
Collaborative Container-based Parked Vehicle Edge
Computing Framework for Online Task Offloading

Khoa Nguyen
Carleton University

Ottawa, ON, Canada
khoatnguyen@sce.carleton.ca

Steve Drew
BitQubic Corp.

Kanata, ON, Canada
steve@bitqubic.com

Changcheng Huang
Carleton University

Ottawa, ON, Canada
huang@sce.carleton.ca

Jiayu Zhou
Michigan State University
East Lansing, MI, USA

jiayuz@msu.edu

Abstract—As most vehicles spend over 95% of their time in the

parking lots, the powerful computing resources of parked vehicles

(PVs) are underutilized, that can be considered as available com-

puting nodes to run tasks as well as an extension of the existing

infrastructure. In this paper, we propose EdgePV, a collaborative

computing paradigm to efficiently improve online heterogeneous

task scheduling. To guarantee service reliability, a container

orchestration (e.g. Kubernetes) is advocated to be integrated into

this proposed architecture due to its notable advanced features

such as load-balancing, auto-healing, resource isolation, security,

etc,. Kubernetes coordinates PVs to run sufficient numbers of

task replicas, providing high service availability against possible

failure caused by the mobility of PVs. We investigate how efficient

PVs can handle the online computational tasks during peak

hours. We also present the dual cost and utility-aware heuristic

algorithm, compared with a set of heuristics to solve the problem

of task scheduling, that can be devised for replacing the default

scheduler in Kubernetes platform. Extensive simulation results

show that our proposed design improves the task acceptance

ratios and average costs at least 23% and 64%, respectively,

at lowest task arrival rate compared to the cooperated cloud-

edge architecture. Furthermore, owners of PVs can significantly

benefit from incentives received by sharing the idle resources of

their PVs.

Index Terms—Parked Vehicles, Edge Computing, Container

Orchestration, Kubernetes.

I. INTRODUCTION

Last decade has witnessed an increasing number of vehicles
that are anticipated to reach 2 billions by 2035 [1]. Many of
which are equipped with state-of-the-art on-board computers
and sensors to offer advanced features such as autopilot, self-
parking, radar, automatic safety systems. Notably, studies
have shown that 70% of individual vehicles almost spend
95% of time for parking in parking lots, home garages or
street parking spaces [1] [2]. Those on-board computers
with level-four autonomous driving support can cost tens of
thousands of dollars but the expected utilization of vehicles
is extremely low. For example, the average driving time per
day in America was only 50.6 minutes according to the data
survey of AAA Foundation for Traffic Safety in 2016 [3]. These
statistics show that on-board computers are idle in most of the
time, suggesting that significant computation resources can be
exploited for provisioning additional services. The overlooked
resources of PVs can become ideal candidates for transient
resources leveraged by Mobile Edge Computing (MEC). By
edge computing, the conventional computation and storage
services offered by the remote cloud are now extended to the
edge of the network. With the introduction of PVs, the strength
of edge is now doubled, but they complicates the offloading
problem through determining the proper network resources
to execute a given task. Moreover, incoming tasks can be
classified into delay-sensitive (e.g. augmented reality, video

Worker node

Worker nodeWorker nodeWorker node

Worker node Worker node

Task 4

Task 3

Edge Servers

Kubernetes

Master node

Base Station

Task 2

Core Network
Worker node

Task 1

wired link

wireless link

Parked vehicle Task

Fig. 1: Edge computing architecture integrated with parked
vehicles (PVs) enabled by Kubernetes.

surveillance, mobile gaming, transportation, live streaming,
robot collaboration, autopilot) and delay-insensitive with rigid
computational requirements [4].

Moreover, an explosive growth of data traffic with hetero-
geneous computation demands, either sensitive or tolerable
to higher latency, will lead to a heavy burden of network
workloads during peak hours. Additionally, the main drawback
of cloud computing is long propagation delays while edge
computing with a close proximity to end users has been
widely emerged as a key paradigm for the next generation
networks. In fact, the coexisting of remote cloud and edge
computing is the most dominant form for task execution, and
the offloading tasks are not always delay-sensitive in reality.
Thus, incoming tasks that do not match well with the cloud in
terms of delay requirements can be offloaded to the network
edge. Due to limited computing capacity of edge computing,
when more applications demand sensitive-latency tolerance
during peak hours, the network becomes congested. Therefore,
we need efficient algorithms to embed online heterogeneous
tasks onto the collaborative framework between cloud-edge
and PVs effectively. Moreover, application vendors have little
chance to negotiate the embedding service costs since these
services are often provided by Service Providers (SPs) with
a fixed amount of service charges. Additionally, owners of
those smart vehicles cannot get any benefit from their powerful

978-1-7281-9486-8/20/$31.00 c�2020 IEEE

on-board computing resources while parking.
Little work has been done to apply a generic container

orchestration system to edge computing enhanced by PVs.
Container orchestration allows PVs to efficiently run multiple
task replicas simultaneously with fast boot-up and short
termination time. Such agility is important due to PVs’ limited
and arbitrary parking duration, enabling them to reliably
execute tasks. Containers may also require lower hardware
requirements, operation costs and support resource isolation
since each container processes given tasks independently. The
de facto industrial standard container orchestration framework
(e.g. Kubernetes [5]) offers advanced features such as auto-
scaling, self-healing and security policies.

In this paper, we propose EdgePV, a novel collaborative
architecture that enables a flexible task execution during peak
hours, where PVs become computing nodes to expand the
existing resource capacity at the edge. Owners of PVs may
sell their resources cheaper than Infrastructure Providers (IPs)
for utility or rewards. These can be converted to accumulating
rewarded points for shopping, gas, parking tickets and so on.
As illustrated in Fig. 1, our proposed architecture investigates
the possibility of an integration between the legacy cloud
computing, an emerged edge paradigm and PVs. We do not
exclude a possible integration of D2D technology into this
infrastructure, but this is beyond the scope of this paper because
our goal is mainly to address the offloading problem when
online tasks arrive at the network. Moreover, we advocate the
possibility of integrating Kubernetes-based platform into this
model that is aimed at improving QoS and security concerns. In
this model, master node is placed at edge node, managing the
worker nodes which include the computation resources from
the cloud, edge server itself and mobile PVs to handle online
task offloading. Both are adopted Kubernetes system forming
a container orchestration cluster to provide several advanced
features such as load-balancing, auto-scaling, auto-healing,
resource management, security, etc,. Kubernetes will run the
task workload by allocating containers into pods to run on
worker nodes. When a PV node fails, Kubernetes automatically
reschedules the requested tasks onto another healthy node.
The control plane in the master node manages the worker
nodes and the pods in the corresponding cluster, and determine
global decisions about the cluster (e.g. scheduling, scaling).
When online tasks dynamically arrive at the master node with
stringent constraints (e.g. CPU, BW, delay tolerance), kube-
scheduler in the control plane of the master node creates pods
and assigns the node for them to run on. More details about
Kubernetes can be found in [5].

We formulate online task offloading problem of the proposed
collaborative framework as Binary Integer Programming (BIP)
aimed at minimizing overall offloading costs while maximizing
accumulative utility. A heuristic algorithm, namely M&M, that
is considered for replacing the default scheduler in Kubernetes
is proposed to efficiently handle task offloading problem
at the edge. Our proposed paradigm advocates Kubernetes
platform to tackle the uncertainty of PVs’ mobility and
network interruptions with advanced automation techniques like
autohealing and autoscaling. We simulate the model with the
random mobility behaviors of PVs with random and dynamic
task arrivals, and compare a set of scheduling algorithms in
performance simulation. To the best of our knowledge, this is

the first paper that solves the task offloading problems across
collaborative infrastructure domains (Cloud, Edge and PVs),
considering several network constraints (e.g. CPU, Memory,
utility, energy consumption, task replicas). We divide contents
into following sections. The related work is illustrated in
Section II. Section III formulates the problem. Section IV
proposes the M&M heuristic algorithm based on the problem
formulation. Then the simulation results are shown in Section
V. Section VI concludes the paper.

II. RELATED WORK

PVs as infrastructure that extend the computing environment
for computation, communication and storage have received
significant attentions in recent years. Enabling PVs to vehicular
cloud computing in Internet of Vehicle system are studied in
[6]–[11].

Arif et al. in [6] considered the simplest deployment of a
vehicle cloud (VC) assisted by PVs in a long-term parking
lot of an international airport. This research work predicted
the parking occupancy to schedule network resources and then
assigned the computation tasks. In addition, [7] introduced a
multilayered vehicular data cloud architecture relied on cloud
computing and Internet of Thing (IoT) technologies. Two
vehicular data cloud services including an intelligent parking
and a vehicular data mining cloud services in IoT environment
were also proposed. Similarly, the realizations of a VC built on
PVs in a parking lot as a spatial-temporal network infrastructure
for communication, computing and storage were explored in
[8]–[10]. Additionally, another investigation that studied the
feasibility of PVs as computation infrastructure was conducted
in [11], proposing an incentive mechanism to offer rewards for
PVs on account of the parking duration as well as their energy
consumption.

In addition, Hou et al. [12] proposed vehicular fog computing
(VFC) utilizing connected PVs as the infrastructure in order
to provide real-time services at the edge with low latency.
Authors also discussed four scenarios of exploiting PVs and
slow moving vehicles as computation and communication
paradigm. In similarity, fog computing implemented in Internet
of Vehicle (IoV) systems to provision computation resources
to end users with latency guarantee was presented in [13]. This
proposed paradigm enabled to offload the real-time network
traffic in fog-based IoV systems in aim of minimizing the
average response time.

Recently, PVs proposed to become accessible edge comput-
ing nodes to conduct task execution, called by Parked Vehicle
Edge Computing (PVEC) were introduced in [1], [3], [14], [15].
The authors in [1] cooperated vehicle edge computing (VEC)
servers and PVs to explore possible opportunistic resources in
order to deal with computational tasks. Their study investigated
the problem of user payment minimization simplifying budget
or latency constraints, which would make the proposed scheme
fall into sub-optimal. Similarly, adapting the current system
state to calibrate the price constantly, [3] presented a dynamic
pricing strategy to minimize the average cost while meeting the
user QoS constraints. The authors in [14] proposed a container-
based task scheduling scheme for PVEC in term of social
welfare aspect concerning both users and PVs. To date, [15]
recommended a delay-sensitive parked vehicular computing
system that utilized softwarized block-chain technology for

security and privacy. They only took PVs into account as
an edge computing paradigm to handle task offloading and
excluded the core cloud and edge server computing themselves.

III. PROBLEM FORMULATION

In this section, we formulate our proposed model regarding
resource constraints of the network edge as the orchestration
scheduler is placed in edge server aside in 5G base station.

A. System Model

We consider a network edge which includes different types
of worker nodes (cloud, edge and PVs) that are connected to
the master node located in edge server via different types of
links. For example, cloud nodes connect to the master node
via fiber optic while PVs join into the network via wireless
links. Hence, the network edge can be considered as a star
topology, where root is master node and leaves are worker
nodes. In this model, we merely focus on downloading input
data because as many online tasks (e.g. face recognition),
the data size of output is much smaller than the input data.
We do not consider the receiving time of the processed task
results from all worker nodes either. The network edge can be
modeled as a directed graph G = (N,L) where N is the set of
worker nodes in the network and L is the set of corresponding
links. These links are also a guarantee of QoS in term of
bandwidth provision. The network edge is connected to the
core network via a fiber optical link, denoted by lc. Each node
can build several containers to process tasks simultaneously
with efficiency guarantee. In this model, a single node can
execute multiple pods that are running containers to process
required tasks. Each task k has the requirements of data size
�k (in bits), memory m(k), tolerable maximum latency tm(k)
and the number of replicas g(k). Each worker node ni 2 N
has its own resource capacity to execute a limited number of
containers. Denote C(ni) and M(ni) are CPU and memory
capacity that ith worker node can provide respectively. Let
denote Kc, Ke, and Kp as a set of tasks offloading to the
cloud, edge and PVs respectively. The residual CPU, memory
and bandwidth capacity of a worker node can be calculated as
below:

Ru
C(ni) = C(ni)�

X

k2K

c(k), 8k 2 K, 8ni 2 N (1)

Ru
M (ni) = M(ni)�

X

k2K

m(k), 8k 2 K, 8ni 2 N (2)

where u denotes the type of the worker nodes (Cloud: c, Edge
Cloud: e, PV: p).

B. Delay Model

Due to accelerating technologies in data centers (e.g. caches,
solid-state drives), the delay caused by writing the tasks into
or accessing the data volumes from memory can be neglected.
Hence, in this model, the task delay is mainly derived from
task offloading time, the computation time and propagation
delay.

1) Core network offloading latency: When the task is
offloaded to the core cloud, the offloading time is highly
correlated to the remaining bandwidth of the link lc while
the computation time depends on how busy the cloud currently
is to execute the offloaded tasks or to run other services. The
latency could be worse in peak hours when more tasks can

be offloaded to the cloud while it would be busy with current
running tasks.

The cloud offloading latency tc(lc) can be computed as
below:

tc(k) = max
j2g(k)

{
�kj

⇠c
+

�kjfkj

Rc
C(ni)

+
d
v
+ Th}  tm(k) (3)

where ⇠c and fk denote the transmission rate of server and the
number of CPU cycles utilized to calculate per bit respectively.
Thus, the total number of CPUs required to calculate the task
k can be expressed as �kfk. d, v and Th are the distance
between the core cloud and edge cloud, the speed of light and
the constant time of handling an incoming task respectively.
Edge devices transmit tasks to the edge servers via wired or
wireless links (base station) for processing. For simplification,
the delay caused by handling a task can be described as Th =
�k

Be⌫
. where ⌫ is a discount factor that reflects fluctuations of

bandwidth at the edge (0 < ⌫ < 1). Different from the cloud,
if the task is decided to process at the edge cloud, the delay
may be only caused by the residual computation capacity that
can process the task. The edge offloading latency te(k) can be
computed as below:

te(k) = max
j2g(k)

{
�kjfkj

Re
C(ni)

+ Th}  tm(k) (4)

2) PVs latency: Unlike the worker nodes in the core network
that are usually stable, PVs should be considered as preemptible
nodes due to vehicle mobility. Increasing the number of replicas
can be a possible approach to avoid service disruption. By that
solution, the master node might have more time to migrate
the current task to other worker nodes for QoS guarantee. As
for the task offloaded to PVs via wireless links, it can be
considered as multi-user MIMO transmissions. In order to
reduce the inter-user interference, a simple phased-zero forcing
precoder is applied to manage such interference in orthogonal
domain [16]. The transmission data rate for each PV p can be
given as:

⇠p = Blog2(1 + �p) (5)

where �p denotes the interference and noise ratio (SINR) of
each PV p. The channel state may fluctuate while offloading,
PVs offloading latency t(lc) can be computed as below:

tp(k) = max
j2g(k)

{
�kj

E[⇠p]
+

�kjfkj

Rp
C(ni)

+ Th}  tm(k) (6)

Similar to [4], we define two types of online tasks including
delay-sensitive and delay-insensitive requirements where the
former can be merely processed at the edge node or PVs
that are closest proximity and the later can be mapped
onto any network nodes (Cloud, Edge and PVs). Next, we
calculate the cost of mapping the tasks into the worker nodes
through different computational platforms. It notably includes
total number of CPUs required to compute a task, memory,
bandwidth consumption of such offloaded task and finally
energy consumption for executing its task at PVs since cloud
and edge computing platforms possess high energy efficiency.

Offloading cost at the Cloud can be expressed as below:

⌅Cc(k) =
X

j2g(k)

WCc�kjfkj

Cc �
P

k02Kc
c(k0) + �

(7)

⌅Mc(k) =
X

j2g(k)

WMcm(kj)
Mc �

P
k02Kc

m(k0) + �
(8)

⌅Bc(k) =
X

j2g(k)

WBc

�(kj)

tm(kj)

Bc �
P

k02Kc

�(k0)
tm(k0) + �

(9)

where � is small positive number to prevent dividing by zero.
Total cost of offloading a task to the cloud:

⌅c
k = ⌅Cc(k) + ⌅Mc(k) + ⌅Bc(k) (10)

When the given task is processed at the edge, it can be
considered as local processing, so the offloading cost at the
Edge is computed as below:

⌅Ce(k) =
X

j2g(k)

WCe�kjfkj

Ce �
P

k02Ke
c(k0) + �

(11)

⌅Me(k) =
X

j2g(k)

WMem(k)
Me �

P
k02Ke

m(k0) + �
(12)

Total cost of offloading a task to the edge:

⌅e
k = ⌅Ce(k) + ⌅Me(k) (13)

Similarly, offloading cost of a task to PVs can be computed
with additional energy consumption attribute as below:

⌅Cp(k) =
X

j2g(k)

WCp�kjfkj

Cp �
P

k02Kp
c(k0) + �

(14)

⌅Mp(k) =
X

j2g(k)

WMpm(k)

Mp �
P

k02Kp
m(k0) + �

(15)

⌅Bp(k) = WBp

�kj

tm(k)⇠p;
, 8k 2 Kp (16)

Ep(k) =
X

j2g(k)
�kjfkjep (17)

where ep is a coefficient, that can be achieved by:

ep = ✏(Rp
C(ni))

2 (18)

where ✏ denotes the energy coefficient.
Total cost of offloading a task k to a PV:

⌅p
k = ⌅Cp(k) + ⌅Mp(k) + ⌅Bp(k) + &Ep(k); (19)

where & is energy cost coefficient.

3) PVs’ Utility: To encourage PVs to sell their idle resources
while parking in the parking lots, owners of PVs should receive
the rewards when they accept to process tasks on their vehicles.
Let 'p represent the revenues by accepting the tasks and the
utility of a PV can be calculated as below:

$p = 'p � ⇢Ep(k) (20)

where ⇢ denotes a coefficient of energy price, and 'p can be
expressed:

'p = �
X

j2gk
rcp�kjfkj + rmp m(kj) (21)

where rcp and rmp are the unit prices for offering CPU and
memory resources respectively. It is recognized that minimizing
the cost embedding tasks would increase the economical
benefits gained by accepting to process the requested tasks in

PVs.
Variables:

Ac
k =

(
1, k deployed on cloud.
0, otherwise.

(22)

Ae
k =

(
1, k deployed on edge.
0, otherwise.

(23)

Ap
k =

(
1, k deployed on parked vehicle.
0, otherwise.

(24)

Objective:

Minimize
X

k2K

X

j2gk
⌅c

kAc
kj

+ ⌅e
kAe

kj
+ (⌘⌅p

k + (1� ⌘)
1
'p

k

)Ap
kj

(25)

w.r.t Ac
kj
,Ae

kj
,Ap

kj

Constraints:

Ac
kj

+Ae
kj

+
X

p2N

Ap
kj

= 1, 8j 2 g(k), 8k 2 K (26)

X

i2g(k)
Ap

kj
= g(k), 8k 2 K (27)

Rc
C(ni), R

e
C(ni), R

p
C(ni) � �kjfkj , j 2 g(k), ni 2 N (28)

Rc
M (ni), R

e
M (ni), R

p
M (ni) � m(kj), j 2 g(k), ni 2 N (29)

tc, te, tp  tm(k) (30)

Remarks:

• Function (25) comprises dual objectives that minimizes the cost
of offloading computation tasks as well as maximize the PV
utility when the tasks are offloaded to PVs where ⌘ is a damping
factor within (0,1).

• Constraint (26) ensure that a task replication is only deployed
at a single worker node.

• Constraint (27) makes sure that total number of scheduled
replicas are equal to the required replicas of the corresponding
task.

• Constraints (28),(29) are the Cloud, Edge and PV capacity
bounds of CPU and Memory respectively.

• Constraints (30) ensures the selected nodes satisfy the latency
constraints.

IV. M&M HEURISTIC ALGORITHM

BIP problems, that are computationally intractable to solve
exactly, are widely known to be NP-hard. Hence, we propose
a heuristic algorithm to obtain sub-optimal results by applying
min-max algorithm (denoted as M&M) in aim of minimizing
offloading costs while maximizing utility/rewards when given
tasks are assigned to PVs. We compare M&M with three base-
line algorithms, namely Baseline 1, Baseline 2, Baseline 3.
Baseline 1 refers Kubernetes default scheduler with filtering
and scoring procedures whereas Baseline 2 schedules online
tasks with random policies which means that worker nodes
are randomly selected for task offloading. Besides, Baseline 3
applies branch and bound selection policy as described in [17].
There are three performance metrics for evaluation including
task average acceptance ratios (A/R), average costs and average
accumulated utility/rewards. Details in our proposed algorithms
are shown in Algorithm 1.

(a) A/R between infrastructures (b) Average cost between infrastructures (c) A/R between algorithms

(d) Average cost of algorithms (e) Accumulated utility of algorithms (f) A/R towards PV availability

Fig. 2: Performance evaluation

Algorithm 1 The M&M algorithm
1: function GET_CANDIDATES(k)
2: create an empty candidate array

3: for each replica of task k do

4: for all n 2 N do . including cloud, edge and PV nodes
5: if (CPU remaining � c(k) and

Memory remaining � m(k) then

6: add n to candidates

7: end if

8: end for

9: end for

10: return candidates
11: end function

12: function NODE_SELECTION(k)
13: utility zero
14: candidates GET_CANDIDATES(k)

15: sort descending all candidates based on their cost values
detailed in Eq. (10), (13), (19).

16: new candidates �(total_candidates) . �:
candidate selection proportion

17: for all candidates in new candidates do

18: if candidate is a PV then

19: calculate utility value based on Eq. (20)
20: end if

21: end for

22: Select a candidate with highest utility value.
23: return n
24: end function

V. NUMERICAL RESULTS

A. Simulation setup

We have developed a discrete event simulator to evaluate our
proposed algorithms. PVs randomly and dynamically arrive
and leave a generic parking lot with 100 free parking spots.
Although the capacity of a parking lot can be fully occupied,
we assume that its parking capacity remains at least 50% up

to 85% in peak hours since not all of PVs are willing to sell
their resources or are qualified to join into the network to
provide services. Eligible PVs are assumed to have adequate
minimum resource requirements (e.g. CPU, GPU) that can be
defined by SPs, and must be registered under an idle mode to
serve incoming tasks during their parking time. Moreover, PV’s
behaviors are based on an observation that parking duration
of a PV is from 08 to 240 minutes [1] or 30 to 120 minutes
[15]. More than 85% of PVs spend maximum three hours in a
parking lot and the serviceability probability of a PV achieves
around 90% at the parking duration of 60 minutes [1]. In this
paper, we assume that the accumulative parking duration of
a PV is following Poisson distribution with � = 3600. As
discussed in previous sections, the online requested tasks can
be classified into delay-sensitive and delay-insensitive tasks.
When the delay tolerance of a given task exceeds 20 ms,
we consider it as a delay-sensitive demand. Our simulation
approximately runs for 8 hours (peak business working time)
and the simulator automatically updates PVs every 20 minutes.
Additionally, energy coefficient ✏, coefficient for energy price
⇢ and unit price for each CPU cycle � are set to 10�24, 0.003
and 2⇥ 10�9 [15], respectively. More simulation parameters
can be found in Table I.

B. Performance Results

Figure 2a illustrates the effectiveness of our proposed
architecture in which PVs are integrated into the ubiquitous
network architecture to handle online task requests in peak
hours. Cloud-Edge-PVs deployed M&M heuristic algorithm,
that is extended the resource availability of the network, to
increase the possibility of accepting the incoming requests.
Specifically, the desired architecture improved the acceptance
ratios from 23% up to 78% compared to common Cloud-Edge
architecture at task arrival rates of 10 and 50, respectively.

TABLE I: Parameter Settings in Simulation

Parameter Values

Maximum parking capacity 100
Total simulation time 30,000 seconds
Vehicle lifetime [480-14400] seconds
Cc / Mc / Bc 50GHz/1000MB/1Gbps
Ce / Me 25GHz / 500MB
W{Cc,Mc,Bc} 750
W{Ce,Me} 250
W{Cp,Mp,Bp} 10
Frequency 28 GHz
Channel Bandwidth B 50 MHz
CPU Parked Vehicles Cp [1.5-2.0] GHz
Data rate ⇠p [332-1065] Mbps
Input data size �k [1.5 - 5.0] Mb
CPU cycles per bit fk 1500 cycles
Memory requests m(k) [20-50] MB
Tolerable latency of tasks tm (0-100] ms
Arrival request rates [10-110]
Request replications g(k) [2 - 10]
rcp / rmp 10 / 100
Candidate selection proportion � 0.25

Cloud itself got lowest acceptance ratio when it was only able
to execute delay-insensitive requests while Edge had a limited
processing capacity.

By preferring to allocate task replicas to PVs, Cloud-Edge-
PVs outperformed all compared platforms towards average
offloading costs as illustrated in Fig. 2b. The proposed paradigm
achieved at least 64% up to 85% better absolute average
costs in a comparison with all compared infrastructures. In
contrast, as our proposed paradigm achieved significantly better
performance than other architectures, we would like to stress
its scheduling capability with other baselines at higher task
arrival rates. In performance evaluation between compared
algorithms, Baseline 2 attained worst performance in terms
of acceptance ratios as well as averages costs due to its
allocating strategies by selecting the worker nodes randomly
without considering network compatibility. Baseline 1 based
on filtering and scoring procedures accepted more tasks but
was still lightly worse than Baseline 3 and M&M algorithms
as shown in 2c. Regarding cost evaluation metric, M&M and
Baseline 3 significantly performed better than others (Fig. 2d).
It was not surprised since Baseline 3 was intentionally designed
for minimizing the network cost. M&M seemed just lightly
better than Baseline 3, but it could not compete our proposed
algorithm in utility performance as illustrated in Fig. 2e. The
reason is that we simultaneously considered both cost and
utility at once, and the given tasks were most likely to be
assigned to PVs which expectantly produced lower unit costs.
Furthermore, we evaluated the availability of PVs on different
arrival rates in respect of various acceptance ratios as depicted
in Fig. 2f. It has been shown that when PV availability reached
85%, PVs are able to handle online heterogeneous tasks at all
selected arrival rates successfully. In lower bound, we needed
at least 60% availability of PVs remaining in parking lot to
obtain 80% acceptance ratio.

VI. CONCLUSION

In this paper, we have investigated the potential of PVs
as an extension of the existing computing infrastructure
for container-based task execution in peak hours. We have
leveraged Kubernetes architecture as the container orchestrator
deploying edge servers as master nodes, while PVs have acted

as worker nodes. Extensive simulation has shown that our
proposed paradigm not only extends the computation resources
by taking advantage of powerful on-board computing resources
of PVs, but also brings a flexible and agile architecture to task
offloading problems.

ACKNOWLEDGEMENT

This research was supported by the Natural Sciences and
Engineering Research Council of Canada (NSERC) Engage
grant (EGP 543449-19).

REFERENCES

[1] X. Huang, R. Yu, J. Liu, and L. Shu, “Parked vehicle edge computing:
Exploiting opportunistic resources for distributed mobile applications,”
IEEE Access, vol. 6, pp. 66 649–66 663, 2018.

[2] F. H. Rahman, A. Yura Muhammad Iqbal, S. H. S. Newaz, A. Thien
Wan, and M. S. Ahsan, “Street parked vehicles based vehicular fog
computing: Tcp throughput evaluation and future research direction,”
in 2019 21st International Conference on Advanced Communication

Technology (ICACT), 2019, pp. 26–31.
[3] D. Han, W. Chen, and Y. Fang, “A dynamic pricing strategy for vehicle

assisted mobile edge computing systems,” IEEE Wireless Communications

Letters, vol. 8, no. 2, pp. 420–423, 2019.
[4] O. Fadahunsi and M. Maheswaran, “Locality sensitive request

distribution for fog and cloud servers,” Service Oriented Computing and

Applications, vol. 13, no. 2, pp. 127–140, Jun 2019. [Online]. Available:
https://doi.org/10.1007/s11761-019-00260-2

[5] What is Kubernetes?, 2020 (accessed May 28, 2020). [Online]. Available:
https://kubernetes.io/docs/concepts/overview/what-is-kubernetes/

[6] S. Arif, S. Olariu, J. Wang, G. Yan, W. Yang, and I. Khalil, “Datacenter
at the airport: Reasoning about time-dependent parking lot occupancy,”
IEEE Transactions on Parallel and Distributed Systems, vol. 23, no. 11,
pp. 2067–2080, 2012.

[7] W. He, G. Yan, and L. D. Xu, “Developing vehicular data cloud services
in the iot environment,” IEEE Transactions on Industrial Informatics,
vol. 10, no. 2, pp. 1587–1595, 2014.

[8] F. Dressler, P. Handle, and C. Sommer, “Towards a vehicular cloud -
using parked vehicles as a temporary network and storage infrastructure,”
in Proceedings of the 2014 ACM International Workshop on Wireless

and Mobile Technologies for Smart Cities, ser. WiMobCity ’14. New
York, NY, USA: Association for Computing Machinery, 2014, p. 11–18.
[Online]. Available: https://doi.org/10.1145/2633661.2633671

[9] E. Al-Rashed, M. Al-Rousan, and N. Al-Ibrahim, “Performance
evaluation of wide-spread assignment schemes in a vehicular
cloud,” Vehicular Communications, vol. 9, pp. 144 – 153, 2017.
[Online]. Available: http://www.sciencedirect.com/science/article/pii/
S2214209616301863

[10] T. Kim, H. Min, and J. Jung, “Vehicular datacenter modeling for
cloud computing: Considering capacity and leave rate of vehicles,”
Future Generation Computer Systems, vol. 88, pp. 363 – 372,
2018. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0167739X18300487

[11] C. Li, S. Wang, X. Huang, X. Li, R. Yu, and F. Zhao, “Parked vehicular
computing for energy-efficient internet of vehicles: A contract theoretic
approach,” IEEE Internet of Things Journal, vol. 6, no. 4, pp. 6079–6088,
2019.

[12] X. Hou, Y. Li, M. Chen, D. Wu, D. Jin, and S. Chen, “Vehicular
fog computing: A viewpoint of vehicles as the infrastructures,” IEEE

Transactions on Vehicular Technology, vol. 65, no. 6, pp. 3860–3873,
2016.

[13] X. Wang, Z. Ning, and L. Wang, “Offloading in internet of vehicles: A
fog-enabled real-time traffic management system,” IEEE Transactions

on Industrial Informatics, vol. 14, no. 10, pp. 4568–4578, 2018.
[14] X. Huang, P. Li, and R. Yu, “Social welfare maximization in container-

based task scheduling for parked vehicle edge computing,” IEEE

Communications Letters, vol. 23, no. 8, pp. 1347–1351, 2019.
[15] Y. Cao, Y. Teng, F. R. Yu, V. C. M. Leung, Z. Song, and M. Song, “Delay

sensitive large-scale parked vehicular computing via software defined
blockchain,” in 2020 IEEE Wireless Communications and Networking

Conference (WCNC), 2020, pp. 1–6.
[16] L. Liang, W. Xu, and X. Dong, “Low-complexity hybrid precoding

in massive multiuser mimo systems,” IEEE Wireless Communications

Letters, vol. 3, no. 6, pp. 653–656, 2014.
[17] H. Zhu and C. Iluang, “Vnf-b b: Enabling edge-based nfv with cpe

resource sharing,” in 2017 IEEE 28th Annual International Symposium

on Personal, Indoor, and Mobile Radio Communications (PIMRC), 2017,
pp. 1–5.

