
Open access to the Proceedings of the
Fourteenth Symposium

on Usable Privacy and Security
is sponsored by USENIX.

This paper is included in the Proceedings of the
Fourteenth Symposium on Usable Privacy and Security.

August 12–14, 2018 • Baltimore, MD, USA

ISBN 978-1-939133-10-6

Security in the Software Development Lifecycle
Hala Assal and Sonia Chiasson, Carleton University

https://www.usenix.org/conference/soups2018/presentation/assal

Security in the Software Development Lifecycle

Hala Assal
School of Computer Science

Carleton University
Ottawa, ON Canada

HalaAssal@scs.carleton.ca

Sonia Chiasson
School of Computer Science

Carleton University
Ottawa, ON Canada

Chiasson@scs.carleton.ca

ABSTRACT
We interviewed developers currently employed in industry
to explore real-life software security practices during each
stage of the development lifecycle. This paper explores steps
taken by teams to ensure the security of their applications,
how developers’ security knowledge influences the process,
and how security fits in (and sometimes conflicts with) the
development workflow. We found a wide range of approaches
to software security, if it was addressed at all. Furthermore,
real-life security practices vary considerably from best prac-
tices identified in the literature. Best practices often ignore
factors affecting teams’ operational strategies. Division of
labour is one example, whereby complying with best prac-
tices would require some teams to restructure and re-assign
tasks—an effort typically viewed as unreasonable. Other
influential factors include company culture, security knowl-
edge, external pressure, and experiencing a security incident.

1. INTRODUCTION
Software security focuses on the resistance of applications to
malicious attacks resulting from the exploitation of vulnera-
bilities. This is different from security functions, which can
be expressed as functional requirements, such as authentica-
tion [60]. With increasing connectivity and progress towards
the Internet of Things (IoT), threats have changed [30]. In
addition to vulnerabilities in traditional computing systems
(e.g., Heartbleed [21]), vulnerabilities are found in devices
and applications that are not necessarily considered security
sensitive, such as cars [28], and medical devices [43]. More-
over, the threat is no longer limited to large enterprises;
Small and Medium Enterprises (SMEs) are increasingly be-
coming targets of cyberattacks [50].

With increasing threats, addressing security in the Soft-
ware Development Lifecycle (SDLC) is critical [25, 54]. De-
spite initiatives for implementing a secure SDLC and avail-
able literature proposing tools and methodologies to assist
in the process of detecting and eliminating vulnerabilities
(e.g. [16, 18, 20, 48]), vulnerabilities persist. Developers are
often viewed as “the weakest link in the chain” and are

Copyright is held by the author/owner. Permission to make digital or hard
copies of all or part of this work for personal or classroom use is granted
without fee.
USENIX Symposium on Usable Privacy and Security (SOUPS) 2018.
August 12–14, 2018, Baltimore, MD, USA.

blamed for security vulnerabilities [27, 58]. However, sim-
ply expecting developers to keep investing more efforts in
security is unrealistic and unlikely to be fruitful [14].

Usable security research focusing on developers and the hu-
man factors of software security–a new area that has not
been sufficiently investigated–has the potential for a widespread
positive influence on security [14, 27]. Towards guiding re-
search in this area, Acar et al. [14] proposed a research
agenda for usable security for developers where they high-
light important research questions.

Our work is a step towards addressing one of the prominent
research areas outlined by Acar et al.’s research agenda [14].
This paper explores steps that teams are taking to ensure
the security of their applications, how developers’ security
knowledge influences the process, and how security fits in
(and sometimes conflicts with) the development workflow.
We interviewed 13 developers who described their tasks,
their priorities, as well as tools they use. During the data
analysis we recognized that our participants’ practices and
attitudes towards security formed two groups, each with
trends distinguishable from the other group. On comparing
real-life security practices to best practices, we also found
significant deviations.

This paper makes the following contributions.

• We present a qualitative study looking at real-life prac-
tices employed towards software security.

• We amalgamate software security best practices ex-
tracted from the literature into a concise list to assist
further research in this area.

• We reflect on how well current security practices follow
best practices, identify significant pitfalls, and explore
why these occur.

• Finally, we discuss opportunities for future research.

2. RELATED WORK
Green and Smith [27] discussed how research addressing
the human factors of software security is generally lack-
ing, and that developers are often viewed as “the weakest
link”—mirroring the early attitude towards end-users before
usable security research gained prominence. While develop-
ers are more technically experienced than typical end-users,
they should not be mistaken for security experts [14, 27].
They need support when dealing with security tasks, e.g.,
through developer-friendly security tools [58] or program-
ming languages that prevent security errors [27]. To this
end, Acar et al. [14] outlined a research agenda towards un-
derstanding developers’ attitudes and security knowledge,

USENIX Association Fourteenth Symposium on Usable Privacy and Security 281

exploring the usability of available security development tools,
and proposing tools and methodologies to support develop-
ers in building secure applications. We now discuss relevant
research addressing such human aspects of software security.

Generally, studies in this area face challenges in recruiting
developers and ensuring ecologically validity. Developers are
busy and must often comply with organizational restrictions
on what can be shared publicly. To partially address these
issues, Stransky et al. [51] designed a platform to facilitate
distributed online programming studies with developers.

Oliveira et al. [22] showed that security vulnerabilities are
“blind spots” in developers’ decision-making processes; de-
velopers mainly focus on functionality and performance. To
improve code security, Wurster and van Oorschot [58] recom-
mend taking developers out of the development loop through
the use of Application Programming Interfaces (APIs). To-
wards this goal, Acar et al. [12] evaluated five cryptographic
APIs and found usability issues that sometimes led to in-
secure code. However, they found that documentation that
provided working examples was significantly better at guid-
ing developers to write secure code. Focusing on software
security resources in general, Acar et al. [15] found that some
available security advice is outdated and most resources lack
concrete examples. In addition, they identified some under-
represented topics, including program analysis tools.

Focusing on security analysis, Smith et al. [48] showed that
tools should better support developers’ information needs.
On exploring developers’ interpretation of Static-code Anal-
ysis Tool (SAT) warnings, they found that participants fre-
quently sought additional information about the software
ecosystem and resources. To help developers to focus on
the overall security of their code, Assal et al. [16] proposed
a visual analysis environment that supports collaboration
while maintaining the codebase hierarchy. This allows de-
velopers to build on their existing knowledge of the codebase
during code analysis. Perl et al. [41] used machine learning
techniques to develop a code analysis tool. Their tool has
significantly fewer false-positives compared to similar ones.
Nguyen et al. [40] developed a plugin to help Android appli-
cation developers adhere to, and learn about, security best
practices without distributing their workflow.

Despite their benefits [17], SATs are generally underused [31].
Witschey et al. [56] investigated factors influencing the adop-
tion of security tools, such as tool qualities, and developers’
personalities and experiences. They found that more expe-
rienced developers are more likely to adopt security tools,
whereas tool complexity was a deterring factor. Addition-
ally, Xiao et al. [59] found that the company culture, the
application’s domain, and the company’s standards and poli-
cies were among the main determinants for the developers’
adoption of security tools. To encourage developers to use
security tools, Wurster and van Oorschot [58] suggest man-
dating their use and rewarding developers who code securely.

As evidenced, several research gaps remain in addressing
the human aspects of software security. Our study takes a
holistic perspective to explore real-life security practices, an
important step in improving the status-quo.

3. STUDY DESIGN AND METHODOLOGY
We designed a semi-structured interview study and received
IRB clearance. The interviews targeted 5 main topics: gen-

eral development activities, attitude towards security, se-
curity knowledge, security processes, and software testing
activities (see Appendix A for interview script). To re-
cruit participants, we posted on development forums and
relevant social media groups, and announced the study to
professional acquaintances. We recruited 13 participants;
each received a $20 Amazon gift card for participation. Be-
fore the one-on-one interview, participants filled out a de-
mographics questionnaire. Each interview lasted approxi-
mately 1 hour, was audio recorded, and later transcribed
for analysis. Interviews were conducted in person (n = 3)
or through VOIP/video-conferencing (n = 10). Data collec-
tion was done in 3 waves, each followed by preliminary anal-
ysis and preliminary conclusions [26]. We followed Glaser
and Strauss’s [26] recommendation by concluding recruit-
ment on saturation (i.e., when new data collection does not
add new themes or insights to the analysis).

Teams and participants. A project team consist of teams
of developers, testers, and others involved in the SDLC.
Smaller companies may have only one project team, while
bigger companies may have different project teams for dif-
ferent projects. We refer to participants with respect to
their project teams; team i is referred to as Ti and P-Ti is
the participant from this team. We did not have multiple
volunteers from the same company. Our data contains infor-
mation from 15 teams in 15 different companies all based in
North America; one participant discussed work in his cur-
rent (T7) and previous (T8) teams, another discussed his
current work in T10 and his previous work in T11. In our
dataset, seven project teams build web applications and ser-
vices, such as e-finance, online productivity, online booking,
website content management, and social networking. Eight
teams deliver other types of software,e.g., embedded soft-
ware, kernels, design and engineering software, support util-
ities, and information management and support systems.
This classification is based on participants’ self-identified
role and products with which they are involved, and using
Forward and Lethbridge’s [24] software taxonomy. Catego-
rizing the companies to which our teams belong by number
of employees [19], 7 teams belong to SMEs (T4, T7, T10–
T14) and 8 teams belong to large enterprises (T1–T3, T5,
T6, T8, T9, T15). All participants hold university degrees
which included courses in software programming, and are
currently employed in development with an average of 9.35
years experience (Md = 8). We did not recruit for specific
software development methodologies. Some participants in-
dicated following a waterfall model or variations of Agile.
See Table 3 in Appendix B for participant demographics.

Analysis. Data was analyzed using the Qualitative Content
Analysis methodology [9,23]. It can be deductive, inductive,
or a combination thereof. For the deductive approach, the
researcher uses her knowledge of the subject to build an
analysis matrix and codes data using this matrix [9]. The
inductive method, used when there is no existing knowledge
of the topic, includes open coding, identifying categories,
and abstraction [9].

We employed both the deductive and inductive methods
of content analysis. The deductive method was used to
structure our analysis according to the different develop-
ment stages. We built an initial analysis matrix of the main
SDLC stages [49]. After a preliminary stage of categoriz-

282 Fourteenth Symposium on Usable Privacy and Security USENIX Association

Figure 1: Security adopters: developer testing abstraction

ing interview data and discussions between the researchers,
the matrix was refined. The final analysis matrix defines
the stages of development as follows. Design is the stage
where the implementation is conceptualized and design deci-
sions are taken; Implementation is where coding takes place;
Developer testing is where testing is performed by the de-
veloper; Code analysis is where code is analyzed using au-
tomated tools, such as SATs; Code review is where code
is examined by an entity other than the developer; Post-
development testing is where testing and analysis processes
taking place after the developer has committed their code.

We coded interview data with their corresponding category
from the final analysis matrix, resulting in 264 unique ex-
cerpts. Participants talked about specific tasks that we
could map to the matrix stages, despite the variance in de-
velopment methodologies. We then followed an inductive
analysis method to explore practices and behaviours within
each category (development stage) as recommended by the
content analysis methodology. We performed open cod-
ing of the excerpts where we looked for interesting themes
and common patterns in the data. This resulted in 96
codes. Next, data and concepts that belonged together were
grouped, forming sub-categories. Further abstraction of the
data was performed by grouping sub-categories into generic
categories, and those into main categories. The abstrac-
tion process was repeated for each stage of development. As
mentioned earlier, during our analysis we found distinct dif-
ferences in attitudes and behaviours that were easily distin-
guishable into two groups, we call them the security adopters
and the security inattentive. We thus present the emerging
themes and our analysis of the two groups independently.
Figure 1 shows an example of the abstraction process for
developer testing data for the security adopters. While all
coding was done by a single researcher, two researchers met
regularly to thoroughly and collaboratively review and edit
codes, and group and interpret the data. To verify the reli-
ability of our coding, we followed best practices by inviting
a researcher who has not been involved with the project to
act as a second coder, individually coding 30% of the data.
We calculated Krippendorff’s alpha [33] to assess inter-rater
reliability, and α = 0.89 (percentage of agreement = 91%).
According to Krippendorff [34], alpha ≥ 0.80 indicates that
coding is highly reliable and that data is “similarly inter-
pretable by researchers”. In case of disagreements, we had
a discussion and came to an agreement on the codes.

Limitations: Our study included a relatively small sam-
ple size, thus generalizations cannot be made. However, our
sample size followed the concept of saturation [26]; partici-
pant recruitment continued until no new themes were emerg-
ing. Additionally, recruiting participants through personal
contacts could result in biasing the results. While we can-
not guarantee representativeness of a larger population, the
interviewer previously knew only 3/13 participants. The re-

Table 1: The degree of security in the SDLC. • : secure, ◦ :

somewhat secure, × : not secure, ⊗ : not performed, ? : no data

(a) The Security Adopters

D
es

ig
n

Im
p
le

m
en

ta
ti

o
n

D
ev

el
o
p

er
te

st
in

g

C
o
d
e

a
n
a
ly

si
s

C
o
d
e

re
v
ie

w

P
o
st

-d
ev

te
st

in
g

T1 × • × • • •
T3 ? • ? • • •
T5 • • ◦ • • •
T11 ? • ◦ • • ?
T12 × • ◦ • • •
T14 × • • ⊗ • •

(b) The Security Inattentive

D
es

ig
n

Im
p
le

m
en

ta
ti

o
n

D
ev

el
o
p

er
te

st
in

g

C
o
d
e

a
n
a
ly

si
s

C
o
d
e

re
v
ie

w

P
o
st

-d
ev

te
st

in
g

T2 × • × ◦ ◦ •
T4 ◦ ◦ ◦ ⊗ ◦ ◦
T6 × ◦ × × ◦ ◦
T7 × × × ⊗ × ◦
T8 × × × ⊗ × •
T9 ◦ • ◦ ⊗ ◦ ◦
T10 ◦ ◦ × ⊗ ◦ ⊗
T13 × • × ⊗ ◦ •
T15 × × × × × ×

maining ten participants were previously unknown to the
researcher and each represented a different company. While
interviews allowed us to explore topics in depth, they pre-
sented one perspective on the team. Our data may thus
be influenced by participants’ personal attitudes and per-
spectives, and may not necessarily reflect the whole team’s
opinions. However, we found that participants mainly de-
scribed practices as encouraged by their teams.

4. RESULTS: SECURITY IN PRACTICE
We assess the degree of security integration in each stage
of the SDLC as defined by our final analysis matrix. As
mentioned earlier, we found differences in participants’ at-
titudes and behaviours towards security that naturally fell
into two distinct groups. We call the first group the secu-
rity adopters: those who consider security in the majority
of development stages (at least four stages out of six1). The
second group who barely considered security or did not con-
sider it at all form the security inattentive. We chose the
term inattentive, as it encompasses different scenarios that
led up to poor security approaches. These could be that se-
curity was considered and dismissed or it was not considered
at all, whether deliberately or erroneously. Table 1 presents
two heat maps, one for each group identified in our dataset
(see Appendix C for more information). We classified prac-
tices during a development stage as:

(•) secure: when security is actively considered, e.g., when
developers avoid using deprecated functions during the im-
plementation stage.
(◦) somewhat secure: when security is not consistently

considered, e.g., when threat analysis is performed only if
someone raises the subject.
(×) not secure: when security is not considered at all,

e.g., when developers do not perform security testing.
(⊗) not performed : when a stage is not part of their SDLC

(i.e., considered not secure).
(?): when a participant did not discuss a stage during

their interview, therefore denoting missing data.

The heat maps highlight the distinction in terms of secu-
rity between practices described by participants from the
security adopters and the security inattentive groups. The
overwhelming red and orange heat map for the security
inattentive group visually demonstrates their minimal secu-

1At least three stages in cases where we have information
about four stages only. Note that this is just a numeric
representation and the split actually emerged from the data.

USENIX Association Fourteenth Symposium on Usable Privacy and Security 283

rity integration in the SDLC. Particularly, comparing each
stage across all teams shows that even though the security
adopters are not consistently secure throughout the SDLC,
they are generally more attentive to security than the other
group. The worst stage for the security inattentive group is
Code analysis, which is either not performed or lacks secu-
rity, followed by the developer testing stage, where security
consideration is virtually non-existent.

We initially suspected that the degree of security integration
in the SDLC would be directly proportional to the company
size. However, our data suggests that it is not necessarily
an influential factor. In fact, T14, the team from the small-
est company in our dataset, is performing much better than
T6, the team from the largest company in the security inat-
tentive group. Additionally, we did not find evidence that
development methodology influenced security practices.

Although our dataset does not allow us to make conclusive
inferences, it shows an alarming trend of low security adop-
tion in many of our project teams. We now discuss data
analysis results organized by the six SDLC stages defined in
our analysis matrix. All participants discussed their teams’
security policies, as experienced from their perspectives, and
not their personal preferences. Results, therefore, represent
the reported perspectives of the developers in each team.

4.1 Exploring practices by development stage

We found that the prioritization of security falls along a
spectrum: at one end, security is a main priority, or it is
completely ignored at the other extreme. For each SDLC
stage, we discuss how security was prioritized, present com-
mon trends, and highlight key messages from the interviews.
Next to each theme we indicate which group contributed to

its emergence: (SA) for the security adopters, (SI) for the

security inattentive, and (SA/SI) for both groups. Table 2
provides a summary of the themes.

4.1.1 Design stage
We found a large gap in security practices described by our
participants in the design stage. This stage saw teams at
all points on the security prioritization spectrum, however,
most participants indicated that their teams did not view
security as part of this stage. Our inductive analysis revealed
three emerging themes reflecting security prioritization, with
one theme common to both the security adopters and the
security inattentive, and one exclusive to each group.

Security is not considered in the design stage. (SA/SI)
Most participants indicated that their teams did not apply
security best practices in the design stage. Although they
did not give reasons, we can infer from our data (as discussed
in other stages) that this may be because developers mainly
focus on their functional design task and often miss secu-
rity [22], or because they lack the expertise to address secu-
rity. As an example of the disregard for security, practices
described by one participant from the security inattentive
group violates the recommendation of simple design; they in-
tentionally introduce complexity to avoid rewriting existing
code, and misuse frameworks to fit their existing codebase
without worrying about introducing vulnerabilities. P-T10
explained how this behaviour resulted in a highly complex
code, “Everything is so convoluted and it’s like going down

rabbit holes, you see their code and you are like ‘why did you
write it this way?’ [...] It’s too much different custom code
that only those guys understand.” Such complexity increases
the potential for vulnerabilities and complicates subsequent
stages [47]; efforts towards evaluating code security may be
hindered by poor readability and complex design choices.

Security consideration in the design stage is adhoc. (SI)
Two developers said their teams identify security considera-
tions within the design process. In both cases, the design is
done by developers who are not necessarily formally trained
in security. Security issue identification is adhoc, e.g., if a
developer identifies a component handling sensitive informa-
tion, this triggers some form of threat modelling. In T10,
this takes the form of discussion in a team meeting to con-
sider worst case scenarios and strategies for dealing with
them. In T4, the team self-organizes with the developers
with most security competence taking the responsibility for
designing sensitive components. P-T4 said, “Some develop-
ers are assigned the tasks that deal with authorization and
authentication, for the specific purpose that they’ll do the se-
curity testing properly and they have the background to do
it.” In these two teams, security consideration in the design
stage lies in the hands of the developer with security exper-
tise; this implies that the process is not very robust. If this
developer fails to identify the feature as security-sensitive,
security might not be considered at all in this stage.

Security design is very important. (SA) Contrary to
all others, one team formally considers security in this stage
with a good degree of care. P-T5 indicated that his team
considers the design stage as their first line of defense. De-
velopers from his team follow software security best prac-
tices [1, 8, 47], e.g., they perform formal threat modelling
to generate security requirements, focus on relevant threats,
and inform subsequent SDLC stages. P-T5 explains the ad-
vantages of considering security from this early stage, “When
we go to do a further security analysis, we have a lot more
context in terms of what we’re thinking, and people aren’t
running around sort of defending threats that aren’t there.”

4.1.2 Implementation stage
Most participants showed general awareness of security dur-
ing this stage. However, many stated that they are not
responsible for security and they are not required to secure
their applications. In fact, some developers reported that
their companies do not expect them to have any software
security knowledge. Our inductive analysis revealed three
themes regarding security prioritization in this stage.

Security is a priority during implementation. (SA/SI)
All security adopters and two participants from the secu-
rity inattentive group discussed the importance of security
during the implementation stage. They discussed how the
general company culture encourages following secure imple-
mentation best practices and using reliable tools. Security
is considered a developer’s responsibility during implemen-
tation, and participants explained they are conscious about
vulnerabilities introduced by errors when writing code.

Developers’ awareness of security is expected when

implementing. (SA/SI) For those prioritizing security, the
majority of security adopters and one participant from the
security inattentive group are expected to stay up-to-date

284 Fourteenth Symposium on Usable Privacy and Security USENIX Association

on vulnerabilities, especially those reported in libraries or
third-party code they use. The manner of information dis-
semination differs and corroborates previous research find-
ings [59]. Some have a structured approach, such as that
described by P-T1, “We have a whole system. Whenever se-
curity vulnerability information comes from a third-party, [a
special team follows] this process: they create an incident, so
that whoever is using the third-party code gets alerted that,
‘okay, your code has security vulnerability’, and immediately
you need to address it.” Others rely on general discussions
between developers, e.g., when they read about a new vul-
nerability. Participants did not elaborate on if and how they
assess the credibility and reliability of information sources.
The source of information could have a considerable effect
on security; previous research found that relying on infor-
mal programming forums might lead to insecure code [13].
In Xiao et al.’s [59] study, developers reported taking the
information source’s thoroughness and reputation into con-
sideration to ensure trustworthiness.

Security is not a priority during implementation. (SI)
On the other end of the security prioritization spectrum, de-
velopers from the security inattentive group prioritize func-
tionality and coding standards over security. Their primary
goal is to satisfy business requirements of building new appli-
cations or integrating new features into existing ones. Some
developers also follow standards for code readability and effi-
ciency. However, security is not typically considered a devel-
oper’s responsibility, to the extent that there are no conse-
quences if a developer introduces a security vulnerability in
their code. P-T7 explained, “If I write a bad code that, let’s
say, introduced SQL injection, I can just [say] ‘well I didn’t
know that this one introduces SQL injection’ or ‘I don’t even
know what SQL injection is’. [...] I didn’t have to actually
know about this stuff [and] nobody told me that I need to fo-
cus on this stuff.” This statement is particularly troubling
given that P-T7 has security background, but feels powerless
in changing the perceived state of affairs in his team.

Our analysis also revealed that some developers in the se-
curity inattentive group have incomplete mental models of
security. This led to the following problematic manifesta-
tions, which could explain their poor security practices.

Developers take security for granted. (SI) We found,
aligning with previous research [22], that developers fully
trust existing frameworks with their applications’ security
and thus take security for granted. Our study revealed that
these teams do not consider security when adopting frame-
works, and it is unclear if, and how, these frameworks’ secu-
rity is ever tested. To partially address this issue, T4 built
their own frameworks to handle common security features to
relieve developers of the burden of security. This approach
may improve security, however verifying frameworks’ secu-
rity is an important, yet missing, preliminary step.

Developers misuse frameworks. (SI) Despite their ex-
treme reliance on frameworks for security, developers in T10
do not always follow their recommended practices. For ex-
ample, although P-T10 tries to follow them, other devel-
opers in his team do not; they occasionally overlook or
work-around framework features. P-T10 explains, “I have
expressed to [the team] why I am doing things the way I
am, because it’s correct, it’s the right way to do it with this

framework. They chose to do things a completely different
way, it’s completely messed up the framework and their code.
They don’t care, they just want something that they feel is
right and you know whatever.” Such framework misuse may
result in messy code and could lead to potential vulnerabil-
ities [47]. Although frameworks have shown security bene-
fits [52], it is evident that the manner by which some teams
are currently using and relying on them is problematic.

Developers lack security knowledge. (SI) Developers
from the security inattentive group vary greatly in their se-
curity knowledge. Some have haphazard knowledge; they
only know what they happen to hear or read about in the
news. Others have formed their knowledge entirely from
practical experience; they only know what they happen to
come across in their work. Developers’ lack of software secu-
rity knowledge could explain why some teams are reluctant
to rely on developers for secure implementation. P-T7 said,
“I think they kind of assume that if you’re a developer, you’re
not necessarily responsible for the security of the system, and
you [do] not necessarily have to have the knowledge to deal
with it.” On the other hand, some developers have security
background, but do not apply their knowledge in practice, as
it is neither considered their responsibility nor a priority. P-
T7 said, “I recently took an online course on web application
security to refresh my knowledge on what were the common
attack on web applications [...] So, I gained that theoreti-
cal aspect of it recently and play[ed] around with a bunch of
tools, but in practice I didn’t actually use those tools to test
my software to see if I can find any vulnerability in my own
code because it’s not that much of a priority.”

Developers perceive their security knowledge inac-

curately. (SI) We identified a mismatch between develop-
ers’ perception of their security knowledge and their actual
knowledge. Some developers do not recognize their secure
practices as such. When asked about secure coding methods,
P-T6 said, “[The] one where we stop [cross-site scripting].
That’s the only one I remember I explicitly used. Maybe I
used a couple of other things without knowing they were se-
curity stuff.” In some instances, our participants said they
are not addressing security in any way. However, after prob-
ing and asking more specific questions, we identified security
practices they perform which they did not relate to security.

Furthermore, we found that some developers’ mental model
of security revolves mainly around security functions, such
as using the proper client-server communication protocol.
However, conforming with previous research [59], it does
not include software security. For example, P-T9 assumes
that following requirements generated from the design stage
guarantees security, saying “if you follow the requirements,
the code is secure. They take those into consideration.”How-
ever, he mentioned that requirements do not always include
security. In this case, and especially by describing require-
ments as a definite security guarantee, the developer may
be referring to security functions (e.g., using passwords for
authentication) that he would implement as identified by
the requirements. However, the developer did not discuss
vulnerabilities due to implementation mistakes that are not
necessarily preventable by security requirements.

Our study also revealed the following incident which illus-
trates how Vulnerability discovery can motivate secu-

USENIX Association Fourteenth Symposium on Usable Privacy and Security 285

rity (SI) and improve mental models. Developers in T13
became more security conscious after discovering a vulnera-
bility in their application. P-T13 said, “We started making
sure all of our URLs couldn’t be manipulated. [..] If you
change the URL and the information you are looking at, [at
the] server side, we’d verify that the information belongs to
the site or the account you are logged in for.” Discovering
this vulnerability was eye-opening to the team; our partici-
pant said that they started thinking about their code from a
perspective they had not been considering and they became
aware that their code can have undesirable security conse-
quences. In addition, this first-hand experience led them to
the knowledge of how to avoid and prevent similar threats.

4.1.3 Developer testing stage
Across the vast majority of our participants, whether adopters
or inattentive, security is lacking in the developer testing
stage. Functionality is developers’ main objective; they are
blamed if they do not properly fulfil functional requirements,
but their companies do not hold them accountable if a secu-
rity vulnerability is discovered. P-T7 said, “I can get away
with [introducing security bugs] but with other things like just
your day-to-day developer tasks where you develop a feature
and you introduce a bug, that kind of falls under your respon-
sibility. Security doesn’t.” Thus, any security-related efforts
by developers are viewed as doing something extraordinary.
For example, P-T2 explained, “If I want to be the hero of the
day [and] I know there’s a slight possible chance that these
can be security vulnerabilities, [then] I write a test and sub-
mit it to the test team.”We grouped participants’ approaches
to security during this stage into four categories.

Developers do not test for security. (SA/SI) The pri-
ority at this stage is almost exclusively functionality; it in-
creases in scope until the developer is satisfied that their
code is fulfilling functional requirements and does not break
any existing code. And even then, these tests vary in quality.
Some developers perform adhoc testing or simply test as a
sanity check where they only verify positive test cases with
valid input. Others erroneously, and at times deliberately,
test only ideal-case scenarios and fail to recognize worst-case
scenarios. The majority of developers do not view security
as their responsibility in this stage; instead they are rely-
ing on the later SDLC stages. P-T2 said, “I usually don’t
as a developer go to the extreme of testing vulnerability in
my feature, that’s someone else’s to do. Honestly, I have to
say, I don’t do security testing. I do functional testing.” The
participant acknowledged the importance of security test-
ing, however, this task was considered the testing team’s
responsibility as they have more knowledge in this area.

Security is a priority during developer testing. (SA)
As an exception, our analysis of P-T14’s interview indicates
that his company culture emphasizes the importance of ad-
dressing security in this stage. His team uses both auto-
mated and manual tests to ensure that their application is
secure and is behaving as expected. P-T14’s explained that
the reason why they prefer to incorporate security in this
stage was that it is more cost efficient to address security
issues early in the SDLC. He explained, “We have a small
company, so it’s very hard to catch all the bugs after release.”

Developers test for security fortuitously. (SA) In other
cases, security is not completely dismissed, yet it is not an

explicit priority. Some security adopters run existing test
suites that may include security at varying degrees. These
test suites include test cases that any application is expected
to pass, however, there is not necessarily a differentiation
between security and non-security tests. Some developers
run these tests because they are required to, without actual
knowledge of their purpose. For example, P-T3 presumes
that since his company did not have security breaches, se-
curity must be incorporated in existing test suites. He ex-
plained, “[Security] has to be there because basically, if it
wasn’t, then our company would have lots of problems.”

Developers’ security testing is feature-driven. (SI)
In another example where security is not dismissed, yet
not prioritized, one participant from the security inattentive
group (out of the only two who perform security testing),
considers that security is not a concern as his application is
not outward facing, i.e., it does not involve direct user in-
teraction. P-T9 explained, “Security testing [pause] I would
say less than 5%. Because we’re doing embedded systems, so
security [is] pretty low in this kind of work.” While this may
have been true in the past, the IoT is increasingly connecting
embedded systems to the Internet and attacks against these
systems are increasing [28]. Moreover, classifying embedded
systems as relatively low-risk is particularly interesting as
it echoes what Schneier [46] described as a road towards “a
security disaster”. On the other hand, P-T4 explained that
only features that are classified as sensitive in the design
stage are tested, due to the shortage in security expertise.
As the company’s only developer with security background,
these features are assigned to P-T4. Other developers in T4
do not have security experience, thus they do not security-
test their code and they are not expected to.

4.1.4 Code analysis stage
Eight developers reported that their teams have a manda-
tory code analysis stage. Participants from the security
adopters group mentioned that the main objectives in this
stage is to verify the code’s conformity to standards and in-
house rules, as well as detect security issues. On the other
hand, participants from the security inattentive group gen-
erally do not perform this stage, and rarely for security.

Security is a priority during code analysis. (SA) All
security adopters who perform this stage reported that se-
curity is a main component of code analysis in their team.
T5 mandates analysis using multiple commercial tools and
in-house tools before the code is passed to the next stage.
T3 has an in-house tool that automates the process of anal-
ysis to help developers with the burden of security. P-T3
explained, “[Our tool] automatically does a lot of that for
us, which is nice, it does static analysis, things like that and
won’t even let the code compile if there are certain require-
ments that are not met.” One of the advantages of automat-
ing security analysis is that security is off-loaded to the tools;
P-T3 explains that security “sort of comes for free”.

Security is a secondary objective during code analy-

sis. (SI) P-T2 explained that in his team, developers’ main
objective when using a SAT is to verify conformity to indus-
try standards. Although they might check security warn-
ings, other security testing methods are considered more
powerful. P-T2 explained,“[SAT name] doesn’t really look at
the whole picture. [...] In terms of: is it similar to a security

286 Fourteenth Symposium on Usable Privacy and Security USENIX Association

vulnerability testing? No. Pen testers? No. It’s very weak.”
In addition to the lack of trust in SATs’ ability to identify
security issues, and similar to previous research (e.g., [31]),
our participants complained about the overwhelming num-
ber false positives and irrelevant warnings.

Developers rarely perform code analysis, never for

security. (SI) Code analysis is not commonly part of the
development process for the security inattentive group. Ac-
cording to their developers, T2, T6, and T15 use SATs, but
not for security. Code analysis is performed as a preliminary
step to optimize code and ensure readability before the code
review stage, with no consideration to security.

Reasons for underusing SATs were explored in other con-
texts [31]. The two main reasons in our interviews were
that their use was not mandated or that developers were
unaware of their existence. We found that Developers

vary in awareness of analysis tools. (SI) In addition
to those unaware, some developers use SATs without fully
understanding their functionality. P-T10 does not use such
tools since it is not mandated and his teammates are unlikely
to do so. He said, “I know that there’s tools out there that
can scan your code to see if there’s any vulnerability risks
[...] We are not running anything like that and I don’t see
these guys doing that. I don’t really trust them to run any
kind of source code scanners or anything like that. I know
I’m certainly not going to.” Despite his awareness of the po-
tential benefits, he is basically saying no one else is doing
it, so why should I? Since it is not mandatory or common
practice, running and analyzing SATs reports would add to
the developer’s workload without recognition for his efforts.

4.1.5 Code review stage
Most security adopters say that security is a primary com-
ponent in this stage. Reviewers examine the code to verify
functionality and to look for potential security vulnerabili-
ties. P-T14 explained, “We usually look for common mis-
takes or bad practices that may induce attack vectors for
hackers such as, not clearing buffers after they’ve been used.
On top of that, it’s also [about the] efficiency of the code.”

Contrarily, the security inattentive discount security in this
stage—security is either not considered, or is considered in
an informal and adhoc way and by unqualified reviewers.
Code review can be as simple as a sanity check, or a walk-
through, where developers explain their code to other devel-
opers in their team. Some reviewers are thorough, while oth-
ers consider reviews a secondary task, and are more inclined
to accept the code and return to their own tasks. P-T10 ex-
plained, “Sometimes they just accept the code because maybe
they are busy and they don’t want to sit around and criticize
or critically think through everything.” Moreover, reviewers
in T9 examine vulnerabilities to assess their impact on per-
formance. P-T9 explained, “[Security in code review is] min-
imum, I’d say less than 5%. So, yeah you might have like
buffer overflow, but then for us, that’s more of the stability
than security issue.” We grouped participants’ descriptions
of the code review stage into four distinct approaches.

Code review is a formal process that includes secu-

rity. (SA) All security adopters mentioned that their teams
include security in this stage. For some teams, it is a struc-
tured process informed by security activities in previous

stages. For example, security-related warnings flagged dur-
ing the code analysis phase are re-examined during code
reviews. Reviewers can be senior developers, or an inde-
pendent team. Being independent, reviewers bring in a new
perspective, without being influenced by prior knowledge,
such as expected user input. P-T5 said, “We do require
that all the code goes through a security code review that’s
disconnected from the developing team, so that they’re not
suffered by that burden of knowledge of ‘no one will do this’,
uh, they will.”Sometimes reviewers might not have adequate
knowledge of the applications. In such cases, T1 requires de-
velopers to explain the requirements and their implementa-
tion to the reviewers. P-T1 said, “You have to explain what
you have done and why. [...] so that they need not invest so
much time to understand what is the problem [...] Then they
will do a comparative study and they will take some time to
go over every line and think whether it is required or not, or
can it be done in some other way.”Although cooperation be-
tween different teams is a healthy attitude, there might be a
risk of developers influencing the reviewers by their explana-
tion. P-T13 indicated the possibility of creating a bias when
reviewers are walked-through the code rather than looking at
it with a fresh set of eyes. He said, “umm, I have not really
thought about [the possibility of influencing the reviewers.]
[...] Maybe. Maybe there is a bit.”

Preliminary code review is done as a checkpoint be-

fore the formal review. (SA) This is an interesting exam-
ple of developers collaborating with reviewers. P-T1 men-
tioned that reviewers sometimes quickly inspect the code
prior to the formal review process and in case of a potential
issue, they provide the developer with specific testing to do
before the code proceeds to the review stage. This saves re-
viewers time and effort during the formal code review, and
it could help focus the formal process on intricate issues,
rather than being overwhelmed with simple ones.

Security is not considered during code review. (SI)
The majority of the security inattentive participants ex-
plained that their teams’ main focus for code review is as-
sessing code efficiency and style, and verifying how well new
features fulfill functional requirements and fit within the rest
of the application. In fact, some participants indicated that
their teams pay no attention to security during this stage. It
is either not the reviewers’ responsibility, or is not an overall
priority for the team. P-T7 explained that because reviewers
are developers, they are not required to focus on security. In
addition to not being mandated, our participants explained
that most developers in their teams do not have the neces-
sary expertise to comment on security. P-T7 said, “Probably
in the two years that I’ve been working, I never got feedback
[on] the security of my code [...] [Developers] don’t pay at-
tention to the security aspect and they can’t basically make
a comment about the security of your code.”

Security consideration in code review is minimal. (SI)
According to developers from the security inattentive group,
some of their teams pay little attention to security dur-
ing code review only by looking for obvious vulnerabilities.
Additionally, this may only be performed if the feature is
security-sensitive. In either case, teams do not have a for-
mal method or plan, and reviewers do not necessarily have
the expertise to identify vulnerabilities [22]. Our partici-
pants explained that reviewers are either assigned or chosen

USENIX Association Fourteenth Symposium on Usable Privacy and Security 287

by the developer, based on the reviewer’s qualifications and
familiarity with the application. However, this can have
serious implications, e.g., those who have security exper-
tise will carry the burden of security reviews in addition to
their regular development tasks. P-T12 explained that this
caused the individuals who had security knowledge to be-
come “overloaded”. Although our data does not allow us to
make such explorations, it is important to investigate the ef-
fect of workload on the quality of code reviews, and whether
it has an effect on developers’ willingness to gain security
knowledge. For example, does being the person designated
to do security code reviews motivate developers to gain secu-
rity knowledge? Or would they rather avoid being assigned
extra reviewing workload?

4.1.6 Post-development testing stage
Security is a priority during post-development test-

ing. (SA) Three participants from the security adopters
group mentioned that their project teams have their own
testers that evaluate different aspects, including security.
The general expectation is that the testers would have some
security knowledge. Additionally, P-T12 mentioned that his
company hires external security consultants for further se-
curity testing of their applications. However, because the
testing process by such experts is usually “more expensive
and more thorough,” (P-T12), they usually postpone this
step until just before releasing the application. We identi-
fied two distinct motivations for performing security test-
ing at this stage: Post-development testing is used to
discover security vulnerabilities, or for final verifica-

tion. (SA) Unsurprisingly, the majority of security adopters
rely on post-development testing as an additional opportu-
nity to identify and discover security vulnerabilities before
their applications are put out to production. T1, on the
other hand, expects security post-development testing to re-
veal zero vulnerabilities. P-T1 explained, “If they find a se-
curity issue, then you will be in trouble. Everybody will be at
your back, and you have to fix it as soon as possible.” Thus,
this stage is used as a final verification that security practices
in the previous stages were indeed successful in producing a
vulnerability-free application.

Similar to the code review stage, we found evidence of col-
laboration between the development and the testing team,

however, Testers have the final approval. (SA) . Testers
would usually discuss with developers to verify that they
understand the requirements properly, since they do not
have the same familiarity with the application as developers.
However, P-T5 explained that although developers can chal-
lenge the testing team’s analysis, they cannot dismiss their
comments without justification. Addressing security issues
is consistently a priority. P-T5 said, “[The testing team will]
talk to the development teams and say, ‘here’s what we think
of this’, and the development team will sometimes point out
and say, ‘oh, you missed this section over here’ [...] but one
of the things is, we don’t let the development teams just say,
‘oh, you can’t do that because we don’t want you to’. So the
security teams can do whatever they want.” Cooperation be-
tween developers and testers could help clear ambiguities or
misunderstandings. In T5 testers have some privilege over
developers; issues raised by testers have to be addressed by
developers, either by solving them or justifying why they
can be ignored. P-T5 hinted that disagreements may arise

between different teams, but did not detail how they are
resolved. Further exploration of this subject is needed, tak-
ing into consideration the level of security knowledge of the
development team compared to the testing team.

Security is prioritized in post-development testing for all of
our security adopters, where they rely on an independent
team to test the application as a whole. On the other hand,
although post-development testing appears to be common
to all teams from the security inattentive group (with the
exception of T10), it often focuses primarily on functionality,
performance and quality analysis, with little to no regard for
security. Our analysis revealed the following insights and
approaches to post-development security testing.

Security is not considered in post-development test-

ing. (SI) According to their developers, two teams (T10,
T15) do not consider security during this stage. T10 does
not perform any testing, security or otherwise. The com-
pany to which T15 belongs has its own Quality Analysis
(QA) team, though they do not perform security testing.
P-T15 said, “I’ve never seen a bug related to security raised
by QA.” The case of T15 is particularly concerning; many
teams rely on this stage to address software security, while
T15 does not. According to our data, security is not part of
the development lifecycle in T15. It would be interesting to
further explore why some teams completely ignore software
security, and what factors could encourage them to adopt a
security initiative.

Post-development testing plans include a security

dimension. (SI) As mentioned earlier, P-T2 relies mainly
on this stage for security testing, In addition, P-T6, and P-
T13 say that their teams consider security during this stage.
However, there seems to be a disconnect between develop-
ers and testers in T6; developers are unaware of the testing
process and consider security testing out of scope. Despite
her knowledge that security is included in this stage, P-T6
mentioned, “I don’t remember any tester coming back and
telling [me] there are [any] kinds of vulnerability issues.”T13
started integrating security in their post-development test-
ing after a newly hired tester who decided to approach the
application from a different perspective discovered a serious
security issue. P-T13 explained, “No one had really been
thinking about looking at the product from security stand-
point and so the new tester we had hired, he really went at
it from ‘how can I really break this thing?’ [..] and found
quite a few problems with the product that way.” The start-
ing point of security testing in T13 was a matter of chance.
When an actual security issue was discovered in their code,
security was brought to the surface and post-development
testing started addressing security.

Through our analysis, we found that along the security pri-
oritization spectrum, there are cases where security in this
stage is driven by different factors, as explained below.

Some participants discussed that their team relies on a sin-
gle person to handle security, thus security consideration
is driven by specific factors. For example, in T4, Post-

development security testing is feature-driven. (SI) .
P-T4 is the only developer in his company with security ex-
pertise, thus he is responsible for security. He explained
that his company has limited resources and few employees,
thus they focus their security testing efforts only on security-

288 Fourteenth Symposium on Usable Privacy and Security USENIX Association

sensitive features (e.g., authentication processes), as flagged
by the developers. Thus, the question is how reliable are as-
sessments in this case given that they are done by developers
with limited security expertise? On the other hand, in T7,

Post-development security testing is adhoc. (SI) . P-
T7 explained that they rely on a single operations-level en-
gineer who maintains the IT infrastructure and handles se-
curity testing. Thus, testing is unplanned and could happen
whenever the engineer has time or “whenever he decides.”
P-T7 erroneously [50] presumes their applications are risk-
free since they are a “small company”, and thus they are not
an interesting target for cyberattacks. Company size was
used by some of our participants to justify their practices in
multiple instances. Although in our data we did not find ev-
idence to support that company size affects actual security
practices, it shows our participants’ perception.

We also found that an external mandate to the company
can be a driving factor for security consideration. For exam-
ple, P-T8 reported that his company needs to comply with
certain security standards, thus his team performs security
testing when they are expecting an external audit “to make
sure the auditors can’t find any issue during the penetration
test.” In this case, Post-development security testing

is externally-driven. (SI) Such external pressure by an
overseeing entity was described as “the main” driving factor
to schedule security testing; P-T8 explained that if it were
not for these audits, his team would not have bothered with
security tests. Mandating security thus proved to be effec-
tive in encouraging security practices in a team that was not
proactively considering it.

As evidenced by our data, the security inattentive group’s se-
curity practices, if existent, are generally informal, unstruc-
tured, and not necessarily performed by those qualified. The
main focus is delivering features to customers; security is not
necessarily a priority unless triggered, e.g., by experiencing
a security breach or expecting an external audit.

4.2 The adopters vs. the inattentive
In general, security practices appear to be encouraged in
teams to which the security adopters belong. In contrast,
as explained by participants from the security inattentive
group, their teams’ main priority is functionality; security
is an afterthought. Contrary to a trend towards labelling
developers as “the weakest link” [27], our analysis highlights
that poor security practices is a rather complex problem
that extends beyond the developer. Just as we have iden-
tified instances where developers lack security knowledge or
lack motivation to address security, we have also identified
instances where security was ignored or dismissed by devel-
opers’ supervisors, despite the developer’s expertise and in-
terest. It is especially concerning when security is dismissed
by those high in the company hierarchy. As an extreme case,
P-T15 reported zero security practices in their SDLC; she
explained “To be honest, I don’t think anybody cares about
[security]. I’ve never heard or seen people talk about security
at work [...] I did ask about this to my managers, but they
just said ‘well, that’s how the company is. Security is not
something we focus on right now.’”

It was interesting to find that all our participants who iden-
tified themselves as developers of web applications and ser-
vices, i.e., in their current daily duties, (namely, P-T4, P-T6,

P-T7, P-T8, P-T10, P-T13, P-T15) fall in the security inat-
tentive group. Specific reasons for this are unclear. It may
be because web-development is generally less mature and
has a quick pace [44], and teams are eager to roll-out func-
tionality to beat their competitors. In such cases, functional
requirements may be prioritized and security may be viewed
as something that can be addressed as an update, essen-
tially gambling that attackers will miss any vulnerabilities
in the intervening time. Teams who have not yet become vic-
tims may view this as a reasonable strategy, especially since
patching generally does not requires end-user involvement
(e.g., web server fixes do not require users to update their
software), making it a less complicated process. However,
since participants building other types of software also fall
in the security inattentive group, it is hard to draw a generic
conclusion that web-development is particularly insecure.

Table 2 summarizes the themes that emerged from our anal-
ysis. As expected, we found conflicting themes between the
security adopters and the security inattentive group, where
the more secure themes consistently belongs to the secu-
rity adopters. However, our analysis also revealed common
themes (see Table 2), some of which are promising while
others are problematic for security. On the positive side,
participants from both groups discussed developers’ role in
security during implementation. On the other hand, partic-
ipants from both groups also indicated a lack of attention
to security in the design stage. Reasons leading to these
common themes sometimes vary. Consider the theme De-
velopers do not test for security ; the security inattentive
group ignored security testing because developers often lack
the knowledge necessary to perform this task. Whereas for
the security adopters, the reason is that security testing is
not included in developers’ tasks even if they have the re-
quired knowledge. In Section 6.2 we discuss factors that we
identified as influential to security practices.

5. INITIATIVES AND BEST PRACTICES
After exploring real life security practices, how do these
compare to security best practices? To answer, we offer
background on popular sources of best practices. We then
amalgamate them into a concise list of the most common
recommendations. In Section 6, we discuss the relationship
between practices found in our study and best practices.

5.1 Secure SDLC initiatives
This section gives a brief background on prominent processes
and recommendations for secure software development.

Security Development Lifecycle (SDL). Microsoft SDL [8]
is the first initiative to encourage the integration of security
in the SDLC from the early stages. It consists of 16 security
practices and can be employed regardless of the platform.

Building Security In Maturity Model (BSIMM). Cur-
rently maintained by Cigital [2], the BSIMM [6] recommends
12 main security practices. It provides high-level insights to
help companies plan their secure SDLC initiative and assess
their security practices compared to other organizations.

Open Web Application Security Project (OWASP)
initiatives. OWASP’s Software Assurance Maturity Model
(SAMM) [3] recognizes 4 main classes of SDLC activities and
provides 3 security best practices for each. Additionally, the
Developer Guide [1] provides best practices for architects

USENIX Association Fourteenth Symposium on Usable Privacy and Security 289

Table 2: Summary of themes emerging from the security adopters and the security inattentive, and common themes between
the two groups. Although common themes exist, driving factors for these themes may differ. See Section 4.2 for more details.

Security Adopters Themes Common Themes Security Inattentive Themes

Design

· Security design is very important · Security is not considered in the design
stage

· Security consideration in the design stage is adhoc

Implementation

· Security is a priority during implementa-
tion

· Developers’ awareness of security is ex-
pected when implementing

· Security is not a priority during implementation
· Developers take security for granted
· Developers misuse frameworks
· Developers lack security knowledge
· Developers perceive their security knowledge inaccurately
· Vulnerability discovery can motivate security

Developer Testing

· Developers test for security fortuitously
· Security is a priority during developer testing

· Developers do not test for security · Developers’ security testing is feature-driven

Code Analysis

· Security is a priority during code analysis · Security is a secondary objective during code analysis
· Developers rarely perform code analysis, never for security
· Developers vary in awareness of analysis tools

Code Review

· Code review is a formal process that includes security
· Preliminary code review is done as a checkpoint be-

fore the formal review

· Security is not considered during code review
· Security consideration in code review is minimal

Post-development Testing

· Security is a priority during post-development testing
· Post-development testing is used to discover security

vulnerabilities, or for final verification
· Testers have the final approval

· Security is not considered in post-development testing
· Post-development testing plans include a security dimension
· Post-development security testing is feature-driven
· Post-development security testing is adhoc
· Post-development security testing is externally-driven

and developers, whereas the Testing Guide [4] focuses on
best practices for testing and evaluating security activities.

Others. Additional resources for security best practices in-
clude: NASA’s Software Assurance Guidebook [39], NIST’s
Special Publication 800-64 [32], US-CERT’s Top 10 Secure
Coding Practices [47], as well as various articles emphasizing
the importance of secure development [7, 36,37,57].

5.2 Security Best Practices
Available resources for security best practices vary in their
organization and their presentation style, e.g., they vary in
technical details. Practitioners may find difficulty deciding
on best practices to follow and establishing processes within
their organizations [38,42,54]. To help frame security prac-
tices we identified, we collected recommendations from the
sources discussed in Section 5.1 to compose a concise set of
best practices. This resulted in an initial set of 57 unor-
ganized recommendations varying in format and technical
details. We then grouped related recommendations, orga-
nized them in high-level themes, and iterated this process to
finally produce the following 12 best practices. Other amal-
gamations may be possible, but we found this list helpful to
interpret our study results. The list could be of independent
interest to complementary research in this area.

B1 Identify security requirements. Identify security re-
quirements for your application during the initial planning
stages. The security of the application throughout its dif-
ferent stages should be evaluated based on its compliance
with security requirements.

B2 Design for security. Aim for simple designs because

the likelihood of implementation errors increases with de-
sign complexity. Architect and design your software to im-
plement security policies and comply with security princi-
ples such as: secure defaults, default deny, fail safe, and
the principle of least privilege.

B3 Perform threat modelling. Use threat modelling to
analyze potential threats to your application. The result
of threat modelling should inform security practices in the
different SDLC stages, e.g., for creating test plans.

B4 Perform secure implementation. Adopt secure cod-
ing standards for the programming language you use, e.g.,
validate input and sanitize data sent to other systems, and
avoid using unsafe or deprecated functions.

B5 Use approved tools and analyze third-party tools’
security. Only use approved tools, APIs, and frameworks
or those evaluated for security and effectiveness.

B6 Include security in testing. Integrate security testing
in functional test plans to reduce redundancy.

B7 Perform code analysis. Leverage automated tools
such as SATs to detect vulnerabilities like buffer overflows
and improper user input validation.

B8 Perform code review for security. Include security
in code reviews and look for common programming errors
that can lead to security vulnerabilities.

B9 Perform post-development testing. Identify secu-
rity issues further by using a combination of methods, e.g.,
dynamic analysis, penetration testing, or hiring external
security reviewers to bring in a new perspective.

B10 Apply defense in depth. Build security in all stages
of the SDLC, so that if a vulnerability is missed in one
stage, there is a chance to eliminate it through practices
implemented in the remaining stages.

290 Fourteenth Symposium on Usable Privacy and Security USENIX Association

B11 Recognize that defense is a shared responsibility.
Address software security as a collective responsibility of all
SDLC entities, e.g., developers, testers, and designers.

B12 Apply security to all applications. Secure low risk
applications and high risk ones. The suggested effort spent
on security can be derived from assessing the value of assets
and the risks, however, security should not be ignored in
even the lowest risk applications.

6. INTERPRETATION OF RESULTS
In this section, we compare security practices from our study
to best practices, present factors influencing those practices,
and discuss future research directions. We comment on
teams’ practices as described by their developers (our par-
ticipants), recognizing that we have only one perspective
per team. Compliance (or lack thereof) to all best practices
is not proof of a secure (or insecure) SDLC. However, this
list of widely agreed upon best practices allows us to make
preliminary deduction on the software security status quo.

6.1 Current practices versus best practices
Our analysis showed different approaches to security and
varying degrees of compliance with best practices. The best
practice with most compliance is B9; almost all participants
reported that their team performs security post-development
testing (to varying degrees). Contrarily, most do not apply
defense in depth (B10); the security adopters do not con-
sistently integrate security throughout the SDLC and the
security inattentive group relies mainly on specific stages to
verify security (e.g., post-development testing). In addition,
security is generally not a part of the company culture for
the security inattentive group and they commonly delegate a
specific person or team to be solely responsible for security.
This leads to adhoc processes and violates B11: recognize
that defense is a shared responsibility. Moreover, the secu-
rity inattentive group violate B12 by ignoring security in
applications considered low-risk without evidence that they
performed proper risk analysis.

Deviations from best practices are apparent even from the
design stage. The majority of participants indicate that
their teams do not address security during design, contra-
dicting B1–B3. Some developers may even deliberately vi-
olate the Design for security best practice (B2) to achieve
their business goals and avoid extra work. On the other
hand, the two participants who discussed formal consider-
ation of security in design claim the advantages of having
more informed development processes, identifying all rele-
vant threats and vulnerabilities, and not getting distracted
by irrelevant ones [47].

The implementation stage is particularly interesting; it shows
the contradictions between the security adopters and the
security inattentive. Participants from both groups per-
form secure implementation (B4), yet this only applied to
three security inattentive participants. For most of the se-
curity inattentive group, security is not a priority and devel-
opers take security for granted, assuming that frameworks
will handle security. While frameworks have security ben-
efits [52], each has its own secure usage recommendations
(e.g., [5]), often buried in their documentations, and it is
unclear if developers follow them. In fact, our study sug-
gests that developers misuse frameworks by circumventing
correct usage to more easily achieve their functional goals,

another violation of B4. Moreover, despite their reliance on
frameworks, participants report that security is not factored
in their teams’ framework choices (violating B5).

We found non-compliance with best practices in other devel-
opment stages as well. For example, some teams do not in-
clude security in their functional testing plans, violating B6,
and some teams do not perform code analysis, violating B7.
Ignoring code analysis is a missed opportunity for automatic
code quality analysis and detection of common programming
errors [17]. Participants who said their teams use security
code analysis tools, do so to focus subsequent development
stages on the more unusual security issues. Others do not
review their code for security (violating B8); rather code
review is mainly functionality-focused. In some cases, par-
ticipants said that reviewers do not have the expertise to
conduct security reviews, in others they maybe overloaded
with tasks, and sometimes code review plans simply do not
include security.

6.2 Factors affecting security practices
Through close inspection of our results and being immersed
in participants’ reported experiences, we recognized factors
that appear to shape their practices and that may not be
adequately considered by best practices. We present each
factor and its conflict with best practices, if applicable.

Division of labour. Best practices conflict with some of
our teams’ division of labour styles. Participants explained
that some teams violate the Apply defense in depth (B10)
best practice because applying security in each SDLC stage
conflicts with their team members’ roles and responsibil-
ities. In some teams, developers are responsible for the
functional aspect (i.e., implementation and functional test-
ing) and testers handle security testing. These teams are
also violating B6, because integrating security in functional
testing plans would conflict with the developers’ assigned
tasks. Complying with these best practices likely means
they need to change the team’s structure and re-distribute
the assigned responsibilities. Teams may be reluctant to
make such changes [42] that may conflict with their software
development methodologies [35], especially since security is
not their primary objective [27].

Security knowledge. We found that the expectation of se-
curity knowledge (or lack thereof) directly affects the degree
of security integration in developers’ tasks. When security
knowledge was expected, participants said that developers
were assigned security tasks (e.g., performing security test-
ing). On the other hand, we found that developers’ (ex-
pected) lack of security knowledge resulted in lax security
practices (Security is not considered in the design stage, Se-
curity is not a priority during implementation, Developers
do not test for security, and Security is not considered during
code review). While these violate best practices (e.g., B1,
B4 B6, B8), it is unrealistic to rely on developers to perform
security tasks while lacking the expertise. From teams’ per-
spective, they are relieving developers from the security bur-
den. This may be a reasonable approach, loosely following
recommendations of taking the developer out of the security
loop when possible [14, 27]. Another obvious, yet compli-
cated, answer would be to educate developers [8]. However,
companies may lack the resources to offer security training,
and there is evidence that developers remain focused mainly

USENIX Association Fourteenth Symposium on Usable Privacy and Security 291

on their primary functional task and not security [22].

Company culture. Another influential factor indicated by
participants is the teams’ cognizance of security and whether
it is part of the company culture. In teams where secu-
rity was reportedly advocated, developers spoke of security
as a shared responsibility (conforming with B11). In in-
stances where security was dismissed, participants said that
developers did not consider security, and even those with
security knowledge were reluctant to apply it. For success-
ful adoption of security, initiatives should emerge from up-
per management and security should be rooted in the com-
pany’s policies and culture. Developers are more likely to
follow security practices if mandated by their company and
its policies [59]. Integrating and rewarding security in the
company culture can significantly motivate security prac-
tices [58, 59], compared to instances where security is being
viewed as something that only “heroes” do if there is time.

Resource availability. Some participants said their team
decides their security practices based on the available budget
and/or employees who can perform security tasks. As re-
ported, some teams violate B10 as they do not have enough
employees who can perform all the recommended security
tasks in addition to their original workload. Also, others
reportedly violate B9, because they neither have the budget
to hire external penetration testers, nor do their members
have the expertise to perform such post-development tests.
For such companies, the price for conforming with these best
practice is too steep for little perceived gain. In other cases,
participants said their team strains their resources in ways
that can be detrimental. For example, the one developer
with the most security knowledge is handed responsibility
to identify security-sensitive features and to verify the secu-
rity of the team’s code. This is a significant burden, yet with
little support or guidance. Besides the obvious security risks
of such an approach, it may also lead to employee fatigue
and ultimately to the loss of valuable team members.

External pressure. Monitoring by an overseeing entity
can drive teams to adopt security practices to ensure they
comply with its standards. Encouraging security practices
through external mandates is not new, e.g., the UK govern-
ment mandated that applications for the central government
should be tested using the National Technical Authority for
Information Assurance CHECK scheme [11]. As a result of
this initiative, companies have improved their management
and response to cyber threats [10]. It would be interesting
to explore how to mandate security practices in companies,
and how governments and not-for-profit agencies could sup-
port teams, particularly those from the security inattentive
group, to become more secure.

Experiencing a security incident. Participants reported
that discovering a vulnerability or experiencing a security
breach first-hand is another factor that encouraged secu-
rity practices and awareness in their teams. Despite exten-
sive publicity around security vulnerabilities, awareness of
and commitment to security remains low [45]. Our analy-
sis shows that direct vulnerability discovery influenced se-
curity practices more than hearing news-coverage of high-
profile vulnerabilities (e.g., [21, 53]). This can be explained
by the optimistic bias [55]: the belief that “misfortune will
not strike me” [45]. Rhee et al. [45] found that the opti-
mistic bias strongly influences perception of security risks

in Information Technology (IT). It is even greater when the
misfortune seems distant, without a close comparison target.
Thus, to overcome such bias, security training and aware-
ness has to reach all levels–from upper management to those
directly involved in the development process. Similar to Har-
bach and Smith’s [29] personalized privacy warnings which
led users to make more privacy-aware decisions, software se-
curity training should be personalized and provide concrete
examples of the consequences of these threats to the com-
pany. We recommend that training should also not focus
exclusively on threats; it should provide concrete proactive
steps with expected outcomes. Additionally, it should in-
clude case studies and first-hand accounts of security inci-
dents, and approaches to overcome them. Hence, security
training moves from the theoretical world to the real world,
aiding in avoiding the optimism bias.

6.3 Future research directions
Security best practices advocate for integrating security start-
ing from the early SDLC stages. However, with limited re-
sources and expertise, if a team can only address security in
post-development testing, is this team insecure? Or might
this testing be sufficient? Is the security inattentive group in
our dataset really guilty of being insecure? Or did they just
find the cost of following security best practices too steep?
Available best practices fail to discuss the baseline for en-
suring security, or how to choose which best practices to
follow based on limited resources and expertise. It was also
interesting to find that most security best practices are from
industry sources and are not necessarily empirically verified.

For future research, we suggest devising a lightweight ver-
sion of security best practices and evaluating its benefit for
teams that do not have enough resources to implement se-
curity throughout the SDLC, or when implementing tradi-
tional security practices would be too disruptive to their
workflow. Additionally, teams that succeeded at building a
security-oriented culture should be further explored to bet-
ter understand how others can adopt their approach. Fur-
ther exploration of how to incorporate security in the com-
pany culture and evaluating its benefits can be a starting
point for more coherent security processes, since developers
are more likely to follow security practices if mandated by
their company and its policy [59]. Particularly, what lessons
can be carried from the security adopters over to the secu-
rity inattentive group? Our work explores some of the issues
surrounding secure development practices. Surveys with a
larger sample of companies and more stakeholders would be
an interesting next step.

7. CONCLUSION
Through interviews with developers, we investigated SDLC
practices relating to software security. Our analysis showed
that real-life security practices differ markedly from best
practices identified in the literature. Best practices are often
ignored, simply since compliance would increase the burden
on the team; in their view, teams are making a reasonable
cost-benefit trade-off. Rather than blaming developers, our
analysis shows that the problem extends up in company hi-
erarchies. Our results highlight the need for new, lightweight
best practices that take into account the realities and pres-
sures of development. This may include additional automa-
tion or rethinking of secure programming practices to ease
the burden on humans without sacrificing security.

292 Fourteenth Symposium on Usable Privacy and Security USENIX Association

8. ACKNOWLEDGMENTS
We thank our participants for their time. H. Assal acknowl-
edges her NSERC Postgraduate Scholarship (PGS-D). S.
Chiasson acknowledges funding from NSERC for her Canada
Research Chair and Discovery grants.

9. REFERENCES
[1] https://www.owasp.org/index.php/Category:

OWASP_Guide_Project.

[2] https://www.cigital.com.

[3] www.owasp.org/index.php/OWASP_SAMM_Project.

[4] www.owasp.org/index.php/OWASP_Testing_Project.

[5] AngularJS Developer Guide.
https://docs.angularjs.org/guide/security.

[6] BSIMM. https://www.bsimm.com.

[7] Cybersecurity Engineering.
https://www.cert.org/cybersecurity-engineering/.

[8] Security Development Lifecycle.
https://www.microsoft.com/en-us/sdl.

[9] Content analysis for the social sciences and
humanities. Addison-Wesley Publishing Co., 1969.

[10] Cyber security boost for UK firms.
https://www.gov.uk/government/news/cyber-
security-boost-for-uk-firms, 2015.

[11] IT Health Check (ITHC): supporting guidance.
https://www.gov.uk/government/publications/it-
health-check-ithc-supporting-guidance/it-

health-check-ithc-supporting-guidance, 2015.

[12] Y. Acar, M. Backes, S. Fahl, S. Garfinkel, D. Kim,
M. L. Mazurek, and C. Stransky. Comparing the
usability of cryptographic apis. In Proceedings of the
38th IEEE Symposium on Security and Privacy, 2017.

[13] Y. Acar, M. Backes, S. Fahl, D. Kim, M. L. Mazurek,
and C. Stransky. You get where you’re looking for:
The impact of information sources on code security. In
IEEE Symp. on Security and Privacy, 2016.

[14] Y. Acar, S. Fahl, and M. L. Mazurek. You are not
your developer, either: A research agenda for usable
security and privacy research beyond end users. In
2016 IEEE Cybersecurity Development (SecDev),
pages 3–8, Nov 2016.

[15] Y. Acar, C. Stransky, D. Wermke, C. Weir, M. L.
Mazurek, and S. Fahl. Developers need support, too:
A survey of security advice for software developers. In
Cybersecurity Development (SecDev), 2017 IEEE,
pages 22–26. IEEE, 2017.

[16] H. Assal, S. Chiasson, and R. Biddle. Cesar: Visual
representation of source code vulnerabilities. In
VizSec’16, pages 1–8, Oct.

[17] N. Ayewah, D. Hovemeyer, J. D. Morgenthaler,
J. Penix, and W. Pugh. Using static analysis to find
bugs. IEEE Software, 25(5):22–29, Sept 2008.

[18] M. Backes, K. Rieck, M. Skoruppa, B. Stock, and
F. Yamaguchi. Efficient and flexible discovery of php
application vulnerabilities. In 2017 IEEE European
Symposium on Security and Privacy (EuroS P), pages
334–349, April 2017.

[19] G. Berisha and J. Shiroka Pula. Defining small and
medium enterprises: a critical review. Academic
Journal of Business, Administration, Law and Social
Sciences, 1, 2015.

[20] B. Chess and G. McGraw. Static Analysis for

Security. IEEE Security & Privacy, 2(6):76–79, 2004.

[21] Codenomicon. The Heartbleed Bug.
http://heartbleed.com.

[22] D. Oliveira et al. It’s the Psychology Stupid: How
Heuristics Explain Software Vulnerabilities and How
Priming Can Illuminate Developer’s Blind Spots. In
ACSAC ’14, pages 296–305. ACM, 2014.

[23] S. Elo and H. Kyngäs. The qualitative content
analysis process. Journal of Advanced Nursing,
62(1):107–115, 2008.

[24] A. Forward and T. C. Lethbridge. A taxonomy of
software types to facilitate search and evidence-based
software engineering. In Proceedings of the 2008
Conference of the Center for Advanced Studies on
Collaborative Research: Meeting of Minds, CASCON
’08, pages 14:179–14:191, New York, NY, USA, 2008.
ACM.

[25] D. Geer. Are Companies Actually Using Secure
Development Life Cycles? Computer, 43(6):12–16,
June 2010.

[26] B. G. Glaser and A. L. Strauss. The discovery of
grounded theory: strategies for qualitative research.
Aldine, 1967.

[27] M. Green and M. Smith. Developers are not the
enemy!: The need for usable security apis. IEEE
Security Privacy, 14(5):40–46, Sept 2016.

[28] A. Greenberg. Hackers Remotely Kill a Jeep on the
Highway—With Me in It. https://www.wired.com/
2015/07/hackers-remotely-kill-jeep-highway/,
2015.

[29] M. Harbach, M. Hettig, S. Weber, and M. Smith.
Using personal examples to improve risk
communication for security & privacy decisions.
In Proceedings of the 32Nd Annual ACM Conference
on Human Factors in Computing Systems, CHI ’14,
pages 2647–2656, New York, NY, USA, 2014. ACM.

[30] M. Howard and S. Lipner. The security development
lifecycle: SDL, a process for developing demonstrably
more secure software. Microsoft Press, Redmond,
Wash, 2006.

[31] B. Johnson, Y. Song, E. Murphy-Hill, and
R. Bowdidge. Why don’t software developers use
static analysis tools to find bugs? In ICSE, 2013.

[32] R. Kissel, K. Stine, M. Scholl, H. Rossman,
J. Fahlsing, and J. Gulick. Security considerations in
the system development life cycle. 2008.

[33] K. Krippendorff. Estimating the reliability, systematic
error and random error of interval data. Educational
and Psychological Measurement, 30(1):61–70, 1970.

[34] K. Krippendorff. Testing the reliability of content
analysis data. The content analysis reader, pages
350–357, 2009.

[35] R. C. Martin. Agile software development: principles,
patterns, and practices. Prentice Hall, 2002.

[36] G. McGraw. Software security: building security in.
Addison-Wesley, Upper Saddle River, NJ, 2006.

[37] G. McGraw. Seven myths of software security best
practices. http://searchsecurity.techtarget.com/
opinion/McGraw-Seven-myths-of-software-

security-best-practices, 2015.

[38] P. Morrison. A Security Practices Evaluation
Framework. In Proceedings of the 37th International

USENIX Association Fourteenth Symposium on Usable Privacy and Security 293

https://www.owasp.org/index.php/Category:OWASP_Guide_Project
https://www.owasp.org/index.php/Category:OWASP_Guide_Project
https://www.cigital.com
www.owasp.org/index.php/OWASP_SAMM_Project
www.owasp.org/index.php/OWASP_Testing_Project
https://docs.angularjs.org/guide/security
https://www.bsimm.com
https://www.cert.org/cybersecurity-engineering/
https://www.microsoft.com/en-us/sdl
https://www.gov.uk/government/news/cyber-security-boost-for-uk-firms
https://www.gov.uk/government/news/cyber-security-boost-for-uk-firms
https://www.gov.uk/government/publications/it-health-check-ithc-supporting-guidance/it-health-check-ithc-supporting-guidance
https://www.gov.uk/government/publications/it-health-check-ithc-supporting-guidance/it-health-check-ithc-supporting-guidance
https://www.gov.uk/government/publications/it-health-check-ithc-supporting-guidance/it-health-check-ithc-supporting-guidance
http://heartbleed.com
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
https://www.wired.com/2015/07/hackers-remotely-kill-jeep-highway/
http://searchsecurity.techtarget.com/opinion/McGraw-Seven-myths-of-software-security-best-practices
http://searchsecurity.techtarget.com/opinion/McGraw-Seven-myths-of-software-security-best-practices
http://searchsecurity.techtarget.com/opinion/McGraw-Seven-myths-of-software-security-best-practices

Conference on Software Engineering, ICSE ’15, pages
935–938, Piscataway, NJ, USA, 2015. IEEE Press.

[39] NASA. Software Assurance Guidebook,
NASA-GB-A201. https://www.hq.nasa.gov/office/
codeq/doctree/nasa_gb_a201.pdf, 2002.

[40] D. C. Nguyen, D. Wermke, Y. Acar, M. Backes,
C. Weir, and S. Fahl. A stitch in time: Supporting
android developers in writingsecure code. In
Proceedings of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, CCS ’17,
pages 1065–1077, New York, NY, USA, 2017. ACM.

[41] H. Perl, S. Dechand, M. Smith, D. Arp, F. Yamaguchi,
K. Rieck, S. Fahl, and Y. Acar. VCCFinder: Finding
Potential Vulnerabilities in Open-Source Projects to
Assist Code Audits. In Proceedings of the 22Nd ACM
SIGSAC Conference on Computer and
Communications Security, CCS ’15, pages 426–437,
New York, NY, USA, 2015. ACM.

[42] A. Poller, L. Kocksch, S. Türpe, F. A. Epp, and
K. Kinder-Kurlanda. Can security become a routine?:
A study of organizational change in an agile software
development group. In ACM CSCW, 2017.

[43] J. Radcliffe. Hacking Medical Devices for Fun and
Insulin: Breaking the Human SCADA System.
https://media.blackhat.com/bh-us-11/Radcliffe/
BH_US_11_Radcliffe_Hacking_Medical_Devices_WP.pdf.

[44] J. Ratner. Human factors and Web development, 2003.

[45] H.-S. Rhee, Y. U. Ryu, and C.-T. Kim. Unrealistic
optimism on information security management.
Computers & Security, 31(2):221 – 232, 2012.

[46] B. Schneier. Security Risks of Embedded Systems.
https://www.schneier.com/blog/archives/2014/01/
security_risks_9.html.

[47] R. Seacord. Top 10 secure coding practices.
https://www.securecoding.cert.org/confluence/
display/seccode/Top+10+Secure+Coding+Practices,
2011.

[48] J. Smith, B. Johnson, E. Murphy-Hill, B. Chu, and
H. R. Lipford. Questions developers ask while
diagnosing potential security vulnerabilities with
static analysis. In ESEC/FSE 2015, pages 248–259.
ACM, 2015.

[49] I. Sommerville. Software engineering. Pearson, Boston,
2011.

[50] J. Sophy. 43 Percent of Cyber Attacks Target Small
Business. https://smallbiztrends.com/2016/04/
cyber-attacks-target-small-business.html, 2016.

[51] C. Stransky, Y. Acar, D. C. Nguyen, D. Wermke,
D. Kim, E. M. Redmiles, M. Backes, S. Garfinkel,
M. L. Mazurek, and S. Fahl. Lessons learned from
using an online platform to conduct large-scale, online
controlled security experiments with software
developers. In 10th USENIX Workshop on Cyber
Security Experimentation and Test (CSET 17),
Vancouver, BC, 2017. USENIX Association.

[52] S. Streichsbier. Improve Web Application Security
with Frameworks: A case study.
http://www.vantagepoint.sg/blog/18-improve-web-
application-security-with-frameworks-a-case-

study.

[53] Symantec Security Response. ShellShock: All you
need to know about the Bash Bug vulnerability.
http://www.symantec.com/connect/blogs/
shellshock-all-you-need-know-about-bash-bug-

vulnerability, 2014.

[54] I. A. Tondel, M. G. Jaatun, and P. H. Meland.
Security Requirements for the Rest of Us: A Survey.
IEEE Software, 25(1):20–27, Jan 2008.

[55] N. D. Weinstein and W. M. Klein. Unrealistic
optimism: Present and future. Journal of Social and
Clinical Psychology, 15(1):1–8, 2017/08/12 1996.

[56] J. Witschey, S. Xiao, and E. Murphy-Hill. Technical
and personal factors influencing developers’ adoption
of security tools. In ACM SIW, 2014.

[57] C. Woody. Strengthening Ties Between Process and
Security. https://www.us-cert.gov/bsi/articles/
knowledge/sdlc-process/strengthening-ties-

between-process-and-security#touch, 2013.

[58] G. Wurster and P. C. van Oorschot. The developer is
the enemy. In Proceedings of the 2008 New Security
Paradigms Workshop, NSPW ’08, pages 89–97, New
York, NY, USA, 2008. ACM.

[59] S. Xiao, J. Witschey, and E. Murphy-Hill. Social
influences on secure development tool adoption: Why
security tools spread. In ACM CSCW, 2014.

[60] J. Xie, H. R. Lipford, and B. Chu. Why do
programmers make security errors? In VL/HCC,
pages 161–164, Sept 2011.

294 Fourteenth Symposium on Usable Privacy and Security USENIX Association

https://www.hq.nasa.gov/office/codeq/doctree/nasa_gb_a201.pdf
https://www.hq.nasa.gov/office/codeq/doctree/nasa_gb_a201.pdf
https://media.blackhat.com/bh-us-11/Radcliffe/BH_US_11_Radcliffe_Hacking_Medical_Devices_WP.pdf
https://media.blackhat.com/bh-us-11/Radcliffe/BH_US_11_Radcliffe_Hacking_Medical_Devices_WP.pdf
https://www.schneier.com/blog/archives/2014/01/security_risks_9.html
https://www.schneier.com/blog/archives/2014/01/security_risks_9.html
https://www.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+Coding+Practices
https://www.securecoding.cert.org/confluence/display/seccode/Top+10+Secure+Coding+Practices
https://smallbiztrends.com/2016/04/cyber-attacks-target-small-business.html
https://smallbiztrends.com/2016/04/cyber-attacks-target-small-business.html
http://www.vantagepoint.sg/blog/18-improve-web-application-security-with-frameworks-a-case-study
http://www.vantagepoint.sg/blog/18-improve-web-application-security-with-frameworks-a-case-study
http://www.vantagepoint.sg/blog/18-improve-web-application-security-with-frameworks-a-case-study
http://www.symantec.com/connect/blogs/shellshock-all-you-need-know-about-bash-bug-vulnerability
http://www.symantec.com/connect/blogs/shellshock-all-you-need-know-about-bash-bug-vulnerability
http://www.symantec.com/connect/blogs/shellshock-all-you-need-know-about-bash-bug-vulnerability
https://www.us-cert.gov/bsi/articles/knowledge/sdlc-process/strengthening-ties-between-process-and-security#touch
https://www.us-cert.gov/bsi/articles/knowledge/sdlc-process/strengthening-ties-between-process-and-security#touch
https://www.us-cert.gov/bsi/articles/knowledge/sdlc-process/strengthening-ties-between-process-and-security#touch

APPENDIX
A. INTERVIEW SCRIPT
The following questions represent the main themes discussed during the interviews. We may have probed for more details
depending on participants’ responses.

• What type of development do you do?

• What are your main priorities when doing development? (In order of priority)

• Do your priorities change when a deadline approaches?

• What about security? Is it something you worry about?

• How does security fit in your priorities?

• Which software security best practices are you familiar with?

• Are there any obligations by your supervisor/employer for performing security testing?

• What methods do you use to try to ensure the security of applications?

• Do you perform testing on your (or someone else’s) applications/code?

• Do you perform code reviews?

B. PARTICIPANTS DEMOGRAPHICS
Table 3: Participants demographics

Participant Company and team
Participant ID Gender Age Years Title SK Company size Team size1

P-T1 F 30 1 Software engineer 4 Large enterprise 20
P-T2 M 34 15 Software engineer 5 Large enterprise 12
P-T3 M 33 10 Software engineer 4 Large enterprise 10
P-T4 M 38 21 Software developer 4 SME 7
P-T5 M 34 12 Product manager 5 Large enterprise 7
P-T6 F 26 3 Software engineering analyst 3 Large enterprise 12
P-T7, P-T8? M 33 4 Senior web engineer 4 SME – n/a? 3
P-T9 M 34 5 Software developer 3 Large enterprise 20
P-T10, P-T11? M 33 8 Software engineer 2 SME – SME? 5
P-T12 M 37 20 Principal software engineer 5 SME 10
P-T13 M 38 15 Senior software developer 2 SME 8
P-T14 M 26 3 Software developer 2 SME 4
P-T15 F 27 5 Junior software developer 4 Large enterprise 7

Years: years of experience in development
SK: self-rating of security knowledge 1(no knowledge) - 5(expert)
?: indicates participant’s previous company
SME: Small-Medium Enterprise
1 Team size for the current company

USENIX Association Fourteenth Symposium on Usable Privacy and Security 295

C. DEGREE OF SECURITY IN THE SDLC
Table 4: Extending Table 1 to show the degree of security in the SDLC and the application type. • : secure, ◦ : somewhat

secure, × : not secure, ⊗ : not performed, ? : no data

(a) The Security Adopters

Application D
es

ig
n

Im
p
le

m
en

ta
ti

o
n

D
ev

el
o
p

er
te

st
in

g

C
o
d
e

a
n
a
ly

si
s

C
o
d
e

re
v
ie

w

P
o
st

-d
ev

te
st

in
g

embedded software T1 × • × • • •
design and engineering software T3 ? • ? • • •
design and engineering software T5 • • ◦ • • •

info. management & decision support T11 ? • ◦ • • ?
support utilities T12 × • ◦ • • •
support utilities T14 × • • ⊗ • •

(b) The Security Inattentive

Application D
es

ig
n

Im
p
le

m
en

ta
ti

o
n

D
ev

el
o
p

er
te

st
in

g

C
o
d
e

a
n
a
ly

si
s

C
o
d
e

re
v
ie

w

P
o
st

-d
ev

te
st

in
g

kernels T2 × • × ◦ ◦ •
website content management T4 ◦ ◦ ◦ ⊗ ◦ ◦

e-finance T6 × ◦ × × ◦ ◦
online productivity T7 × × × ⊗ × ◦

social networking T8 × × × ⊗ × •
embedded software T9 • • ◦ ⊗ ◦ ◦

online booking T10 ◦ ◦ × ⊗ ◦ ⊗
online productivity T13 × • × ⊗ ◦ •
online productivity T15 × × × × × ×

296 Fourteenth Symposium on Usable Privacy and Security USENIX Association

	Introduction
	Related Work
	Study Design and Methodology
	Results: Security in practice
	Exploring practices by development stage
	Design stage
	Implementation stage
	Developer testing stage
	Code analysis stage
	Code review stage
	Post-development testing stage

	The adopters vs. the inattentive

	Initiatives and Best Practices
	Secure SDLC! initiatives
	Security Best Practices

	Interpretation of Results
	Current practices versus best practices
	Factors affecting security practices
	Future research directions

	Conclusion
	Acknowledgments
	References
	Interview Script
	Participants demographics
	Degree of security in the SDLC

