slot nd, s1(nd,n1) denotes the total processed messages between time slot nd and time slot n1, and

2d(n) denotes departure original messages which arrived at time slot nd and leave at current time slot n.

By definition, 2d(n) is related to 1(nd) and the queuing process. At time nd at the overloaded server, the

arrival messages from its upstream servers were 1(nd) for the original requests and r1(nd) for the

retransmissions; the response messages from the downstream servers were 1(nd); the service capacity was

1(nd); the queue size was q1(nd). Queuing-priority Mechanism (c) and Response Treatment (d) indicate that

1(nd) were queued right after q1(nd), while 1(nd) entered the queue head. Fig. 3 describes all five possible

scenarios between the processed messages s1(nd,n1) and the queued messages q1(nd). Identifying these

scenarios is critical for calculating whether there is any departure message from Server 1 at time n.

1. s1(nd,n1)1(nd)+q1(nd) as indicated in Fig. 3 (a). This means that the original messages arrived at

time nd have been fully served by the time n1. Therefore we have 2d(n)=0 and

[1(nd)+q1(nd)s1(nd,n1)]
+
=0.

2. 1(nd)+q1(nd)>s1(nd,n1)q1(nd) as indicated in Fig. 3 (b). This means that the original messages

arrived at time nd have been served partially at time n1. The remaining messages to be served at time n

should be 1(nd)+q1(nd)s1(nd,n1). We have 2d(n)=[min{1(nd)+q1(nd)s1(nd,n1), 1(n)1(n)}]
+
.

3. s1(nd,n1)q1(nd) and s1(nd,n)q1(nd) as indicated in Fig. 3 (c). This means that none of the

original messages arriving at time nd has been served by the time n. Therefore we have 2d(n)=0 and

[s1(nd,n)q1(nd)]
+
=0.

4. s1(nd,n1)q1(nd) and

1(nd)+q1(nd)>s1(nd,n)q1(nd) as indicated in Fig. 3 (d). This means that, at time n, the server serves the

response messages 1(nd) and the remaining messages in the queue q1(nd) and then starts serving the original

messages which arrived at time n-d using the left capacity. We have 2d(n)=s1(nd,n)q1(nd).

9

5. s1(nd,n1)q1(nd) and s1(nd,n)1(nd)+q1(nd) as indicated in Fig. 3 (e). This means that, at the

time n, the server starts serving the original messages arriving at time nd and can finish serving all these

messages. We have 2d(n)=1(nd).

The above 5 categories are mutual exclusive and have covered all the possible scenarios. By summarizing

them together, we can obtain the departure rate 2d(n) of the overloaded server as

2d(n)=[min{1(nd)+q1(nd)s1(nd, n1), 1(n)1(n), s1(nd, n)q1(nd), 1(nd)}]
+
, d=1,,n, (7a)

When d=0, the original messages arrive at current time slot n. Whether these messages can be served

immediately depends on the available capacity [1(n)1(n)q1(n)]
+
. Then we can obtain 20(n) as

20(n)=[min{1(n)1(n)q1(n), 1(n)}]
+
. (7b)

Combining Eqs. (1) to (7) will give us a complete description of the dynamic behaviour of an overloaded SIP

server. Due to its chaotic characteristic, performance evaluation in next section shows that this complex,

sometimes chaotic pattern can drive the SIP server into instability. The fluid model described by Eqs. (1) to (7)

allows us to conduct a simple fluid-based Matlab simulation. This will significantly reduce the simulation time

comparing to the traditional event-driven simulation where a large number of timers for retransmissions need to

be tracked.

4.1.3. Stability condition of SIP retransmission mechanism

The messages accumulated by a transient overload (e.g., a demand burst or a server slowdown) create an initial
queue size when a SIP server returns to its normal service state. Such initial queue size may bring a queuing
delay long enough to trigger the retransmissions of old remaining original messages in the queue as well as all
the new incoming original messages. It is important for deriving a stability condition that the server can cancel
the overload introduced by an initial queue size.

Without loss of generality, we consider the “Invite-Trying” request-response pair with a deterministic arrival

rate 1, a mean service rate 1, an initial queue size q1(0), and a mean response rate 1.
Theorem 1: If the initial queue size q1(0) created by a demand burst can satisfy a sufficient stability

condition described by Eq. (8), then the SIP server is stable and it can cancel the overload.

 1

)12)1(())(4232(
,))(12(min)0(11111

1

111

1

1
1

i

TiTi
Tq

iiJ
J

Ji

 , (8)

where J denotes maximum retransmissions which can be handled by server service capacity effectively, and

J=(111)/1.
Proof: To maintain stability in a SIP server, the total average message arrival rate should be less than the

average service rate. If there are at most i retransmissions for any original Invite request message, a

conservative condition to maintain stability is ((i+1)1+1)/11, which is equivalent to

i(111)/1. (9)
To achieve the above sufficient stability condition, we need to guarantee that the original messages from

both the initial queue size and the new arrivals are not retransmitted more than j times at any time, where we

denote J as J=(111)/1, and (11) represents the available service capacity for the original and
retransmitted request messages. According to SIP RFC 3261 [1], J is bounded by six maximum retransmissions,

i.e., J6. Then we update the equivalent stability condition in Eq. (9) as

iJ=(111)/1. (10)
To avoid (J+1) retransmissions for the original messages in the initial queue size, we need to make sure that

they have all been processed by the time TJ+1=(2
J+1

−1)T1. This gives us the first condition in Eq. (8):

q1(0)<(11)TJ+1. (11)
To avoid (J+1) retransmissions for any newly arrival original messages, the server should have finished

processing all the queuing request messages q1(t) by the retransmission time t+TJ+1 using its available service

capacity (11). Thus the queue size at any time t should satisfy

q1(t)<(11)TJ+1. 0t< (12)

10

The relationship between the condition described by Eq. (8) and the condition described by Eq. (12) is not
trivial. From Figures 5 and 8 in performance evaluation section later on, it is clear that the maximum queue size
may happen at any time depending on the initial queue size. By examining those two figures, we can see that the
entire time can be divided into five different sets. These five different sets are mutual exclusive and have
covered all the time periods with different queuing behaviours due to the chaotic nature of the SIP
retransmission mechanism.

To guarantee that the condition (12) is satisfied at any time, all we need to do is to guarantee the condition
(12) is satisfied in each set. We now examine each set individually.

1. We first consider the queue sizes at each specified retransmission times Ti=(2
i
−1)T1 using Eqs. (1) to (4)

as follows,

q1(Ti)=q1(Ti−1)−2
i−1

(11−i1)T1+[q1(0)−(11)Ti]
+
. (13)

2. We next consider the queue sizes between any two neighbouring retransmission times Ti-1 and Ti. Eqs. (1)
to (4), (10) and (13) lead to

q1(t)=q1(Ti−1)−(11−i1)(t−Ti−1)<q1(Ti−1), (14)

The inequality in Eq. (14) indicates that the queue size is decreasing continuously with a slope of (11i1)

during the time period. However, at time t=Ti, the ith retransmission for the remaining [q1(0)(11)Ti]
messages from the initial queue size q1(0) is triggered, resulting in a sudden increase in the queue size described
by (13). Then when 0<t≤TJ, the condition described by (12) becomes

q1(Ti)<(11)TJ+1, 1iJ. (15)

Given the condition of Eq. (11), we consider the worst case with q1(0)(11)Ti0. Using recursive
substitution for Eq. (13), we can obtain the queue size

i

k

ki

k

k

i TTkqiTq
1 1111 1111

1

11))(12()(2)0()1()(, which can be reorganized as

,)()(2)(2)0()1()(1111 111

2
1 111 111

1

11 TiTxT
dx

d
TqiTq

i

k

k

x

i

k

ki

k

k

i

We can further simplify the queue size as

q1(Ti)=(i+1)q1(0)+((i−1)2
i
+1)1T1−(32

i
−i−3)(11)T1. (16)

Combining Eqs. (15) and (16), we can obtain the second condition in Eq. (8) as

Ji
i

TiTi
q

iiJ

1,
1

)12)1(())(4232(
)0(11111

1

1

. (17)

3. We then consider the time period TJ<t<TJ+1. From Eqs. (1) to (4), (10), (12) and (15), we have

q1(t)=q1(TJ)−(11−(j+1)1)(t−TJ)q1(TJ)<(11)TJ+1. (18)
This means the queue size is non-increasing during the time period TJ<t<TJ+1.

4. Next, we consider the retransmission time t=TJ+1. Since Eq. (11) indicates [q1(0)(11)TJ+1]
+
=0, from

Eqs. (1) to (4), (10) and (15), we can obtain

q1(TJ+1)=q1(TJ)−2
J
(11−(j+1)1)T1+[q1(0)−(11)TJ+1]

+
q1(TJ)<(11)TJ+1. (19)

5. Finally, we consider the time period t>TJ+1. From Eqs. (1) to (4), (10) and (19), we have

q1(t)=q1(TJ+1)−(11−(j+1)1)(t−TJ+1)q1(TJ+1)<(11)TJ+1. (20)

Combining Eqs. (11), (14), (15), (17), (18), (19) and (20), we can reach a sufficient stability condition for the

initial queue size described by Eq. (8). We complete the proof. □

In a real SIP network where arrival rate, service rate, and response rate may be arbitrarily distributed, the SIP

operators can apply Theorem 1 to determine the stability condition using the mean values of arrival rate, service

rate and response rate. A moving average filter can be used to measure the mean values 1, 1, and 1. In

addition, from the above proof process, we can see that Equations (11) and (16) provide the minimum finite

buffer size required to avoid message loss when the system is stable.

Lemma 1. If a SIP server satisfies the stable condition in Theorem 1, the minimum finite buffer size required

to avoid message loss will be

 1111111
1

))(323()12)1(()0()1(),0(max TiTiqiq ii

Ji

.

11

4.2. Modeling SIP tandem server

We will demonstrate how to apply our novel technique to model a tandem server by making some minor

modifications in this subsection. Then discuss modifications required for an arbitrary SIP network in next

subsection.

In our tandem server model as shown in Fig. 4, Server 2 is selected to be a UA and Server 1 is an arbitrary

server (i.e., Tandem Choice (f)). According to Tandem Capacity Setting (g), both servers have limited capacity

and therefore are prone to overload. Server 2, as a user agent, does not need to consider response messages from

downstream servers, and therefore is simpler than the single server model discussed earlier. However, the

arrival processes at Server 2 including the original Invite request messages 2(n) and retransmitted request

messages r2(n) depend on the departure process of Server 1. This is different from the single server scenario in

Section 4.1. Fortunately our novel technique for analyzing departure process used in Section 4.1.2 can help

solve this problem.

Since Server 2 (i.e., the downstream server of Server 1) has limited service capacity, Server 1 may need to

retransmit Invite messages r'2(n) for Server 2 due to the queuing delay of Server 2, and therefore adding a new

type of retransmission arrival process r'2(n) to Server 1 when overload happens at Server 2. It should be noted

that r2(n), the retransmitted messages sent by Server 1 arriving at Server 2, is not equal to r'2(n) due to delay in

Server 1. This is the only difference between Server 1 and the single server we discussed in Section 4.1, as

shown in Figures 2 and 4.

1
)(1 n

100Trying Response

)('2 nr

)(1 nq

Invite Request

)(1 nr

2
)(2 n

100Trying Response

)(2 nq

)(2 nr

)(1 n

Invite Request

Server 1

Server 2

Figure 4. Queuing dynamics of a tandem SIP server (For Server 1, 1(n) denotes original message arrivals, r1(n)

denotes retransmitted message arrivals from upstream server, r'2(n) denotes retransmitted messages created for

Server 2, q1(n) denotes queue size, 1(n) denotes service rate; For Server 2, 2(n) denotes original message

arrivals, r2(n) denotes retransmitted message arrivals, q2(n) denotes queue size, 2(n) denotes service rate).

In the following parts, we will describe how to get 2(n), r'2(n), and r2(n). They all depend on the queuing

processes at both servers. So we start with the queuing processes.

We consider the downstream Server 2 first. Similar to Eq. (1) in Section 4.1, we can obtain the queue size

q2(n+1) of Server 2 at next time slot n+1 based on the information at current time slot n, i.e.,

q2(n+1)=[q2(n)+2(n)+r2(n)2(n)]
+
, (21)

where at current time slot n at Server 2, q2(n) denotes the queue size; 2(n) denotes the arrival original request

messages; r2(n) denotes the arrival retransmitted messages sent by Server 1 corresponding to 2(n); 2(n)

denotes the processed messages.

The equation for the queue size at Server 1 is different from Server 2 because Server 1 has to receive

response messages from Server 2 and retransmit request messages to Server 2 if timer times out while Server 2

does not need to do so because it does not have a downstream server based on Tandem Choice (f).

Similar to Eq. (1) in Section 4.1, we can have the queuing dynamics for Server 1 as follows,

q1(n+1)=[q1(n)+1(n)+r1(n)+r'2(n)+1(n)1(n)]
+
, (22)

where at current time slot n at Server 1, q1(n) denotes the queue size; 1(n) denotes the aggregated arrival

original request messages from the upstream servers of Server 1; r1(n) denotes the aggregated retransmitted

messages from the upstream servers of Server 1 corresponding to 1(n); 1(n) denotes the response messages

from Server 2 corresponding to 2(n); 1(n) denotes the processed messages; r'2(n) denotes the messages

generated by Server 1 for the retransmission of original request messages 2(n) arriving at Server 2.

12

4.2.1. Obtaining retransmission rate r1(n)

Similar to Eqs. (2), (3), and (4), we have

6

1 11)()(
j j nrnr . (23)

r'1j(n)=min{[1(nTj)+q1(nTj)s1(nTj, n)]
+
, 1(nTj)}, (24)

r1(n)=r'1(n), (25)

where r'1j(n) denotes the j
th

 retransmission for the original request messages arriving at Server 1 at time nTj and

Tj=(2
j
1)T1.

Remark 1: If the upstream server has finite capacity, Server 1 can represent a generic server in any arbitrary

SIP network. Then we can obtain r1(n) from r'1(n) using the similar steps for deriving the departure process 2(n)

in Section 4.1.2.

4.2.2. Obtaining arrival rate 2(n)

Due to the limited capacity of Server 1, 2(n) depends on the departure process of Server 1 as mentioned earlier.

Following the similar steps for deriving the departure process in Section 4.1.2, we can obtain the following

equations，

n

d d nn
0 22)()(, (26)

2d(n)=[min{1(nd)+q1(nd)s1(nd, n1), 1(n)1(n), s1(nd, n)q1(nd), 1(nd)}]
+
, d=1,,n, (27a)

and when d=0, we have

20(n)=[min{1(n)1(n)q1(n), 1(n)}]
+
. (27b)

where 2d(n), d=0,1,,n are the number of original messages which arrived at Server 1 at time nd and depart

from Server 1 to Server 2 at current time n.

4.2.3. Obtaining retransmission rate r'2(n)

Only the original messages 2(n) will trigger the retransmissions from Server 1 after a timer times out. Similar

to Eq. (2), we can obtain the total generated messages r'2 for retransmission created by Server 1 for Server 2 at

current time slot n as

6

1 22)()(
j j nrnr . (28)

where r'2j denotes the j
th

 retransmission for the original request messages arriving at Server 2 at time nTj. We

define the total service capacity of Server 2 from time m to n as s2(m,n)=
n

ml
l)(2 . Like r1j(n), r'2j(n) can be

expressed as

r'2j(n)=min{[2(nTj)+q2(nTj)s2(nTj+1,n)]
+
, 2(nTj)}, (29)

4.2.4 Obtaining retransmission rate r2(n)

Due to the delay at Server 1, r'2(n) and r2(n) are not necessarily equal as mentioned earlier. In order to get r2(n),

we have to characterize the delay at Server 1. According to Queuing-priority Mechanism (c), the newly

retransmitted request messages r'2(n) created by Server 1 for Server 2 enter the queue of Server 1 just after

1(nd) and r1(nd). Similarly to the approach we used for Section 4.1.2, we can obtain r2(n) as

n

d d nrnr
0 22)()(, (30)

r2d(n)=[min{r'2(nd)+r1(nd)+1(nd)+q1(nd)s1(nd, n1), 1(n)1(n), s1(nd, n)q1(nd)1(nd)r1(nd),

r'2(nd)}]
+
, d=1,,n, (31a)

r20(n)=[min{1(n)1(n)q1(n)1(n)r1(n), r'2(n)}]
+
. (31b)

4.2.5. Obtaining response rate 1(n)

13

Since each departure request message (i.e., 2(n) and r2(n)) of Server 2 sends a response message back to Server

1, so we have

1(n+1)=3(n), (32)

where 3(n) is the departure request messages at Server 2 at current time slot n. Similar to Section 4.1.2, we can

obtain 3(n) as

n

d d nn
0 33)()(, (33)

3d(n)=[min{r2(nd)+2(nd)+q2(nd)s2(nd, n1), 2(n), s2(nd, n)q2(nd), r2(nd)+2(nd)}]
+
, d=1,,n,

(34a)

30(n)=[min{2(n)q2(n), r2(n)+2(n)}]
+
. (34b)

4.3. Generalization of the tandem server to arbitrary topology

Our tandem server topology is quite general except that it does not consider splitting the output of Server 1 to

multiple downstream servers and merging the traffic from multiple upstream servers at Server 2.

With the departure process calculated in Section 4.1.2, it is quite easy to split the output of Server 1 if the

splitting process is given based on any splitting policy.

Merging at Server 2 can be treated similarly as the merging at Server 1 except the responses must be sent to

their corresponding upstream servers.

We let the upstream servers of Server 1 have infinite capacity. If any upstream server of Server 1 has finite

capacity, it can be modelled using similar equations as those for Server 1.

In summary, we can see that Server 1 and Server 2 in our tandem server can be generalized to represent an

arbitrary proxy server and an arbitrary UA respectively, two basic components to build an arbitrary SIP network.

Our analytical approach can be easily applied to the modeling of an arbitrary SIP network with minor changes.

A fluid model for an arbitrary network is very important to conduct a fluid-based simulation for performance

evaluation of a large scale network, when an event-driven simulation is infeasible due to expensive computation

cost [29].

5. Simulations and performance evaluation

In order to demonstrate the chaotic behaviour of SIP retransmission mechanism, we performed fluid-based

Matlab simulation based on the fluid model we have derived. By evaluating the performance of an overloaded

tandem server, we not only verified the stability condition provided by Theorem 1, but also investigated whether

overload can migrate from server to server.

In Section 4, we did not make any claims about the original message arrival process and server service

processes. Therefore they can be any process. This makes our model quite general. However, in order to

conduct simulation, we had to choose specific original message arrival processes and server service processes.

Measurement results in [25] have shown that throughputs with a SIP server can vary from hundreds to

thousands of messages per second. In addition, the processing times for different types of messages may be

different [10].

In order to make our simulation results more general and realistic, similar to the experiment in [10], we let the

arrival demands follow Poisson distribution and the service time for each type of message be variable with

exponential distribution. Within a time slot, the instantaneous service rates vary with the number of original

messages, retransmitted messages, and response messages being served at current time slot n, i.e.,

1(n)=2(n)+r2(n)+r1
d
(n)+1(n), and 2(n)=2

d
(n)+r2

d
(n), where r1

d
(n) denotes the departure retransmitted

messages at Server 1; 2
d
(n) denotes the departure original messages at Server 2; r2

d
(n) denotes the departure

retransmitted messages at Server 2. We can use the similar approach in Section 4.1.2 to obtain r1
d
(n), 2

d
(n) and

r2
d
(n). The equivalent service rates measured in the processing rate for original request messages will be

'1(n)=2(n)+r2(n)+βr1
d
(n)+α1(n) and '2(n)=2

d
(n)+βr2

d
(n), where α, β and denote the ratio of the mean

processing time of a retransmitted or a response message to that of an original request message. The equivalent

14

service rates '1(n) and '2(n) are bounded by the corresponding mean server capacities C1 and C2 as measured

by their maximal mean service rates for processing original request messages, i.e., '1(n)C1, and '2(n)C2,.

The processing time ratios are set as α=0.5, β=1 and =1.

In the following results, we consider two typical overload scenarios: (1) Overload at Server 1 due to a

demand burst; (2) Overload at Server 2 due to a server slowdown. We have run 10 simulation replications for

each scenario to evaluate the performance.

5.1. Overload at Server 1

In this scenario, we investigate the impact of the initial queue size on the SIP overload to verify the stability

condition provided by Theorem 1. In order to achieve our goal, a mixture of impulse and step functions is

considered for the input demand at Server 1. A demand burst overloaded Server 1 and created an initial queue

size at time t=0s. This emulated a short surge of user demands. Normal original request messages entered the

Server 1 with Poisson-distributed arrival rate of a mean value 1=200 messages/sec. We let the equivalent

service rates of Server 1 and Server 2 for the original messages be Poisson distributed too, and the mean service

capacities were C1=1000 messages/sec and C2=1000 messages/sec respectively. That is, the mean processing

times for an original message, a retransmitted message and a response message are 1ms, 1ms and 0.5ms

respectively.

The retransmission messages triggered by the overload are redundant messages. Therefore, only the CPU

consumed by the original messages and corresponding response messages can be regarded as effective use of

resources. We define effective CPU utilization as the ratio of the total mean service rate for the original and

corresponding response messages to the service capacity. Considering that a response message corresponds to a

original message, the effective CPU utilization for regular user demands is =(1+α1)/C1=(200+0.5200)/1000

=30%.

Since violating the sufficient stability condition of Eq. (8) does not always bring the instability to a SIP

server, we would like to investigate how tight the sufficient stability bound for the retransmission mechanism is

when a SIP overload happens. We can obtain j=(111)/1=3. Then using Eq. (8), we can obtain the

stability condition for the overloaded server as q1(0)<min{5000, 2783, 2278, 2325}=2278 messages. We

consider two sub-scenarios with different initial bursty demands which overloaded a single server at time t=0s:

(1) a demand burst created an initial queue size as q1(0)=2000 messages < 2278 messages, obeying the stability

condition described by Eq. (8); (2) a demand burst created an initial queue size as q1(0)=3000 messages > 2278

messages, exceeding the stability bound (30002278)/227830%.

5.1.1. Demand burst of 2000 messages

Figures 5 and 6 show the dynamic behaviour of the overloaded Server 1 when a demand burst created an initial

queue size of 2000 messages at time t=0s.

As shown in Fig. 5, the queue size exhibited several sharp surges even though the mean arrival rate of

original arrival request messages was smaller than the mean service rate. The reason behind this unusual

phenomenon, as shown in Fig. 6, is that the large number of redundant retransmissions were triggered by initial

demand burst at retransmission time-out timer, even though the demand resumed the normal rate after an initial

demand burst.

Since the initial queue size was below the stability bound, the server could handle the transient overload

effectively, thus settling into a stable state eventually. As the buffer became empty after time t22s (see Fig. 5),

the mean service rate was equal to the mean arrival rate of total messages, much less than mean service capacity

(see Fig. 6). When the mean retransmission rate exceeded the mean service capacity (see Fig. 6), the overload

server had to use its full capacity to process retransmission messages. Thus no original messages were

forwarded to its downstream servers. Consequently, no response messages were sent back to the server

temporarily (see Fig. 6).

15

0 10 20 30 40 50 60
0

1000

2000

3000

4000

5000

Q
u

e
u

e
 s

iz
e
 q

1
 (

m
e
ss

a
g

e
s)

Time (sec)

0 0.5 1 1.5 2 2.5 3

0

1000

2000

3000

4000

5000

q
1
 full view

q
1
 enlarged partly view

Figure 5. Queue size q1 (messages) versus time

for overloaded Server 1 with initial queue size

of 2000 messages.

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

1400

1600

1800

2000

M
e
ss

a
g

e
 r

a
te

 (
m

sg
s/

se
c
)

Time (sec)

r
1

1

1

Figure 6. Retransmission rate r1, service rate 1

and response rate 1 (messages/sec) versus time

for overloaded Server 1 with initial queue size

of 2000 messages.

5.1.2. Demand burst of 3000 messages

In this sub-scenario, in addition to verifying that violating stability bound may result in server crash eventually,

we have achieved another three goals: (1) showing the accuracy of our fluid model for SIP; (2) demonstrating

the benefit of fluid-based simulation over event-driven simulation; (3) demonstrating the impact of varying

initial queue size on the standard deviation of simulation replications.

5.1.2.1. Comparisons of fluid and OPNET models

Our fluid model is a slot-by-slot approach which may generate some errors. Event-driven OPNET simulation

works on a message-by-message basis which is closer to real system. In order to show the accuracy of our fluid

model for the fluid-based Matlab simulation and demonstrate its efficiency, we performed event-driven OPNET

simulation in the network topology depicted by Fig. 7. In the OPNET simulator, messages were handled one by

one instead of being aggregated over a time slot as in our Matlab simulation. Four user agent clients generated

original messages with equal mean rate, and then sent them to a tandem server, as shown in Fig. 7.

The aggregated mean rate of the four user agent clients was set to be equal to the mean original arrival rate in

the corresponding Matlab scenario. The mean service rate of the overloaded server is also set to be the same as

the mean service rate of the corresponding server in Matlab simulation. The processing speeds of the

downstream and upstream servers of the overloaded server are set to be so large that their processing times are

negligible. All the sending servers also maintained a list of all outstanding messages for tracking

retransmissions. Clearly this list takes a large amount of memory and may cause the simulator to crash when

overload happens. Manipulating this list consumes large amount of CPU time and makes OPNET simulation

extremely slow. Following the first-come-first-in principle, messages enter the queue in the order they arrive.

That is, Queuing-priority Mechanism (c) is unnecessary for OPNET simulation because the chances that two or

more messages arrive at exactly the same time are very low and therefore differentiate these messages will

make very little difference.

UAC

1

UAS

Tandem Server

Proxy

UAC

UAC

UAC

2

Figure 7. SIP network topology with a tandem server which is marked with diagonal lines.

A large number of replications need to be simulated to ensure 95% confidence interval. We have run 10

simulation replications for both Matlab simulation and OPNET simulation, and then calculated 95% confidence

16

interval (CI) as NX /*96.1 , where X and are the mean value and the standard deviation of N=10

replications.

0 10 20 30 40 50 60
0

2000

4000

6000

8000

10000

12000

Time (sec)

Q
u

e
u

e
 s

iz
e
 (

m
e
ss

a
g

e
s)

Matlab
avg

OPNET
avg

OPNET
ci

Figure 8. Mean queue size q1 (messages) of

Server 1 and 95% confidence interval versus

time for overloaded Server 1 with initial queue

size of 3000 messages, where Matlab mean

stays insides OPNET 95% confidence interval.

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

3000

Time (sec)

R
e
tr

a
n

sm
is

si
o

n
 r

a
te

(m
sg

s/
se

c
)

Matlab
avg

OPNET
ci

Figure 9. Mean retransmission rate r1

(messages/sec) for Server 1 and 95%

confidence interval versus time for overloaded

Server 1 with initial queue size of 3000

messages.

0 10 20 30 40 50 60
0

200

400

600

800

1000

1200

1400

1600

Time (sec)

S
e
rv

ic
e
 r

a
te

(m
sg

s/
se

c
)

Matlab
avg

OPNET
ci

Figure 10. Mean service rate 1 (messages/sec)

of Server 1 and 95% confidence interval versus

time for overloaded Server 1 with initial queue

size of 3000 messages.

0 10 20 30 40 50 60
-2

0

2

4

6

8

10

12

Time (sec)

Q
u

e
u

e
 s

iz
e
 (

m
e
ss

a
g

e
s)

Matlab
avg

OPNET
ci

Figure 11. Mean queue size q2 (messages) of

Server 2 versus time in case of overloaded

Server 1 with initial queue size of 3000

messages.

Figures 8 to 11 show the dynamic behaviour of the overloaded Server 1 when a demand burst created an

initial queue size of 3000 messages at time t=0s. The confidence intervals in Figures 8 to 10 are quite tight

compared to their sample means. Also note the sample means of our fluid model and OPNET model overlap

nearly perfectly which indicate a good matching between the two types of models, as shown by Fig. 8. We have

also run up to 60 replications. The results are very similar except the confidence intervals are much smaller.

Therefore 10 replications are enough for illustration purpose. In Fig.11, the quantization errors take effect as

expected due to the small sample means. The maximum quantization error is one or two messages.

The initial demand burst of 3000 messages made Server 1 CPU overloaded immediately (see Fig. 8). Since

Server 1 lacked sufficient capacity to process all 3000 messages from demand surge before retransmission

timers expire, the redundant retransmissions were triggered and then deteriorated the overload by driving the

queue to build up continuously. The extremely long queuing delay corresponding to the extremely large queue

size (as shown by Fig. 8) stimulated more subsequent retransmissions (as shown by Fig. 9) with time going.

Server 1 had to operate at its full service capacity endlessly (see Fig. 10). Consequently the persistent overload

led to the eventual crash of Server 1, well matching the claim by Theorem 1, that is, when the initial queue size

exceeded the stability bound, the server had no enough capacity to handle the redundant retransmissions

triggered by the transient demand burst.

17

Given that the mean service capacities of Server 1 and Server 2 were the same, Server 2 maintained almost

empty buffer (see Fig. 11).

As the initial queue size created by the demand burst at Server 1 is deterministic for 10 simulation

replications, the 95% confidence interval is quite small, as shown in Fig. 8. This indicates that the variation of

the Poisson-distributed original message arrival rate and service rate makes a small impact on the queue size of

Server 1.

5.1.2.2 Benefit of fluid-based simulation over event-driven simulation

When both original message arrival rate 1 and server service capacities C1 and C2 are scaled up 10 and 100

times respectively, e.g., the mean server capacity C1 becomes 10,000 messages/sec and 100,000 messages/sec

respectively. Table I shows the simulation time of different mean server capacities for Matlab simulation and

OPNET simulation. Since messages arriving within the same time slot are aggregated and processed together,

the computation cost for Matlab simulation is invariant with respect to the server capacity, while the simulation

time of OPNET simulation increased exponentially. For example, evaluating the performance of a server with a

mean server capacity of 10,000 messages/sec, OPNET simulation took almost 4 days, while Matlab simulation

reduced the simulation time 40,000 times to 8 seconds, as shown by Table I. Therefore, by aggregating events

into time slots, fluid-based simulation can reduce the total simulation time significantly.

Table I. Simulation time (seconds) of different mean server capacities: OPNET simulation vs. Matlab

simulation

Mean Server Capacity (msgs/sec) 1000 10,000 100,000

OPNET Simulation Time (secs) 128 9,464 341,519

Matlab Simulation Time (secs) 8 8 8

5.1.2.3. Impact of Varying Initial Queue Size

In order to study the impact of varying initial queue size on the standard deviation, a signature effect of chaotic

system, we let the initial demand burst uniformly distributed between 1000 messages and 5000 messages, so the

mean value of initial queue size becomes 3000 messages. We run 10 replications and 60 replications

respectively using Matlab simulation. We use standard deviation to measure the divergence of sample traces

with different initial values. Fig. 12 depicts the corresponding mean values and standard deviations of the queue

size at Server 1. The randomness of the samples causes small difference in the mean values of 10 replications

and 60 replications. However, the standard deviations of both 10 replications and 60 replications are quite large

and diverge from their mean values as time evolves. Thus increasing the number of simulation replications

cannot prevent the standard deviation from diverging. This kind of divergent phenomenon is a main

characteristic of chaotic systems. This validates the chaotic nature of SIP retransmission mechanism.

0 10 20 30 40 50 60
-2000

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

Time (sec)

Q
u
e
u
e
 s

iz
e
 (

m
e
ss

a
g
e
s)

Mean
10Replications

Std
10Replications

Mean
60Replications

Std
60Replications

Figure 12. Mean values and standard deviations of the queue size q1 at Server 1 based on 10 and 60 Matlab

simulation replications respectively.

5.1.3. Chaotic nature of SIP retransmission mechanism

18

The numerical results in the two sub-scenarios demonstrate the impact of initial queue size on the stability of

an overloaded server, where redundant retransmissions are triggered by the overload. A smaller initial queue

size less than sufficient stability bound allows the server to cancel the temporary overload, while a larger initial

queue size exceeding sufficient stability bound results in infinitely increasing queue size, thus bringing a SIP

server to crash even the effective CPU utilization is as low as 30%. This kind of chaotic behaviour is clearly

caused by the nonlinear queuing dynamics of the retransmission mechanism.

5.2. Overload at Server 2

In this scenario, the equivalent service rates of Server 1 and Server 2 for the original messages were Poisson

distributed, and the mean server capacities were C1=1000 messages/sec from time t=0s to t=60s, C2=100

messages/sec from time t=0s to t=30s, and C2=1000 messages/sec from time t=30s to t=60s.

The normal SIP traffic entered the Server 1 with Poisson-distributed arrival rate. The mean arrival rates were

1=500 messages/sec from time t=0s to t=30s, and 1=200 messages/sec from time t=30s to t=60s. We have

performed 10 simulation replications and find that 95% confidence interval is quite small, thus we only show

the mean value of 10 replications. We will not show the OPNET simulation result because it was very close to

the Matlab simulation result as the Subsection 5.1.2.1.

Figures 13 to 15 demonstrate the overload propagation and migration from the downstream overloaded

Server 2 to its upstream Server 1. Server 2 became overloaded first, which was followed by a later overload at

Server 1 (see Fig. 13), indicating the overload propagation. The queue size at Server 1 increased faster due to

the extra work load for handling both retransmissions r1 and r2 (see Fig. 15) for Server 1 and Server 2

respectively. In the mean time, the retransmissions r1 and r2 hindered the new arrival original messages 1 from

departing Server 1 immediately, thus causing the arrival rate 2 of the original request messages at Server 2 to

decrease (see Fig. 14).

0 10 20 30 40 50 60
0

2

4

6

8

10
x 10

4

Q
u
e
u
e
 s

iz
e
 q

1
 (

m
e
ss

a
g
e
s)

Time (sec)

0 10 20 30 40 50 60
0

3000

6000

9000

12000

15000

Q
u
e
u
e
 s

iz
e
 q

2
 (

m
e
ss

a
g
e
s)

q
1

q
2

(a) full view

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

50

100

150

200

250

Q
u

e
u

e
 s

iz
e
 q

1
 (

m
e
ss

a
g

e
s)

Time (sec)

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

500

1000

1500

Q
u

e
u

e
 s

iz
e
 q

2
 (

m
e
ss

a
g

e
s)

q
1

q
2

(b) enlarged partly view

Figure 13. Mean queue sizes q1 and q2 versus time upon an initial overload at Server 2.

0 10 20 30 40 50 60
0

100

200

300

400

500

600

700

800

Time (sec)

O
ri

g
in

a
l

ra
te

 (
m

sg
s/

se
c
)

1

2

Figure 14. Mean original message rates 1 and

2 (messages/sec) versus time upon an initial

overload at Server 2.

0 10 20 30 40 50 60
0

500

1000

1500

2000

2500

3000

Time (sec)

M
e
ss

a
g
e
 r

a
te

 (
m

sg
s/

se
c
)

r
1

r
2

1

Figure 15. Mean response rate 1 and mean

retransmission rates r1 and r2 (messages/sec)

versus time upon an initial overload at Server

2.

19

After Server 2 resumed its normal service at time t=30s, Server 1 and Server 2 had the same service capacity.

As Server 2 processed the residual messages in the queue and fed back response messages to Server 1 more

quickly, the response rate of Server 1 increased sharply (see Fig. 15). Because Server 1 had to process part of r1

which would not enter Server 2, the total arrival rate at Server 2 was less than its service capacity. Therefore the

queue at Server 2 started going down. Eventually the overloaded at Server 2 was cancelled while the overload at

Server 1 persisted due to its higher arrival rate of aggregated request messages, indicating the overload

migration.

5.3. Migration of overload

The two simulation scenarios exhibit different initial overload status in different servers within a tandem server,

and both servers have the same CPU processing capacity. We can find that (1) the demand burst at Server 1

produces overload only in Server 1 and will not introduce overload in Server 2; (2) the initial overload at Server

2 is migrated to Server 1 and results in a continuous overload in Server 1, thus bringing Server 1 to crash.

6. Conclusions

We have developed a novel approach to derive a fluid model for a single overloaded server in a SIP network.

We use nonlinear difference equations to catch the chaotic behaviour of SIP retransmission mechanism upon

SIP overload. Unlike various existing signaling models based on Poisson-distributed arrival rate and service rate,

our study considered a general case that both arrival rate and service rate for signaling messages are arbitrarily

distributed. Two key breakthroughs of our modeling strategy are (1) derivation of the retransmission messages

for the original messages with arbitrary delay and (2) the formulation of the departure process through detailed

analysis, which is important for the derivation of the response rate, because the response rate of a upstream

server is equal to the departure request message rate of its downstream server, provided that a response message

is required for acknowledging each request message [1]. The tandem server has been studied to demonstrate

how to apply our analytical approach to create a fluid model for an arbitrary SIP network.

Our fluid modeling and simulation have demonstrated that (1) the similarity between the fluid-based

simulation and the event driven simulation for the same network confirms the accuracy of our fluid model; (2)

the chaotic characteristic of SIP retransmission makes SIP server very sensitive to an initial queue size caused

by a heavy load. Based on the fluid model, a sufficient condition for maintaining system stability has been

provided; (3) overload at an downstream server can migrate to its upstream server step by step, thus causing

widespread server crashes. Resource overprovision cannot avoid a SIP server crash upon a large queue size

introduced by a demand burst or a temporary server slowdown, even its effective CPU utilization is as low as

30%; (4) the root cause of server crashes in a SIP network is redundant retransmissions. This is in sharp

difference from traditional congestion problems in IP network which are typically caused by user traffic surges.

Existing SIP overload control mechanisms try to copy TCP or load balance schemes which are designed to

reduce original message rates and therefore cause revenue loss to the carriers. We propose to reduce the

retransmission rate only, while maintaining the original message rate and revenue in case of the overload. A

solution can be realized by requiring the downstream server to inform its upstream server about its status, e.g., a

new field in the response message to indicate server utilization.

Event-driven simulation requires a series of retransmission timers to track outstanding messages. When

overloads happen, messages may build up to drive the number of timers to an extreme value that crashes the

simulator eventually. Fluid-based simulation tracks time slot instead of individual timer. Messages arriving

within the same time slot will be aggregated and processed together, thus making the computation cost for fluid-

based simulation invariant when message arrival rate and server service capacity scale up. When the original

message arrival rate and server service capacity are scaled up to 10,000 messages/sec, we have observed two

phenomena: (1) our computer only takes 8 seconds to complete the fluid-based Matlab simulation using our

fluid model; (2) finishing OPNET simulation requires almost 4 days with the same computer. Therefore, our

fluid model can enable the researchers or SIP operator to speed up the SIP performance evaluation using the

20

fluid-based simulation, when extremely high message arrival rate and service capacity of a SIP network are well

beyond the computational capabilities of current event-driven simulators.

Acknowledgment

This work was supported by the NSERC grant #CRDPJ 354729-07 and the OCE grant #CA-ST-150764-8.

References

[1] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston, J. Peterson, R. Sparks, M. Handley, and E.

Schooler, SIP: Session Initiation Protocol, IETF RFC 3261, June 2002.

[2] J. Rosenberg and H. Schulzrinne, SIP: Locating SIP Servers, IETF RFC 3263, June 2002.

[3] European Telecommunications Standards Institute, 3rd Generation Partnership Project, Sophia Antipolis,

France, 2011, http://www.3gpp.org.

[4] N. Xu and W. Jia, Joint Packet Scheduling and Radio Resource Assignment for WiMAX Networks, Ad Hoc

& Sensor Wireless Networks, 13(3-4), (2011), pp. 193-208

[5] S.M. Faccin, P. Lalwaney, and B. Patil, IP Multimedia Services: Analysis of Mobile IP and SIP Interactions

in 3G Networks, IEEE Communications Magazine, 42(1), (2004), pp. 113-120.

[6] J. Rosenberg, Requirements for Management of Overload in the Session Initiation Protocol, IETF RFC

5390, December 2008.

[7] E. Noel and C.R. Johnson, Novel Overload Controls for SIP Networks, Proceedings of 21st International

Teletraffic Congress, Paris, France, September 2009.

[8] R.P. Ejzak, C.K. Florkey, and R.W. Hemmeter, Network Overload and Congestion: A comparison of ISUP

and SIP, Bell Labs Technical Journal, 9(3), (2004), pp. 173–182.

[9] M. Ohta, Overload Control in a SIP Signaling Network, Proceeding of World Academy of Science,

Engineering and Technology, Vienna, Austria, March 2006, pp. 205—210.

[10] V. Hilt and I. Widjaja, Controlling Overload in Networks of SIP Servers, Proceedings of IEEE ICNP,

Orlando, FL, October 2008, pp. 83-93.

[11] C. Shen, H. Schulzrinne, and E. Nahum, SIP Server Overload Control: Design and Evaluation,

Proceedings of IPTComm, Heidelberg, Germany, July 2008.

[12] A. Abdelal and W. Matragi, Signal-Based Overload Control for SIP Servers, Proceedings of IEEE

CCNC, Las Vegas, NV, January 2010.

[13] IPTEL Organization, SIP Express Router, open-source project for free SIP/IP Telephony service, 2011,

http://www.iptel.org/ser/.

[14] T. Warabino, Y. Kishi and H. Yokota, Session Control Cooperating Core and Overlay Networks for

“Minimum Core” Architecture”, Proceedings of IEEE Globecom, Honolulu, Hawaii, December 2009.

[15] I. Dacosta, V. Balasubramaniyan, M. Ahamad, and P. Traynor, Improving Authentication Performance

of Distributed SIP Proxies, Proceedings of IPTComm, Atlanta, GA, July 2009.

[16] I. Dacosta and P. Traynor, Proxychain: Developing a Robust and Efficient Authentication Infrastructure

for Carrier-Scale VoIP Networks, Proceedings of the USENIX Annual Technical Conference (ATC),

Boston, MA, June 2010.

[17] C. Shen and H. Schulzrinne, On TCP-based SIP Server Overload Control, Proceedings of IPTComm,

Munich, Germany, August 2010.

[18] Y. Hong, C. Huang, and J. Yan, Mitigating SIP Overload Using a Control-Theoretic Approach,

Proceedings of IEEE Globecom, Miami FL, December 2010.

[19] Y. Hong, C. Huang, and J. Yan, Controlling Retransmission Rate For Mitigating SIP Overload,

Proceedings of IEEE ICC, Kyoto, Japan, June 2011.

[20] Y. Hong, C. Huang, and J. Yan, Design Of A PI Rate Controller For Mitigating SIP Overload,

Proceedings of IEEE ICC, Kyoto, Japan, June 2011.

http://www.3gpp.org/
http://www.iptel.org/ser/

21

[21] Y. Hong, C. Huang, and J. Yan, Applying Control Theoretic Approach To Mitigate SIP Overload,

Telecommunication Systems, (2012), in press.

[22] Y. Hong, C. Huang, and J. Yan, A Comparative Study of SIP Overload Control Algorithms, in Internet

and Distributed Computing Advancements: Theoretical Frameworks and Practical Applications, J. Abawajy,

M. Pathan, M. Rahman, A.K. Pathan, and M.M. Deris, eds., IGI Global, Hershey, PA, 2012.

[23] Y. Hong, C. Huang, and J. Yan, Analysis of SIP Retransmission Probability Using a Markov-Modulated

Poisson Process Model, Proceedings of IEEE/IFIP Network Operations and Management Symposium,

Osaka, Japan, April 2010, pp. 179–186.

[24] B. Materna, Threat Mitigation for VoIP, Proceedings of Third Annual VoIP Security Workshop, Berlin,

Germany, June 2006.

[25] E.M. Nahum, J. Tracey, and C.P. Wright, Evaluating SIP server performance, Proceedings of ACM

SIGMETRICS, San Diego, CA, June 2007, pp. 349–350.

[26] V. Gurbani, V. Hilt, and H. Schulzrinne, Session Initiation Protocol (SIP) Overload Control, IETF

Internet-Draft, draft-ietfsoc-overload-control-05, October 2011.

[27] K. Alligood, T. Sauer, and J.A. Yorke, Chaos: an introduction to dynamical systems, Springer-Verlag,

New York, NY, USA, 1997.

[28] R. Fujimoto, K. Perumalla, A. Park, H. Wu, M. Ammar, and G. Riley, Large-scale network simulation –

How big? How fast?” Proceedings of the IEEE/ACM MASCOTS, October 2003, pp. 116–125.

[29] Y. Liu, F.L. Presti, V. Misra, D. Towsley, and Y. Gu, Scalable fluid models and simulations for large-

scale IP networks, ACM Transactions on Modeling and Computer Simulation, 14 (3), (2004), pp. 305–324.

[30] D.M. Nicol and G. Yan, Discrete event fluid modeling of background TCP traffic, ACM Transactions on

Modeling and Computer Simulation, 14 (3), (2004), pp. 211–250.

[31] M. Schwartz, Broadband Integrated Networks, Prentice-Hall, NJ, (1996).

[32] D.C. Vasiliadis, G.E. Rizos, C. Vassilakis, and E. Glavas, Modelling and performance evaluation of a

novel internal-priority routing scheme for finite-buffered multistage interconnection networks, International

Journal of Parallel, Emergent and Distributed Systems, 26(5), (2011), pp. 381-397.

[33] Y. Hong, C. Huang, and J. Yan, Modeling and Simulation of SIP Tandem Server with Finite Buffer,

ACM Transactions on Modeling and Computer Simulation, 21(2), (2011), pp. 11:111:27.

[34] Y. Hong, C. Huang, and J. Yan, Stability Condition for SIP Retransmission Mechanism: Analysis and

Performance Evaluation, Proceedings of IEEE SPECTS, Ottawa, Canada, July 2010, pp. 387-394.

[35] M. Govind, S. Sundaragopalan, K. S. Binu, and S. Saha, Retransmission in SIP over UDP Traffic

Engineering Issues, Proceedings of International Conference on Communication and Broadband

Networking, Bangalore, India, May 2003.

