
Efficient Virtual Network Embedding with
Node Ranking and Intelligent Link Mapping

Khoa TD Nguyen†, Qiao Lu†, and Changcheng Huang†
†Department of Systems and Computer Engineering
Carleton University, Ottawa, ON K1S 5B6, Canada

{khoatnguyen, qiaolu, huang}@sce.carleton.ca

Abstract—Network virtualization (NV) is emerged as a key
enabler for the success of the future virtualized networks (e.g. 5G
networks and smart Internet of Things (IoT)). Virtual Network
Embedding (VNE) that addresses the embedding problems of
heterogeneous virtual networks (VNs) onto a physical infrastruc-
ture is a main challenge in NV. Network topology attributes
and network resource-considered (NTANRC) algorithm is a
virtual node mapping mechanism that considers essential network
features and global network resources for ranking both substrate
and virtual nodes prior to embedding each given virtual network
request (VNR). In this paper, we propose NTANRC combined
with a distributed parallel Genetic Algorithm (GA) for virtual
link mapping, namely NTANRC-GA, to solve online VNE prob-
lem. Extensive evaluation results show that our proposed solution
not only achieves better performance compared to state-of-the-art
VNE algorithms, but also challenges the rapid speed of shortest
path (SP) method. NTANRC algorithm and the parallel GA-based
algorithm are reverse compliments of each other to achieve an
efficient VNE solution.

Index Terms—Network Virtualization, Virtual Network Em-
bedding, 5G-and-beyond networks, smart IoT, Node Ranking,
Genetic Algorithm.

I. INTRODUCTION

NV is recognized as a de facto paradigm to make provision for
anticipated success of the future networks such as 5G [1], virtualised
IoT networks [2]. NV notably allows to share substrate network
(SN) resources among multiple VNRs, that enables an isolated
coexistence of several VNs on a single physical network. Virtualization
technology not only improves network resource utilization of the SN
efficiently, but also facilitates the deployment and the evaluation
of new architecture designs or network protocols. Subsequently,
NV prevents network infrastructure from an avoidable expansion.
In VN environment, a service provider (SP) typically converts a
requested service/application into a VN, and then conveys to an
infrastructure provider (InP) under a VNR. Thereupon, InP will
embed the underlying VN onto its physical infrastructure through an
optimization process with multiple constraints. Towards InPs, they
advocate an efficient resource allocation mechanism that increases
their revenue by serving as many VNRs as possible while keeping the
embedding costs minimized. A VNR is generally associated with a set
of virtual nodes connected via virtual links to form a specific topology,
dynamically arriving and residing in the network for a random duration
in most scenarios. Embedding VNRs onto the underlying SN with
manifold topology and rigid resource requirements is known as a
VNE problem.

VNE process can be divided into two sub-problems: Virtual Node
Mapping (VNoM) and Virtual Link Mapping (VLiM). VNE has been
proven to be NP-Hard either for VNoM or VLiM [3]. The common
formulated optimization models (e.g. Integer Linear Programming
(ILP)) are usually recommended to gain optimal VNE solutions, but
they face several issues of scalability, complex implementation, and
high time consumption. These solutions cannot be indeed tailored for
online VNE problems. Indeed, most of research papers have adopted
light-weighted heuristic algorithms to deal with the aforementioned
obstacles of the optimization models. Several heuristic algorithms
[3]–[8] have been proposed over the past decade, embedding VNRs
in separate mapping stages. These algorithms relaxed the integer
constraints to achieve feasible VNE in polynomial time [3] or
considered a single topology attribute and local network resources

[4]–[6] for node mapping stage, or exploited simplified global network
resources for VNoM problems [7], [8]. NTANRC in [9] adopted an
efficient node-ranking approach based on five topology attributes
(e.g. node degree, node strength, node distance, farness/closeness and
link interference) and global network resources (e.g. node location,
node capacity, link bandwidth and link propagation delay) to rank all
substrate and virtual nodes before embedding each VNR. This node-
ranking approach coordinated node and link constraints to provide a
better performance of embedding VNRs.

In fact, a vast number of research papers including [3]–[11] merely
focused on approaching an efficient node mapping, and completely put
trust in k-shortest path or multicommodity flow (MCF) algorithms for
virtual link mapping. Unlike previous papers, [12] primarily centralized
VLiM stage utilizing a novel distributed parallel GA-based algorithm,
namely IDPA, with a very simple node mapping based on a greedy
method. Through its evaluation, this paper proved that VLiM also
plays a crucial role in attaining an efficient VNE algorithm along with
the inevitably important role of VNiM. This intelligent VNE algorithm
outperformed its competitors not only in performance, but also in
speed due to a complicated link mapping algorithm implemented in
a proper embedding scheme.

In this paper, we propose the NTANRC-GA algorithm, a dramatic
combination between an efficient node-ranking approach and an
intelligent GA-based algorithm in aimed at obtaining an effective VNE
algorithm. Our proposed algorithm, that exploits a set of distributed
parallel machines, enables to embed multiple link mapping requests
at the same time so as to reduce the execution time. We mainly aim
to increase profit of an InP by maximizing the VNR acceptance ratios
while minimizing the embedding costs. To the best of our knowledge,
this is the first paper that efficiently deploys a node-ranking approach
incorporated with a complicated link mapping solution to solve VNE
problems. The results show that our proposed VNE solution improves
the acceptance ratios of VNRs, revenue to cost ratios and link resource
utilization compared to NTANRC [9], IDPA [12] and three VINE
algorithms [3].

The remainder of this paper is organized as follows: the network
model is formulated in Section II. NTANRC approach for VNE node
mapping and intelligent parallel GA-based algorithm are described in
Section III and Section III-B, respectively. Performance evaluation is
introduced in Section IV while related work is presented in Section V.
Finally, Section VI is a conclusion of this paper.

II. NETWORK MODEL AND PROBLEM DESCRIPTIONS

A. Virtual Network Assignment
SN is modelled as a weighted undirected graph Gs = (Ns, Ls),

where Ns is the set of substrate nodes and Ls is the set of substrate
links. A substrate node ns ∈ Ns with a geographical location
loc(ns) has the available CPU capacity c (ns), whereas each physical
link ls ∈ Ls between any two physical nodes possesses a b (ls)
bandwidth capacity. For simplification, memory and storage resources
are excluded in this paper. Let model the ith arriving VNR as a
weighted undirected graph denoted as Gvi = (Nv

i , L
v
i), in which Nv

i

is the set of virtual nodes while Lvi is the set of virtual links. Each
virtual node nvi ∈ Nv

i has a requested CPU capacity c(nvi), whereas
a virtual edge lvi (svi , d

v
i) ∈ Lvi between a virtual source node svi

and a virtual destination node dvi possesses a required bandwidth
capacity b (lvi). Each VNR normally prefers a mapping radius D(nvi)
revealing how far virtual node nvi can be allocated from loc(nvi).
Mapping the ith VNR Gvi onto the SN Gs can be decomposed into

978-1-7281-9486-8/20/$31.00 ©2020 IEEE

two main components as determined above: VNoM and VLiM. In
node mapping stage, a virtual node of a VNR can be embedded onto
a substrate node AN : Nv

i → Ns, with nv ∈ Nv
i subject to:

c(nvi) ≤ RN (AN (nvi)) (1)

D(loc(nvi), loc(AN (nvi))) ≤ D(nvi) (2)

AN (nvi) ∈ Ns (3)

RN (ns) = c(ns)−
∑

nv→ns

c(nvi) (4)

where nv → ns defines the virtual node nv embedded onto physical
node ns, and the distance between is and jd is expressed by D(is, jd)
whereas RN (ns) denotes the remaining CPU capacity of a substrate
node. Indeed, each virtual link can be commonly mapped onto the
corresponding physical path including one or more substrate links.
The unsplittable link mapping can be expressed as AL : Lvi → Ls

while lvi = (svi , d
v
i) ∈ Lvi , Es(AL(lvi)) denotes a set of all available

physical paths from the source AN (svi) to destination node AL(dvi).

AL(svi , d
v
i) ⊆ Es(AN (svi),AN (dvi)) (5)

subject to: RL(es) ≥ b(lvi),∀es ∈ Es(AL(lvi)) (6)

RL(es) = min
ls∈es

RL(ls) (7)

RL(ls) = b(ls)−
∑
lvi →ls

b(lvi) (8)

where RL(es) is the available bandwidth of a substrate path es ∈ Es,
and RL(ls) is the residual substrate link capacity.

B. Performance metrics
The major objective of VNE algorithm is to maximize the InP’s

revenues while minimizing the embedding cost. Thus, the ratio
between revenue over cost should be considered to estimate the
performance of VNE algorithms, adhering to the acceptance ratio.
For instance, high acceptance ratio while the average revenue to cost
ratio is low is unfavourable since this result reveals that the substrate
resources are underutilized. In this article, the InP revenue is computed
as the sum of total virtual resources mapped on the SN over time
while the cost of the ith VNE C(Gvi) is the sum of total network
resources allocated to the ith VN. Subsequently, the revenue to cost
ratio of ith VNR Gvi can be expressed as below:

Υ(Gvi) =
R(Gvi)

C(Gvi)
=

wb ∗
∑
lvi ∈L

v
i

b(lvi) + wn ∗
∑

nv
i ∈N

v
i

c(nvi)

∑
nv
i ∈N

v
i

c(nvi) +
∑
lvi ∈L

v
i

∑
ls∈Ls

f
lvi
ls

(9)

where R and C are the generated revenue and network cost
respectively. b(lvi) and c(nvi) are the requested bandwidth of the
virtual link lvi and the requested CPU of the virtual node nvi while wb
and wn f

lvi
ls defines the bandwidth of substrate link ls that is allocated

to the virtual link lvi .
Acceptance ratio: is expressed as the ratio between the number of

accepted VNRs over the number of arrived VNRs during the interval
time τ is calculated as following:

Aτc =

∣∣∣∣ξa(τ)

ξ(τ)

∣∣∣∣ (10)

where ξa(τ) and ξ(τ) is the number of the successfully mapped
VNRs and the number of VNRs respectively.
Remaining bandwidth: the residual bandwidth of a SN can be
calculated as following:

Rm(Ls) =
∑
ls∈Ls

(b(ls)−
∑
lvi →ls

b(lvi)) (11)

When new VNRs arrived, InP calculates the remaining network
resources, and then attempts to map such VNRs onto the SN
depending on the residual network resource information obtained.

Higher remaining bandwidth leads to greater opportunity for accepting
the upcoming VNs.
Fitness Function (FF): determine which link solutions will reproduce
and remain in next generation, relevant to the predefined objectives
to be optimized in our proposed GA-based algorithm in Section III-B.
Consequently, fitness function is used to examine the quality of each
VLiM solution among several feasible ones. Its fitness values are able
to present a scientific proof of selecting the corresponding solutions in
GA operators. Similar to [12], we take hop-count and bandwidth into
consideration in fitness function. Less hop-count solution is preferable
since it is substantially associated with less bandwidth consumption,
leaving more residual network bandwidth that increases the possibility
of the upcoming VNRs being accepted.

Fitness function F(Sz) is eventually calculated as below:

F(S) =
∑
lvi ∈L

v
i

(
b(lvi) ∗ wα

b(lvi) +RL(AL(lvi))
+

1

hAL(lvi)

∗ wβ) (12)

where, S and h are a feasible solution and hop-count of the link
mapping solution of lvi respectively. wα and wβ are weight parameters
equivalent to bandwidth and hop-count factors.

III. NTANRC-GA ALGORITHM

NTANRC-GA implements NTANRC algorithm [9] for addressing
VNVoM while deploying the distributed parallel GA algorithm [12] for
link mapping. It means that the output of NTANRC algorithm becomes
the input for VLiM. NTANRC algorithm efficiently seeks the potential
embedding nodes for VNRs. Besides, the novel GA-based algorithm
that is based on a distributed parallel scheme efficiently reduces the
embedding cost, execution time, and improves link utilization.

A. NTANRC Algorithm for Node Mapping

NTANRC collects five network topology attributes for its node-
ranking adoption including node degree, node strength, distance,
farness and closeness and finally link interference. As shown in
[9], there are two sub-approaches (S: stable and D: direct), but we
prefer S-approach due to its better performance.

Node degree: Let T̃d(.) denote the function that counts the total
number of adjacent links of node ns, degree of a substrate node is
determined as follows:

Γ(ns) = T̃d(ns) (13)

Node strength is defined by the function T̃s(.) that counts the
sum of all adjacent link bandwidth of the substrate node ns.

Θ(ns) = T̃s(ns) (14)

Farness and Closeness of a node: Farness of a node ns is the
sum of its shortest distances to all the other possible nodes whereas
Closeness is reciprocal of the Farness as defined in (15) and (16).

F (ns) =
∑

ms∈Ns

D(ns,ms) (15)

Z(ns) =
1

F (ns)
(16)

Link Interference: Interference of a physical link ls(ns,ms) ∈ Ls
between node ns and node ms describes its contribution to the network
connectivity, relying on the idea that traffic routed in a path can be
minimized traffic interference in the future.

I(ls(ns,ms)) =
F (ns)

Γ(ns)
+
F (ms)

Γ(ms)
(17)

In node-ranking approach, topology attributes and the global network
resources are simultaneously quantified in which the node capacity,
node location, link bandwidth and link propagation delay are consid-
ered as global resource parameters. Accordingly, interaction between
two nodes ns and ms denoted as Φ(ns,ms) is defined as follows:

Φ(ns,ms) = εI
B(ns)B(ms)

D(ns,ms)2dP(ns,ms)2
(18)

Φ(ns) =
∑

ns 6=ms,ms∈Ns

Φ(ns,ms) (19)

where εI is a constant, and Eq. 19 expresses the interaction of a node
ns with remaining nodes in the entire substrate network. Moreover,
B denotes the resource block of a substrate node that can be defined
as follows:

B(ns) = c(ns)Θ(ns)
∑

ms 6=ns,ms∈Ns

I(ls(ns,ms)) (20)

Normalized B(ns) and Φ(ns) towards substrate node ns are
formulated as below:

B̄(ns) =
B(ns)√∑

ns∈Gs B(ns)2
(21)

Φ̄(ns) =
Φ(ns)√∑

ns∈Gs Φ(ns)
2

(22)

By calculating all percentage values Φ̄(ns) of the substrate net-
work Gs, an initial node-ranking vector T0 has been made, where
T0 = (Φ̄(n0), Φ̄(n1) · · · Φ̄(n|N|))

T . For each node ns ∈ Ns, its node-
ranking value can be calculated as follows:

νns = (1− ρ)B̄(ns) + ρ
∑

n 6=m,m∈N(ns)

Φ(ns)νms (23)

where ρ is the damping factor and N(ns) is the set of all nodes that
have a path with the node ns in the substrate network. As a result, a
vector V formed by the node-ranking values of all substrate nodes
can be shown as below:

Vns = (1− ρ)B̄(ns) + ρMVns (24)

where Vns = (νn0 , νn1 , · · · , νn|N|)T , and B̄(ns) =
(b̄(n0), b̄(n1), · · · , b̄(n|N|))T .M is the transition matrix (|N |×|N |)
where each element is calculated based on (21) and (22). Details on
a stable node-ranking approach are described in Algorithm 1 that
is utilized to calculate the node-ranking values. NTANRC requires
that all nodes including substrate and virtual nodes should be ranked
and sorted following a decreasing order of the node-ranking values.
Similar to substrate nodes, the node ranking values for virtual nodes
are computed in the same procedures. When a VNR arrives, virtual
nodes are calculated node-ranking values and then the virtual node
with highest node-ranking value is first mapped to the substrate node
that achieved highest node-ranking value, meeting node location and
capacity constraints. In a VNR, virtual nodes cannot share the same
substrate node. The mapping is repeated until all virtual nodes are
successfully mapped to corresponding substrate nodes. The output of
NTANRC algorithm as node mapping results is then utilized as the
input to the parallel GA-based algorithm [12] to deal with virtual
link mapping.

Algorithm 1 Stable Node-Ranking Approach
Input: a network G = (N,L), δ: small positive number
Output: a ranking vector V corresponding to a given G
Calculate matrix M and initial vector V0(T0)
Define iteration number k and variable w.
while w ≥ δ do
Vk+1 = (1- ρ)B̄(ns) + ρM Vk ;
w = ‖Vk+1 − Vk‖;
k = k +1;

end while
Vk = Vk+1

B. Parallel GA-based Algorithm for Link Mapping
Distributed and Parallel computing has considered as an efficient

mechanism to address large and complex problems with lower costs
and less time consumption by concurrency support. GA is an appealing
AI approach for solving constrained or unconstrained optimization
problems. A conventional GA usually includes four main operators:

initialization, selection, crossover and mutation. An intelligent GA-
based orchestration algorithm for virtual link mapping stage not
only approached an efficient VNE solution, but also accelerated
the embedding speed due to a distributed parallel paradigm [12].
A proposed parallel GA scheme is presented in Fig 1. Each working
machine independently runs GA algorithm with a pre-defined number
of iterations to explore feasible solutions for virtual link mapping.
The best-matching VLiM outcome is selected among these parallel
machines. All virtual link requests (VLRs) within a VNR are embeded
at once. Accordingly, a chromosome Cf that consists of several genes
gji denotes a feasible link mapping solution for all VLRs. Each gene
gji is associated with a substrate path in which i and j indicate the
current chromosome and virtual link respectively.

1) Initial path pool generation To serve link embedding proce-
dures, a path database for mapping VLRs is deliberately created since
we know that our SN is static. During its path generation, a k-shortest
path algorithm e.g. Dijkstra’s algorithm is deployed to find all possible
k-shortest paths for each pair of source-destination.

2) Working node:
Population Initialization: Each working machine normally begins
with a population initialization step. There are M chromosomes and
each has N genes. An initial population P (MxN size) at kth working
machine is represented as follows:

P =

C1
C2
...
Cf
...
CM

=

g11 · · · gj1 · · · gN1
g12 · · · gj2 · · · gN2
...

. . .
...

. . .
...

g1f · · · gjf · · · gNf
...

. . .
...

. . .
...

g1M · · · gjM · · · gNM

(25)

Each gene that is associated with a potential link mapping solution is
randomly selected from the initial path pool. Such solution must pass
a feasibility check to be a potential embedding solution. N genes
already passed the feasibility check compose a chromosome that is
acknowledged as a feasible solution for the corresponding VLiM.
Selection: A fitness-based proportionate selection scheme which is
based on a cumulative sum of the fitness relative weights (12) is
utilized to select parents from the initial population.

P =

C1
...
Cs
...
Cr
...
CM
CM+1

CM+2

=

g11 · · · gj
c

1 gj
c+1

1 · · · gN1
...

. . .
...

. . .
...

g1s · · · gj
c

s gj
c+1
s · · · gNs

...
. . .

...
. . .

...
g1r · · · gj

c

r gj
c+1
r · · · gNr

...
. . .

...
. . .

...
g1M · · · gj

c

M gj
c+1
M · · · gNM

g1s · · · gj
c

s gj
c+1
r · · · gNr

g1r · · · gj
c

r gj
c+1
s · · · gNs

(26)

Crossover: This procedure combines parental chromosomes to
generate a new offspring for next generation. Cs and Cr denote two
parental chromosomes with their indexes s and r in initial population,
whereas new descendant chromosomes are described as C(M+1) and
C(M+2) respectively. jc indicates a random crossover point between
any genes within N length, which is randomly chosen. Offspring is
established by swapping parental genes starting from the crossover
point jc + 1 to the end as illustrated in 26.
Mutation: This operator implements a random change to an individual
parent to produce a new offspring. A mutation point denoted as
jm is randomly generated. At this point, a new gene chosen from
the path database replaces an existing one within the in-processed
chromosome to form a new child. jm is a random mutation point, and
gj

m

r′ denotes a new gene that replaced the existing one in C(M+1). The
new mutation solution C′(M+1) after replacement can be represented
as C′(M+1) = [g1s · · · gj

m

r′ · · · g
N
s].

3) Solution Sorting and Terminations Sorting procedure selects

Start

Original Path Pool Generation

Initialization

Sorting

Mutation

Crossover

Termination

Selection

no

no

no

no

yes

yes

yes

yes

Initialization

Sorting

Mutation

Crossover

Termination

Selection

no

no

no

no

yes

yes

yes

yes

Initialization

Sorting

Mutation

Crossover

Termination

Selection

no

no

no

no

yes

yes

yes

yes

P

......

0 1

Synchronization

Termination

Finish

Allocation

yes

no nono

Node Mapping

Fig. 1: Parallel operation scheme

the best embedding solution among the feasible ones based on their
fitness values, and then it is conveyed to synchronization step for
a global ranking. A parallel operation generally adopts a series of
concurrent processes, and each accomplishes its particular job in
different time. However, waiting for the last process finishing its
assigned task is frustrating, and this attempt might not guarantee a
desired outcome. Thus, the master node will terminate GA algorithms
at worker nodes if the current best VLiM solution has not been
consecutively improved for t times, where t denotes a termination
parameter.

4) Synchronization and VNR allocation
This operation is deliberately to determine the final VNE solution

for the corresponding VLiM request by a global ranking process. This
final selection is relied on highest achieved FF values compared with
those of all feasible embedding solutions conveyed from the working
nodes. As a result, the VNR will be accepted and then allocated onto
SN based on the information of the virtual node and link mapping
solutions found. The residual network resources will be consequently
updated in advance.

IV. PERFORMANCE EVALUATION

We compare our proposed NTANRC-GA algorithm with several
competitors including IDPA [12], NTANRC-S [9], D-ViNE, R-ViNE,
and G-SP [3]. These algorithms are evaluated in various performance
metrics including acceptance ratio, average revenue to cost ratio,
remaining bandwidth and execution time.

A. Simulation setup
We deployed a discrete-event simulator to assess our proposed VNE

solution with parameters similar to those in [3]. Hence, a popular
GT-ITM topology generator [13] has been utilized to generate SN and
VNs. SNs are configured with average 50 nodes, that are randomly
placed on a 25× 25 Cartesian plane. These are randomly connected
to average 140 edges adopting Waxman model with α = 0.5 and
β = 0.2, where α indicates the maximal edge probability and β
determines the edge length. CPU and bandwidth capacity of SNs
are uniformly generated between 50 and 100 units, whereas VNRs
dynamically arrive following the Poisson process with an average
rate λ varying from 4 to 8 VNs per 100 time units. Lifetime of
VNRs follows an exponential distribution with an average value of
µ = 1000 time units. Hence, the load of VNRs can be quantified
by λ

µ
Erlangs. Additionally, the number of virtual nodes in each

VNR is uniformly distributed between 2 and 10. CPU capacity and
bandwidth requirements of VNRs are uniformly distributed between 0
to 20 and 0 to 50 respectively. Similar to [14], we set wb = wn = 1
in this paper. Each simulation run for 50, 000 time units, 50 times
longer than the average lifetime of a VN to exceptionally generate a
large number of independent samples. All performance figures were

based upon average values with 95% confidence interval. The error
bars were very small due to a large number of samples used, which
proved that our simulation results were obviously reliable. For better
presentation, we plotted figures with different colors and markers.

B. Evaluation Results
Simulation results are preferably shown in Figure 2 and 3.

NTANRC-GA achieved highest acceptance ratio by accepting more
VNRs with significantly less costs than all rivals, which resulted
in much higher average revenue to cost ratios as depicted in Fig
2. Achieving higher both acceptance and revenue to cost ratios
simultaneously is desirable for any VNE algorithm. Our proposed
solution proved that it could be feasible. For example, NTANRC-GA
improved the acceptance ratios of IDPA as well as NTANRC, and
was better than R-ViNE (the best performance algorithm in [3]) up
to 2.24%, 8.76% and 9.73% at 80 Erlang (Fig. 2a) respectively. Our
proposed VNE solution gained 9.07%, 14.08% and 16.60% better
revenue to cost ratios than those of aforementioned algorithms at
the same traffic load as illustrated in Fig 2b. In this paper, average
remaining bandwidth of all compared algorithms was selected and
illustrated in Fig. 3a. With the intelligent link mapping, our VNE
solution consumed less bandwidth to embed given link mapping
requests due to the efficient FF as shown in Fig. 3a. Moreover, we
compared the execution time for embedding a VNR among algorithms
where those of NTANRC-GA and IDPA algorithms are almost similar
because they use the same link mapping mechanism. As depicted in
Fig .3b, NTANRC-GA is 36.26% and 40.11% absolute faster than
NTANRC and G-SP algorithms, respectively. The reason is that both
NTANRC-GA and IDPA deploy the distributed parallel GA-based
algorithm for link mapping stage instead of the SP method used in
NTANRC and G-SP, which was proved to be considerably faster than
SP in [12]. The remarkable performance came from the effective node-
ranking method, that simultaneously took network topology attributes
and global network resources into account, and the intelligent GA-
based approach exploring the search space efficiently to achieve more
feasible link mapping solutions with lower time consumption due to
a proper parallel operation paradigm.

V. RELATED WORK

Consolidating research endeavors in NV, the authors in [14]
contributes a comprehensive survey to this research field. VNE
problem is NP-hard in nature, that is intractable to be solved with
Integer Programming (LP). Thus, most VNE papers are concentrated
on seeking for efficient heuristic algorithms due to the computational
complexity of extract methods. [3] introduced a coordinated node and
link approach for virtual node embedding by relaxing the intractable
integer constraints, and then using rounding techniques to choose
unique node mapping. Huang et al. in [15] mainly extended [3] with
a novel node splitting scheme and node collocation. The authors
in [4] proposed a topology-aware node embedding deploying the
Markov Random Walk model to quantify node capacity and its joint
link bandwidth. The paper [5] explored seven different topological
attributes for better coordinate node and link mapping and proposed
various node-ranking approaches. Zhang et al. [6] took the node degree
and clustering coefficient information to enhance the metric of node
importance which was adopted to rank the substrate nodes, aiming
to determine the nodes with the highest potential for embedding
VNRs. Gong et al. [7], [8] proposed node-ranking approaches that
only considered the simplified global network resources for the node
mapping stage without essential topology attributes. Inspired from
Google PageRank algorithm, [9] proposed an efficient node-ranking
algorithm to rank both virtual and substrate nodes prior to embedding
each VNR, which is based on five topology attributes and global
network resources. Nguyen et al. [12] proposed a distributed parallel
GA-based algorithm for the link mapping phase, which confirmed
the critical role of VLiM for approaching an efficient VNE solution.
Recently, reinforcement learning algorithms have been proposed to
solve VNE problems and optimize their performance [10], [11].

VI. CONCLUSION
NV is indisputably a major factor of the anticipated success of

future network architectures (e.g. 5G, virtualized IoT networks) so
that an efficient VNE algorithm is highly desirable. In this paper,
we propose the node-ranking approach that is based on network

40 50 60 70 80
Traffic load (Erlang)

0.50

0.55

0.60

0.65

0.70

0.75

Av
er
ag

e a
cc
ep

ta
nc
e r

at
io

NTANRC-GA
IDPA
NTANRC
G-SP
R-ViNE
D-ViNE

(a)

40 45 50 55 60 65 70 75 80
Traffic load (Erlang)

0.475

0.500

0.525

0.550

0.575

0.600

0.625

0.650

0.675

R/
C
ra
tio

NTANRC-GA
IDPA
NTANRC
G-SP
R-ViNE
D-ViNE

(b)

Fig. 2: (a) VNR Acceptance Ratio (b) Average revenue to cost ratio

40 45 50 55 60 65 70 75 80
Traffic load (Erlang)

0.400

0.425

0.450

0.475

0.500

0.525

0.550

0.575

0.600

Av
er

ag
e r

em
ain

ing
 b

an
dw

idt
h

NTANRC-GA
IDPA
NTANRC
G-SP
R-ViNE
D-ViNE

(a)

NTANRC-GA IDPA NTANRC G-SP RViNE DViNE
0

50

100

150

200

250

Av
er
ag

e e
xe

cu
tio

n
tim

e (
m
s)

11.54711381578947311.68992382762991 18.11494874260355219.279606406685236 245.39423897581793 260.3773220946915

(b)

Fig. 3: (a) Average remaining bandwidth (b) Average CPU execution time

topology attributes and global network resources for virtual node
mapping stage and the intelligent parallel GA-based algorithm for
link mapping stage to solve online VNE problem. Our proposed
NTANRC-GA algorithm outperforms state-of-the-art algorithms in all
matrices towards performance and operation time. We can conclude
that NTANRC and intelligent GA-based algorithms are reverse
compliments of each other to achieve an efficient VNE solution.
In future work, we will investigate simultaneously embedding nodes
and links in one-stage mapping utilizing Genetic Algorithm.

REFERENCES

[1] A. Hakiri and P. Berthou, “Leveraging SDN for the 5g networks: Trends,
prospects and challenges,” CoRR, vol. abs/1506.02876, 2015. [Online].
Available: http://arxiv.org/abs/1506.02876

[2] I. Ishaq, J. Hoebeke, I. Moerman, and P. Demeester, “Internet of things
virtual networks: Bringing network virtualization to resource-constrained
devices,” in 2012 IEEE International Conference on Green Computing
and Communications, Nov 2012, pp. 293–300.

[3] M. Chowdhury, M. R. Rahman, and R. Boutaba, “Vineyard: Virtual
network embedding algorithms with coordinated node and link mapping,”
IEEE/ACM Transactions on Networking, vol. 20, no. 1, pp. 206–219,
Feb 2012.

[4] X. Cheng, S. Su, Z. Zhang, H. Wang, F. Yang, Y. Luo, and J. Wang,
“Virtual network embedding through topology-aware node ranking,”
SIGCOMM Comput. Commun. Rev., vol. 41, no. 2, p. 38–47, Apr. 2011.
[Online]. Available: https://doi.org/10.1145/1971162.1971168

[5] M. Feng, J. Liao, J. Wang, S. Qing, and Q. Qi, “Topology-aware virtual
network embedding based on multiple characteristics,” in 2014 IEEE
International Conference on Communications (ICC), 2014, pp. 2956–
2962.

[6] P. Zhang, H. Yao, and Y. Liu, “Virtual network embedding based on the
degree and clustering coefficient information,” IEEE Access, vol. 4, pp.
8572–8580, 2016.

[7] Long Gong, Yonggang Wen, Zuqing Zhu, and T. Lee, “Revenue-driven
virtual network embedding based on global resource information,” in
2013 IEEE Global Communications Conference (GLOBECOM), 2013,
pp. 2294–2299.

[8] L. Gong, H. Jiang, Y. Wang, and Z. Zhu, “Novel location-constrained
virtual network embedding lc-vne algorithms towards integrated node
and link mapping,” IEEE/ACM Transactions on Networking, vol. 24,
no. 6, pp. 3648–3661, 2016.

[9] H. Cao, L. Yang, and H. Zhu, “Novel node-ranking approach and multiple
topology attributes-based embedding algorithm for single-domain virtual
network embedding,” IEEE Internet of Things Journal, vol. 5, no. 1, pp.
108–120, Feb 2018.

[10] H. Yao, S. Ma, J. Wang, P. Zhang, C. Jiang, and S. Guo, “A continuous-
decision virtual network embedding scheme relying on reinforcement
learning,” IEEE Transactions on Network and Service Management,
vol. 17, no. 2, pp. 864–875, 2020.

[11] Z. Yan, J. Ge, Y. Wu, L. Li, and T. Li, “Automatic virtual network
embedding: A deep reinforcement learning approach with graph convo-
lutional networks,” IEEE Journal on Selected Areas in Communications,
vol. 38, no. 6, pp. 1040–1057, 2020.

[12] K. T. D. Nguyen and C. Huang, “An intelligent parallel algorithm for
online virtual network embedding,” in 2019 International Conference
on Computer, Information and Telecommunication Systems (CITS), Aug
2019, pp. 1–5.

[13] E. W. Zegura, K. L. Calvert, and S. Bhattacharjee, “How to model an
internetwork,” in Proceedings of IEEE INFOCOM ’96. Conference on
Computer Communications, vol. 2, March 1996, pp. 594–602 vol.2.

[14] N. M. K. Chowdhury and R. Boutaba, “A survey of network
virtualization,” Computer Networks, vol. 54, no. 5, pp. 862 – 876,
2010. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S1389128609003387

[15] C. Huang and J. Zhu, “Modeling service applications for optimal parallel
embedding,” IEEE Transactions on Cloud Computing, vol. 6, no. 4, pp.
1067–1079, Oct 2018.

