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Abstract 

    It is a challenging issue to provide guaranteed QoS for 
diverse network applications while still obtaining high 
network utilization in Diffserv networks. As a promising 
approach to achieve the tradeoff between network 
utilization and the provision of QoS, the concept of 
effective bandwidths has been widely accepted. We 
propose a traffic measurement-based adaptive effective 
bandwidth allocation algorithm aiming at overcoming 
the conservative nature of effective bandwidths.  We 
study the performance of adaptive effective bandwidth 
allocation under dynamic weighted round robin 
scheduling instead of a FIFO queueing discipline, aiming 
at providing differentiated services to traffic flows. We 
quantify the statistical multiplexing gain among multiple 
traffic classes with a set of simulations.  
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1. INTRODUCTION 
 

During the last 30 years, numerous network 
applications have been created. For these diverse 
applications, the quality of service (QoS) requirements 
are quite different. Some applications, such as email, ftp 
and other data transfer applications, are delay-tolerant but 
very sensitive to data loss. While other applications, such 
as real-time audio/video applications, are loss-tolerant 
but have tight delay requirement.  A recent so-called 
Diffserv (Differentiated Services) approach has been 
developed to provide service differentiation for 
heterogeneous application requirements.  In Diffserv 
architecture, QoS may be defined as quantitative or 
statistical terms of throughput, delay, jitter, and/or loss 
[1]. In order to solve the scalability problem, Diffserv 
approach provides QoS on the traffic aggregate level. At 

the incoming edge of the network, arriving packets are 
classified and marked. Traffic meters are used to monitor 
the user’s traffic. The incoming traffic flow is compared 
against the negotiated traffic profile and a packet is 
determined whether within the negotiated traffic profile 
or not. A meter then passes state information to other 
conditioning elements such as shapers and droppers to 
trigger a particular action for each packet.  In the core of 
the network, routers forward packets based on the 
differentiated service code point (DSCP).  However, the 
Diffserv architecture only provides the framework for 
performing packet marking and conditioning, it does not 
mandate any specific implementation for what marking 
and conditioning is actually to be done [2]. 

In this paper, we develop a framework of using 
effective bandwidths under dynamic weighted round 
robin (DWRR) scheduling to study the statistical QoS 
assurance issue in self-sizing networks supporting 
Diffserv. At the incoming edge of the network, the 
incoming traffic streams are classified into different 
classes and isolated into separate buffers. Each class of 
traffic has the similar traffic characteristics and same 
QoS requirement. Here, we consider the packet loss  
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           Fig.1 Effective bandwidths under DWRR 



 

probability as the QoS requirement of interest. We add 
the traffic prediction function into the meters since it is 
very difficult to get the exact traffic profiles in a real 
network environment. Thus, in self-sizing networks, a 
meter changes its role to be a predictor and the function 
of traffic conditioning is replaced by the function of 
dynamic link dimensioning, to some extent. Noting that 
the most effective way to predict the traffic is to use the 
latest second to predict the next second, the latest minute 
to predict the next minute [3], we use the effective 
bandwidth estimated in the current time window to 
predict the bandwidth to be allocated in the next time 
window. According to the (sub) additive and independent 
properties [4] of effective bandwidths, we may wish to 
allocate the overall bandwidth according to the sum of 
effective bandwidth of individual classes. However, we 
will shortly see in section 3 and 4 that such pure effective 
bandwidth allocation is conservative, without taking into 
account the effect of multiplexing multiple classes 
together. This leads to a two-step adaptive effective 
bandwidth allocation approach: (1) we use the effective 
bandwidth as an approximation of the bandwidth to be 
allocated; (2) we adjust the bandwidth to be allocated 
according to the measured packet loss ratio. According to 
the buffer occupancy and the allocated bandwidth of 
each traffic class, the weights are adjusted dynamically.  
    The rest of this paper is organized as follows: In 
section 2, we describe the DWRR with AEBA. Then in 
section 3, we use homogeneous Poisson traffic sources as 
a special case to make a theoretical analysis of 
multiplexing gain. Next, in section 4, we evaluate the 
performance of our proposals with a set of simulations 
using Poisson and MMPP sources as input. Finally, in 
section 5, we draw the conclusion.  
 

2. DWRR with AEBA 
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   Fig.2 DWRR with buffer overflow preventive mechanism 

2.1 Buffer Overflow Preventive Mechanism  
 

While providing isolation among traffic classes, one 
traffic class can use only the amount of buffer that has 
been allocated to it. In particular, it can not utilize buffer 
capacity that is not currently being used by other traffic 
classes. It is therefore desirable to develop some 
mechanism to use buffer as efficiently as possible. To 
achieve that, we define a high threshold for each buffer, 
DWRR checks if there is some queue whose occupancy 
is above the high threshold after serving one packet. If 
so, the queue with higher QoS demand will start its 
serving slot if the queue currently being served has low 
buffer occupancy.  

Take class 1 as an example, after serving one packet 
of class 1, if queue 1 has high buffer occupancy, the 
scheduler will continue serving queue 1. Otherwise, if 
either of q2 and q3 exceeds the high threshold, the 
scheduler will start serving it. If both exceed the 
threshold, the scheduler will serve the one with higher 
QoS requirement.  If no buffer exceeds its high threshold 
or all buffers exceed their high thresholds, the scheduler 
will take turns to serve each class according to the weight 
assigned to it. The detailed algorithm is described in Fig. 
2. The similar procedure applies to class 2 and class 3. 

 
2.2 Measurement-based Effective Bandwidths 

 
    In the literature, many effective bandwidth approaches 
have been proposed. Among them, a widely accepted 
mathematical framework for effective bandwidth of a 
stationary arrival process has been defined in [5]:  

    
st

ts 1),( =α logE[esX[0,t]]     0<s,t<∞                    (1) 

where s is the space-scale parameter and t is the time-
scale parameter, X[0,t] denotes the amount of data that 
arrives from a source during the interval of length t.  
    It requires a full characterization of the underlying 
process to calculate (1), which is not trivial. Therefore, 
we use the measurement-based method to calculate the 
effective bandwidths.  Our on-line measurement-based 
effective bandwidth calculation is based on the “block 
estimator” [6] method, which considers the non-
overlapping blocks of arrivals over an interval of length t. 
By applying the block estimator method to (1), we can 
obtain the following equation: 
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where N is the window size. According to the large 
buffer asymptotic, s is approximated by 
      s=−lnPloss/B                                                            (3) 
where B is the buffer size, Ploss is the target packet loss 
probability. 



 

2.3 AEBA 
 

    To exploit the statistical multiplexing gain, we develop 
the adaptive effective bandwidth allocation approach 
described in Fig. 3.  
    According to the measured loss ratio in one window 
and the measured overall loss ratio, we adjust the value 
of multiplexing gain factor g, which adjusts the 
bandwidth to be allocated for the next window in the 
following way: 
    BWnext= Min {Max{EB(1-g),average rate},peak rate}    (4) 
where BWnext is the bandwidth to be allocated for the 
next window and EB is the effective bandwidth estimated 
in the current window. We define an upper threshold, 
Thlosshigh, and a lower threshold, Thlosslow, for 
measured packet loss ratio. We also define two step 
control parameters, Ssmall and Slarge, for adjusting the 
value of g. If the measured loss ratios are lower than 
Thlosslow in two successive windows, the over-
allocation may have occurred. We increase the value of g 
by multiplying Ssmall, which will reduce the bandwidth 
allocation according to (4). If the measured loss ratio in 
the current window is higher than Thlosshigh, with high 
probability, g is too large. We reduce the value of g to the 
former value by dividing Ssmall. If the measured overall 
ratio is higher than Thlosshigh at the same time, we need 
to reduce the loss ratio in the next several windows to 
reduce the overall loss ratio to the target loss ratio. To 
achieve this goal, we reduce the value of g by dividing 
Slarge. 
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Fig.3 Adaptive effective bandwidth allocation 

3. ANALYTICAL RESULT 
 

    To get an analytical result of multiplexing gain, we 
consider the following special case: Three classes of 
traffic sources in DWRR queueing system are all 
homogeneous Poisson traffic. They have the same arrival 
rate, for simplicity, assuming in an ATM network, 
λ=2000 cells/second. They also have the same cell loss 
ratio requirements, for example, Ploss=10-3. And each 
class has the same buffer size: B=50 cells.  

From (1), we can get the following effective 
bandwidth formula for Poisson traffic sources: 

                EB=
s

e s 1−λ .                                              (5) 

Then, for each class, we calculate the effective 
bandwidth as follows: 
                EB1=EB2=EB3=2144.74 cell/s.                     (6) 
According to the additive property of effective 
bandwidths, we would wish to allocate the overall 
effective bandwidth with the sum of EB1, EB2 and EB3. 
However, such pure effective bandwidth allocation 
ignores the multiplexing gain among multiple classes. 
Due to statistical multiplexing, the bandwidth required to 
carry a set of classes with a certain QoS is less than the 
sum of the bandwidths that would be needed to carry 
each class separately with the same QoS. To calculate the 
multiplexing gain, consider a FIFO multiplexer with the 
buffer size of 3B fed by one Poisson traffic class with the 
arrival rate of 3 λ. With the same packet loss probability 
requirement, the effective bandwidth of this traffic flow 
will be 
              EBFIFO= 6140.30 cell/s.                                   (7) 
As described in Fig.2, DWRR is work conserving and the 
buffer capacity is used efficiently. If we approximate the 
overall bandwidth in DWRR with (7), the overall packet 
loss in these two systems should be very close. Since all 
three traffic classes in DWRR are homogenous, the 
packet loss probability of each class should be the same 
with the overall packet loss probability. Through this 
way, we can estimate the multiplexing gain for this 
special case as follows: 
        Gain= (EB1+EB2+EB3- EBFIFO)/(EB1+EB2+EB3) 
               = 0.04568                                                        (8) 
 

4. SIMULATION RESULTS 
 
We measure the traffic at the resolution of 50 

milliseconds with the measurement window size set to 
60. We set the initial value of g=0.05, upper loss ratio 
threshold Thlosshigh=0.98*target loss ratio, lower loss 
ratio threshold Thlosslow=0.6*target loss ratio, small 
step control parameter Ssmall=1.1 and large step control 
parameter Slarge=1.5. 



 

4.1 Homogeneous Traffic Sources 
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 Fig. 4 95%CI of loss ratio with AEBA under DWRR 
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Fig. 5 95%CI of multiplexing gain with AEBA under DWRR 
 

    To evaluate the performance of DWRR with AEBA, 
We use three homogeneous traffic sources described in 
section 3 as input. The simulation results are given in 
Fig. 4 and Fig. 5.The simulation results show that the 
DWRR with AEBA approach can meet the QoS 
requirement of each traffic class while getting the 
statistical multiplexing gain of around 4.6% at the same 
time. The measured multiplexing gain is a little higher 
than the theoretical result in (8). The reason is that the 
effective bandwidth itself is conservative [7]. 
 
4.2 Heterogeneous Traffic Sources 
 

In this scenario, we use three different two-state 
MMPP classes with different QoS requirements as input 
to evaluate the performance of DWRR with AEBA. 

 
Table1 Traffic sources with different QoS requirements 

Traffic sources Class1 Class2 Class3 
Target loss ratio 10-3 10-2 10-1 
Arrival rate in state 1 (cell/s) 1000 1000 200 
State 1 lasting time(s) 200 600 300 
Arrival rate in state 2 (cell/s) 2000 1500 300 
State 2 lasting time(s) 200 600 300 
Buffer size (Cell) 200 100 50 
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 Fig. 6 Measured loss ratio for each class 
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Fig. 7  95% CI of measured overall multiplexing gain  
 
Table 1 lists the traffic source characteristics. Fig. 6 

and Fig. 7 list the simulation results. The simulation 
results show that the different QoS requirements of all 
classes can be satisfied at the same time. Meanwhile, the 
overall statistical multiplexing gain of around 3.1% is 
achieved.  
 

5. CONCLUSIONS 
 
The analytical and simulation results show that 

DWRR with AEBA can exploit the multiplexing gain 
efficiently while satisfying the different QoS requirement 
of each class at the same time. AEBA can make more 
efficient bandwidth allocation than the pure effective 
bandwidth allocation. 
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