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Abstract: Future data networks are required to support different types of traffic with distinct 
QoS requirements. An attractive approach to meet this requirement is to use virtual networks 
to provide traffic segregation and resource partitioning in the network. Because of the bursty 
nature of network traffic, in order to reduce the cost of operating the virtual links of a virtual 
network, as well as to improve the efficiency of the underlying network, the bandwidth of the 
virtual links needs to be dynamically adjusted. In this paper, the performance of 
Autoregressive Moving Average (ARMA) and Fractional Autoregressive Integrated Moving 
Average (fARIMA) predictors in prediction-based dynamic bandwidth provisioning is studied. 
The analysis and simulation results show that the performance of prediction-based dynamic 
bandwidth provisioning depends not only on the accuracy of the predictor, but more 
importantly on the autocorrelation structure of the prediction error. This dependence has not 
been noticed in previous research. In addition, our results show that error compensation is a 
powerful technique to decorrelate the predictor error, and simple predictors, such as ARMA 
predictor, with error compensation are more suitable in prediction-based dynamic bandwidth 
provisioning themes than computationally complex fARIMA predictors. 
Keywords: dynamic bandwidth provisioning, traffic prediction, ARMA predictor, fARIMA 
predictor, virtual network, overlay network, QoS. 
 
1. INTRODUCTION 

 
Future data networks are required to support different types of traffic with distinct QoS 
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requirements, such as VoIP, video conference, video-on-demand, online gaming and other 
emerging services. . One of the proposed solutions is to use overlay virtual network structure, 
which can be setup within a single network domain [3], or across multiple network domains 
[4].  Such an approach implies traffic segregation and resource partitioning in the network  

Under the overlay virtual network structure, virtual links are purchased from the network 
operators to form a connected virtual network. The bandwidth capacity of the virtual link can 
be statically or dynamically set. However, because of the bursty nature of data traffic, 
statically partitioning the network resource will decrease the network efficiency. Also from 
the overlay virtual network operator’s point of view, purchasing a virtual link with fixed 
bandwidth means paying money for the bandwidth that is not used most of the time. 
Therefore, to make the partitioned network more efficient and the virtual networks more 
profitable, dynamic bandwidth provisioning is needed [3] [4] [12].  

In dynamic bandwidth provisioning, the traffic loads on the virtual links are monitored, 
and the link sizes, i.e. the bandwidth, are dynamically adjusted. At the time of the bandwidth 
resizing, only the information of the traffic load at the current and previous measurement 
times are available, but the bandwidth adjusting decision will affect the QoS of the traffic 
after the current time and until the time of the next resizing. Therefore, for the dynamic 
bandwidth allocation to work, the traffic load on the virtual link in the next time interval 
needs to be predicted based on the current and previous measurements history, and the 
bandwidth is adjusted according to this prediction. In prediction-based dynamic network 
resource partitioning, the size of the virtual links is adjusted before the actual traffic changes. 
In other words, if the network foresees a certain amount of traffic increase during the next 
measurement interval, it would be able to reserve that amount of additional bandwidth 
beforehand, therefore the QoS of the traffic, the efficiency of the network, as well as the 
profitability of the overlay virtual network will be improved. 

The rest of the paper is organized as followed. Section 2 gives a briefly introduction to 
prediction and predictors. In Section 3, the effect of the autocorrelation of the prediction error 
on the system performance is analyzed. Simulation results are provided in Section4. Finally, 
Section 5 provides the conclusions. 
 
2. TRAFFIC PREDICTION 

 
2.1. Introduction 

Suppose that the traffic load on a virtual link is monitored, and the mean of traffic data 
rate (bits/s) for every time interval , , , … is calculated, where 

cii  is the size of the observation window. In this way, we get a time series of 
arriving mean traffic rate . In traditional queuing theory models, it is 
assumed that the arrivals are Poisson, which means the arrival process is memoryless and the 

 and j  from the arriving traffic rate series are independent, therefore uncorrelated, if 

),[ 21 tt ),[ 32 tt ),[ 43 tt
Ttt =−+1

KK ,,,, 21 tXXX

iX X
ji ≠ . Under this assumption, the best prediction one can make about the future traffic, if we 

assume that the random process  is stationary, is . But in the study of real 
network traffic, both short-range dependence (SRD) and long-range dependence (LRD) are 
observed 

}{ tX }E{ tX

[8]. This correlation structure makes it possible to predict the future traffic based on 
the traffic history. [3] [5] [9] [10] [11]
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If the task of the predictor is to forecast the value of  based on the values of 
, it is called a one-step predictor, which is the predictor studied in this paper. 

-step predictors, with , do exist but are not discussed in the paper. For predictions of 
different time length into the future, the task can be achieved by changing the value of .  

1+tX
11 ,,, XXX tt K−

h 1>h
cT

Time series prediction has been a research area for a long time and has generated many 
prediction models, among which the Autoregressive Moving Average (ARMA) and Fractional 
Autoregressive Integrated Moving Average (fARIMA) models are the most frequently used.  

 
2.2. ARMA Predictor 

The general model for an ARMA( , ) process is defined as  p q
tBtXB εθφ )()()( =  (1) 

in which )(Bφ  and )(Bθ  are polynomials of B : 
p

p BBBB φφφφ −−−−= L2
211)(  (2) 

q
q BBBB θθθθ ++++= L2

211)(  (3) 
where B  is the backward shift operator defined as 1−= tt XBX , 2 , etc; 2

−= tt XXB iφ  and 
iθ  are real valued coefficients of the polynomials, and tε  is a white noise process. 

In prediction practice, ARMA( , ) model with p q 0=q , also called AR( ) model, is 
often used, because it does not require to deduce 

p
tε  from the history, although in general an 

ARMA( , ) model requires fewer parameters than an AR( ) model. By using an AR( ) 
model, the predicted value of  is 

p q p p
1+tX

11211
ˆ

+−−+ +++= ptpttt XXXX φφφ L  (4) 
The ARMA model is simple yet powerful, and is widely used in predictions. However it 

can only model the SRD of the process. Since the early 90’s, numerous studies have shown 
that most network traffic can be better modeled as self-similar, which has the LRD 
characteristic [8] [11]. For an SRD process, such as the ones depicted by ARMA models, the 
autocorrelation function decays exponentially. The LRD process, on the other hand, has an 
autocorrelation function which decays hyperbolically. In order to be able to describe the LRD 
of actual traffic, models with LRD capability were introduced. The fARIMA model is one of 
the new LRD models and is frequently used in self-similar traffic prediction. 

 
2.3. fARIMA predictor 

A fARIMA( , , ) process is defined as  p d q
t

where 

d BtXBB εθφ )()()1)(( =−  (5) 
B , )(Bφ  and )(Bθ  are the same as defined in the ARMA model. is the 

fractional differencing operator, with 

dB)1( −
2/12/1 <<− d , and 2/1−= Hd  where H  is the 

Hurst parameter which is the defining factor of LRD [1][8]. Similar to the AR( ) model case, 
fARIMA( , , ) model with 

p
p d q 0=q  is called fAR( , ) model. p d

Let  denote the fractional differencing operator, and we can expand it as dΔ

∑
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, and  denotes the Gamma function. Γ

961



Because of the non-integer values of , the summation in d dΔ is genuinely over an 
infinite number of indices [6], which means that fARIMA predictor needs infinite number of 
traffic observations to produce the one-step-ahead prediction. But in reality, storing infinite 
observations is impossible. Even storing a very large number of historical data may not be 
practical either. When applied in practice, the fARIMA predictors are usually truncated at 
some desired level. 

Since the fARIMA models have the fractional differencing operator, which can describe 
the LRD [1][6], they are believed to describe real traffic traces more accurately than ARMA 
models, and fARIMA predictors are often regarded as much more accurate than ARMA 
predictors [11]. 
 
2.4. Comparing ARMA and fARIMA predictors 

The most obvious criterion when comparing predictors is the accuracy, and it has been 
treated as the most decisive factor affecting the performance of prediction-based bandwidth 
provisioning in most research. Many research papers have shown that fARIMA predictors 
have obvious advantage in accuracy over ARMA predictors, because fARIMA model can 
describe the LRD that exists in real network traffic [11]. But this is only true in the ideal case, 
where infinite traffic history is available. In practice, because of limited available traffic 
history or limited computation power, the fARIMA predictors have to be truncated. Some 
papers have shown that in such cases the advantage of fARIMA predictors over ARMA 
predictors is not as significant as researchers originally thought [3] [5] [9]. 

 
3. PREDICTION ERROR 

 

 
Fig. 1 Predictive Bandwidth Resizing in 
Edge Routers 

 
Fig. 2 Equivalent diagram of Predictive 
Bandwidth Resizing. 
 

In this paper, it is discovered that beside accuracy, which has been treated as the only 
decisive factor in the predictor’s performance, the autocorrelation structure of the prediction 
error also plays a very important role in determining the performance of prediction-based 
bandwidth provisioning. To the authors’ best knowledge, the effect of the autocorrelation of 
prediction error on the performance of prediction-based bandwidth provisioning has not been 
studied before, and our analysis is given in this section. 

In an overlay virtual network structure, the traffic transported on the virtual links is 
monitored at the edge routers, where traffic prediction is performed. Based on the predicted 
traffic load, the bandwidth of the virtual links is dynamically adjusted. Fig. 1 shows the 
diagram at the edge router. The performance of the system is determined by the performance 
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of the packet queue in the edge router executing the prediction algorithm. Equivalently, Fig. 1 
can be redrawn as shown in Fig. 2, in which the prediction error can be of either positive or 
negative value. If it is positive, the resizing module adds packets into the queue; if the error is 
negative, the module draws packets out of the queue when it is not empty.  

Let e(t) denote the prediction error at time t as  
)(ˆ)()( tXtXte −=  (7) 

where  is the incoming traffic, and  is the prediction of  based on )(tX )(ˆ tX )(tX )1( −tX , 
, …, . )2( −tX )( mtX −

The size of the queue, denoted as , can be represented as a function of . )(tQ )(te
)0)],()1([max()( tetQtQ +−=  (8) 

If the prediction is unbiased, which is the case in both ARMA and fARIMA predictors, 
we have . The more accurate a predictor is, the smaller the variance of . If 

 is not correlated, it will be safe to say that the smaller the variance is, the better the 
queue performs. But is  uncorrelated in reality? No previous research has been done to 
investigate this question. 

0)}({ =teE )(te
)(te

)(te

It is well known that the autocorrelation structure of the traffic feeding into a queue has 
considerable impact on the queue performance. If the input has LRD, the performance of the 
queue will degrade considerably, compared to the uncorrelated Poisson arrival case, 
depending on how significant the LRD is. Therefore, as Fig. 2 illustrate, it is also very 
important to investigate the autocorrelation structure of the prediction errors of the predictors. 

In real networks,  is long-range dependent )(tX [5] [8] [9] [11]. Since ARMA models 
cannot capture LRD, it is reasonable to expect that the prediction error of ARMA predictor 
has LRD. The fARIMA predictor is recognized for its ability of describing LRD. This may 
lead to a perception that the prediction error of fARIMA predictor does not have LRD. 
However, this may not be true in reality. As shown earlier in equation (6),  is the 
component in the model that expresses LRD, but it is a polynomial of infinite order, which is 
impossible to implement in reality where only limited history is available. Because of this, the 
prediction error of fARIMA predictor may still have LRD. 

dB)1( −

In the simulations followed, the autocorrelation of the prediction errors of both ARMA 
and fARIMA predictors are inspected, and the effect of LRD of the prediction error on the 
performance of the queue is also analyzed. 
 
4. SIMULATIONS 
 
4.1. Simulation Setup 

A single server queue, as shown in Fig. 1, is implemented. The queue size is unlimited. 
The input traffic trace is a real traffic trace, the Bellcore traffic trace BC-pAug89.TL [8], 
which is openly available and is often used in network research papers as standard test data. 
The traffic trace records the time-stamp and the packet size of 1 million Ethernet packets over 
the time interval of about 3142.82 seconds.  

The trace is processed using window size of 200 millisecond to get a time series of 
traffic rate . Each  represents the mean traffic rate during an observing window. To 
simulate realistic situations, the traffic history available to the predictors is limited to 20. Four 

tX tX
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predictors are simulated, AR(5), AR(20), fAR(5) and fAR(20), respectively. An ideal predictor, 
whose prediction of the traffic rate for the next time interval is the actual traffic rate, is also 
included in the simulations. It is impossible to implement this ideal predictor in real world, 
but we use it as the benchmark in evaluating the performance of other predictors. 

Each predictor is fitted on the first 200 seconds of data, and then the predictors are used 
to predict the traffic rate of the rest of the trace. For the fAR predictors, the value of  in 
equation (6) is set to be 0.3, based on the Hurst parameter estimation in 

d
[11]. 

Two scenarios - with and without error compensation - are run on each predictor. In the 
case of no error compensation, the predicted traffic rate of the next time interval is simply the 
output from the predictor; in the error compensation case, as suggested in [3], the prediction 
error of last time interval is added to the current output of the predictor: 

)()1(ˆ)1(~ tEtXtX ++=+  (9) 
)(ˆ)()( tXtXtE −=  (10) 

in which,  is the direct output from the predictor;  is the actual traffic load;  
is the error of the predictor; and  is the final prediction value. 

)(ˆ tX )(tX )(tE
)(~ tX

To deal with traffic burstiness and prediction error, the actual bandwidth was resized 
according to the traffic prediction multiplied by a factor 1>R . By changing the value of R , 
the link utilization can be controlled, as Ru /1= . 

 
4.2. Simulation Results 

The Mean Square Error (MSE) is used as the metric measuring the accuracy of the 
predictors. Table 1 shows the MSEs of different predictors, normalized by the variance of the 
traffic. From Table 1, it can be seen that fAR predictors are more accurate than AR predictors, 
but the advantage of fAR predictors is not very significant, as expected due to truncation. It is 
also noticed that the MSEs of predictors with error compensation are substantially larger than 
the corresponding predictors without error compensation. If accuracy is the only factor 
affecting the performance of the predictor, as it was treated in previous research, one may 
jump to the conclusion that the performance of predictors with error compensation are much 
worse than those without error compensation. But the simulation results shown later prove 
that it is not true. 
 
 

 
Table 1 MSEs of different predictors 
(normalized by the variance of the traffic). 
 

 
Fig. 3 Autocorrelation of prediction errors 
without error compensation.

MSE 
Predictor Without Error 

Compensation 
With Error 
Compensation 

AR(5) 0.7288 1.3438 
AR(20) 0.7509 1.3549 
fAR(5) 0.6764 1.3684 
fAR(20) 0.7156 1.3716 
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Fig.4 Autocorrelation of prediction error 
using fAR(5) predictor. 

 
Fig.5 Autocorrelation of prediction errors 
with error compensation.

 
Fig.6 Average queue length using predictors 
without error compensation. 

 
Fig.7 Average queue length using predictors 
with error compensation.

 
Fig.8 Maximum queue length using 
predictors without error compensation. 

 
Fig. 9 Maximum queue length using 
predictors with error compensation.
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Fig. 10 Average queuing delay using 
predictors without error compensation 

 
Fig. 11 Average queuing delay using 
predictors with error compensation.

 
Fig. 12 Maximum queuing delay using 
predictors without error compensation. 

 
Fig. 13 Maximum queuing delay using 
predictors with error compensation.

 
Fig. 14 Variance of queuing delay using 
predictors without error compensation. 

 
Fig. 15 Variance of queuing delay using 
predictors with error compensation. 
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Fig. 3 shows the autocorrelation functions of prediction errors using predictors without 
error compensation. It can be seen that, as we expected in previous analysis, the prediction 
errors of both the AR predictors and the fAR predictors have clearly visible LRD structure. 
The autocorrelation function of the prediction error with the least LRD, which is the one of 
the fAR (5) predictor, is selected and plotted in Fig. 4. It shows that the Hurst parameter for 
this prediction error is around 0.7. In Fig. 5, the autocorrelation functions of prediction errors 
using predictors with error compensation are shown. For all the four predictors, there is no 
observable LRD, and the autocorrelation functions are almost the same. 

Fig. 6 and Fig. 8 show the average and maximum queue length at the edge router using 
predictors without error compensation. The curve at the bottom is the queue performance of 
the ideal predictor. It can be seen that compared to the ideal case the queue lengths using AR 
and fAR predictors without error compensation are much longer, especially when the link 
utilization is high. It should also be noticed that the queue performance curves in Fig. 6 and 
Fig. 8 have the same order as the autocorrelation functions in Fig. 3. The average and 
maximum queue lengths using predictors with error compensation are shown in Fig. 7 and Fig. 
9 respectively. Compared with Fig. 6 and Fig. 8, the queue lengths are significantly reduced. 
The performances of the different predictors are almost identical, and are close to the curve of 
the ideal predictor, even when the link utilization is high. 

Fig. 10 and Fig. 12 show the average and maximum queuing delays using predictors 
without error compensation. Similar to the performance of queue length, when predictors 
without error compensation are used, the queuing delays are much bigger than the ideal case. 
The order of the queuing delay curves shown in Fig. 10 and Fig. 12 are also the same as the 
order of autocorrelation functions in Fig. 3. Compared with Fig. 10 and Fig. 12, the average 
and maximum queuing delays using predictors with error compensation, as shown in Fig. 11 
and Fig. 13, are much smaller, especially when the link utilization is high. The performances 
using different predictors with error compensation are very close.  

Similar performance of queuing delay variance using predictors with and without error 
compensation can also be observed through Fig. 14 and Fig. 15. 

It can be observed that the queue performance curves in Fig. 6, Fig. 8, Fig. 10, Fig. 12 
and Fig. 14 all have the same order as the autocorrelation functions shown in Fig. 3. The less 
LRD the prediction error has, the better the queue performs. This suggests that the LRD in the 
prediction error has substantial influence on performance of the queue, which agrees with our 
analysis earlier.  

In previous research, prediction accuracy was the only criterion used in evaluating the 
performance of different predictors. And it is widely accepted that the more accurate a 
predictor is, the better its performance. Such belief can in some way explain the results shown 
in Fig. 6 Fig. 8, Fig. 10, Fig. 12 and Fig. 14, because the order of the curves shown in those 
graphs are also the same as the order of MSEs of the predictors shown in Table 1. However, 
prediction accuracy cannot explain the results shown in Fig. 7, Fig. 9, Fig. 11, Fig. 13 and Fig. 
15. The queue performance of predictors with error compensation is significantly better than 
the same predictors without error compensation, despite the fact that the accuracy of 
predictors with error compensation is much worse than the ones without error compensation 
(the MSEs nearly doubled as listed in Table 1).  

The analysis in Section3, together with the simulation results in this section, show that 
besides accuracy, the autocorrelation structure of the prediction error, which has been 
neglected in previous research, is a very important factor in determining the performance of a 
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predictor in prediction-based bandwidth provisioning. 
 
5. CONCLUSION 
 

The analysis and simulations in this paper show that the performance of prediction-based 
bandwidth provisioning for overlay virtual networks depends not only on the accuracy of the 
predictor, as thought in previous research, but more importantly on the autocorrelation 
structure of the prediction error. Predictors with error compensation can remove LRD from 
the prediction error, and by removing the LRD of the prediction error the performance of the 
predictor can be improved significantly. 

The ability of fARIMA predictor in describing LRD is limited in real application where 
the traffic history information is limited, and the prediction error of fARIMA predictor in real 
implementation still has LRD. Without error compensation, there is no noticeable 
performance advantage of fARIMA predictor over ARMA predictor. When the error 
compensation technique is applied, the performances of ARMA and fARIMA predictors are 
almost identical. This suggests that error compensation combined with the computationally 
less complex ARMA prediction is more suitable in prediction-based dynamic bandwidth 
provisioning applications.  
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